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Object of this talk
▶ In this talk I review some recent results on nonintegrability of dynamical

systems.

▶ Dynamical systems concerned here include the restricted three-body
problem and time-periodic perturbations of single-degree-of-freedom
Hamiltonian systems.
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Plan of the talk

▶ Definition of integrability for general dynamical systems
(including non-Hamiltonian systems)

▶ Classical results of Poincaré and Kozlov

▶ Modern theory for determining the nonintegrability:
Morales-Ramis theory based on differential Galois theory

▶ Nonintegrability of nearly integrable systems near periodic orbits

▶ Restricted three-body problem

▶ Time-periodic perturbations of single-degree-of-freedom Hamiltonian
systems

▶ Related results
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Definition of Integrability

for General Dynamical Systems
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Liouville integrability

Consider n-degree-of-freedom Hamiltonian system

ẋ = JnDH(x), Jn =

(
0 idn

−idn 0

)
, x ∈ R2n, (HS)

where H : R2n → R and idn is the n × n identity matrix.

Definition 1 (Liouville)
(HS) is called integrable if there exist n scalar-valued functions
F1(x)(:= H(x)), F2(x), . . . , Fn(x) s.t.

(i) DF1(x), . . . ,DFn(x) are linearly independent almost everywhere
(a.e) and the Poisson brackets are zero:

{Fj, Fk}(x) := DFj(x) · JnDFk(x) ≡ 0, j, k = 1, . . . , n.

The functions F1(x), F2(x), . . . , Fn(x) are called first integrals.
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Remark 1

(i) When n = 1, (HS) is always integrable.

(ii) If the level set {x ∈ R2n|Fj(x) = cj, j = 1, . . . , n}, where cj , j
= 1, . . . , n, are const., is compact inR2n, then there exist action-
angle coordinates (Ij, ϕj) ∈ R × S1, j = 1, . . . , n, s.t.
H = H(I1, . . . , In):

İj = 0, ϕ̇j =
∂H

∂Ij
(I1, . . . , In), j = 1, . . . , n.

I j

φj
0 2π
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Bogoyavlenskij Integarbility

Consider a general n-dimensional system

ẋ = f(x), x ∈ Rn. (GS)

Definition 2 (Bogoyavlenskij ’98)
(GS) is called (q, n − q)-integrable if there exist q vector fields f1(x)
(:= f(x)), f2(x), . . . , fq(x) and n − q scalar-valued functions F1(x),
. . . , Fn−q(x) s.t.

(i) f1(x), . . . , fq(x) are linearly independent a.e. and commutative, i.e.,

[fj, fk](x) := Dfk(x)fj(x) − Dfj(x)fk(x) ≡ 0;

(ii) DF1(x), . . . ,DFn−q(x) are linearly independent a.e. and F1(x),
. . . , Fn−q(x) are first integrals of f1, . . . , fq, i.e.,

DFk(x) · fj(x) ≡ 0.
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Remark 2

(i) If (HS) is Liouville-integrable, then it is (n, n)-integrable in the sense
of Bogoyavlenskij. Actually, JnDF1(x), . . . , JnDFn(x) are
commutative vector fields. Thus, Bogoyavlenskij-integrability is a
generalization of Liouville-integrability.

(ii) If (GS) is integrable and the level set

{x ∈ R2n | Fj(x) = cj, j = 1, . . . , n − q},

where cj , j = 1, . . . , n − q, are constants, is compact in R2n, then
there exist action-angle coordinates (I1, . . . , In−q, ϕ1, . . . , ϕq)
∈ Rn−q × Tq with Tq =

∏q
j=1 S

1 s.t.

İj = 0, ϕ̇k = Ωk(I1, . . . , In−q),

j = 1, . . . , n − q. k = 1, . . . , q.

(iii) An n-dimensional linear system with f(x) = Ax, A ∈ Rn×n, is
(n, 0)-integrable. For instance, if A is diagonal, then f1(x) = Ax
and fj(x) = xjej , j = 2, . . . , n, where e1, . . . , en ∈ Rn are the
standard basis, are commutative vector fields.
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Classical Results of Poincaré and Kozlov
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Restricted three-body problem (planar case)

ẋ = px + y, ṗx = py +
∂U2

∂x
(x, y),

ẏ = py − x, ṗy = −px +
∂U2

∂y
(x, y),

(R3BP)

where U2(x, y) =
µ√

(x − 1 + µ)2 + y2
+

1 − µ√
(x + µ)2 + y2

.

x

y

−µ 1−µO
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▶ Poincaré (1890,1892) showed the nonexistence of a first integral
which is analytic in µ as well as the state variables x, y, px, py and
functionally independent of the Hamiltonian.

▶ So he won the prize competition celebrating the 60th birthday of King
Oscar II in 1889.

▶ He considered Hamiltonian systems of the form

İ = −εDθH1(I, θ; ε), θ̇ = DH0(I)+εDIH1(I, θ; ε), (AAH)

where (I, θ) ∈ Rn × Tn, 0 < |ε| ≪ 1 and H0,H1 are analytic in
all the arguments.

▶ Recall that

• (AA) is integrable when ε = 0;
• Integrable Hamiltonian systems can generally be transformed into

(AA) with ε = 0 if the level set of first integrals is compact.
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▶ Poincaré set P = {I ∈ Rn | r ·DIH0(I) = 0, ĥr(I) ̸= 0}, where

DIH1(I, θ; 0) =
∑

r∈Zm

ĥr(I) exp(ir · θ).

Theorem 1 (Poincaré 1892, Kozlov ’83)
Suppose that r · DIH0(I) ≡ 0 only for r = 0, DIH0(I0) ̸= 0 for
some I0 ∈ Rn and P is dense in a nbhd of I0. Then (AA) has no first
integral which is real-analytic in (I, θ, ε) and functionally independent of
the Hamiltonian H0(I) + εH1(I.θ; ε).

Remark 3

(i) Poincaré applied his original version of Theorem 1 to (R3BP) with
ε = µ. In particular, it was very hard to check that H1(I, θ; ε)
satisfies its hypothesis: He used 66 pages for it in the famous
monograph published in 1892!

(ii) Theorem 1 does not say about the possibility that (AA) is integrable
for a specific value of ε.

(iii) Kozlov’s result contains more and was extended to a non-
Hamiltonian case in his book published in ’96.
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Modern Theory for Determining

the Nonintegrability:

Morales-Ramis Theory

Based on the Differential Galois Theory
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Quick review of differential Galois theory

Consider a linear system on a (Riemann) surface Γ (e.g.,a region in C):

ẋ = A(t)x, x ∈ Cn, t ∈ Γ, Aij(t) ∈ K, (LS)

where K is a differential field (i.e., a field endowed with differentiation).

▶ Φ(t): Fundamental matrix (of solutions) to (LS).
▶ L ⊃ K: Differential field extension s.t. Φij(t) ∈ L, which is called

the Picard-Vessiot extension of (LS).
▶ σ: K-automorphism of L

def⇔ field automorphism of L s.t. σ|K = id and σ d
dt

= d
dt
σ.

▶ σ(Φ(t)) is also a fundamental matrix

∵ d
dt
σ(Φ(t)) = σ(Φ̇(t)) = σ(A(t)Φ(t)) = A(t)σ(Φ(t)).

⇒ There exists a nonsingular matrix Mσ s.t. σ(Φ(t)) = Φ(t)Mσ.
▶ Gal(L/K) = {Mσ | σ is a K-automorphism of L}:

differential Galois group of (LS)
▶ An algebraic group such as Gal(L/K) has a connected component

containing the identity, which is called the identity component.
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▶ If the identity component of Gal(L/K) is conjugate to a triangular
group, then (LS) is solved by quadrature.
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Simple example

ẋ =

(
2t 0
2t 2t

)
x, x ∈ C2, t ∈ Γ = C.

▶ K = C(t), which consists of all rational functions of t.

▶ x =

(
et

2

t2et
2

)
,

(
0

et
2

)
are linearly independent solutions.

▶ Φ(t) =

(
et

2
0

t2et
2

et
2

)
is a fundamental matrix.

▶ L = C(t, et2), which consists of all rational functions t and et
2
.

▶ For σ ∈ Gal(L/K),

d
dt
σ(et

2
)

σ(et2)
= σ

(
d
dt
et

2

et2

)
= σ(2t) = 2t.

∴ log |σ(et2)| = log |et2| + C0 for some C0 ∈ C.

∴ σ(et
2
) = Cet

2
with C = e±C0 ∈ C∗ := C \ {0}.
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▶ σ(Φ(t)) =

(
Cet

2
0

Ct2et
2

Cet
2

)
= Φ(t)

(
C 0
0 C

)
.

▶ Gal(L/K) =

{(
C 0
0 C

) ∣∣∣∣C ∈ C∗
}
.
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Morales-Ramis theory (extension by Ayoul & Zung)

General system
ẋ = f(x), x ∈ Rn. (GS)

▶ x = ϕ(t): nonconstant solution

▶ Variational equation (VE) along x = ϕ(t):

ξ̇ = Dg(ϕ(t))ξ, ξ ∈ Cn. (VE)

Theorem 2 (Morales-Ruiz & Ramis 2001, Ayoul & Zung, 2010)
If (GS) is meromorphically integrable near x = ϕ(t), then the identity
component of the differential Galois group is commutative.

Hence, the identity component of the differential Galois group is not
commutative, then (GS) is not meromorphically integrable near x = ϕ(t),

Kazuyuki Yagasaki (Kyoto University) Nonintegrability of Dynamical Systems Boston-Keio-Tsinghua Workshop 18 / 39



Morales-Ramis theory (extension by Ayoul & Zung)

General system
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Remark 4.

(i) The original version of the Morales-Ramis theory treats Hamiltonian
systems.

(ii) A higher-order theory beyond (VE) was also developed by Morales,
Ramis and Simó (2007), and is called the Morales-Ramis-Simó
theory.

(iii) The Morales-Ramis and Morale-Ramis-Simó theories have been
applied successfully to many systems including
Henon-Heiles system, general N -body problems (N ≥ 3), heavy
top, homogeneous potentials, Lorentz equation, SEIR epidemic
system and so on.

(iv) It is an important fact in application of the Morales-Ramis theory
that the identity component of the differential Galois group may be
triangularizable, the corresponding linear system is solved by
quadrature, even it is not commutative.
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3. Nonintegrability of Nearly Integrable Systems

near Periodic Orbits
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Nearly integrable systems

Action-angle coordinates

İ = εh(I, θ; ε), θ̇ = ω(I) + εg(I, θ; ε), (I, θ) ∈ Rℓ × Tm (AA)

(A1) For some I∗ ∈ Rℓ, dimQ⟨ω1(I
∗), . . . , ωm(I∗)⟩ = 1, i.e.,

∃ω∗ > 0 s.t. ω(I∗)/ω∗ ∈ Zm \ {0}.

(A2) For some k ≥ 0, there exists a closed loop γθ for some θ ∈ Tm s.t.

I k(θ) := Dω(I∗)

∫
γθ

Dk
εh(I

∗, ω(I∗)τ + θ; 0)dτ ̸= 0.

0 T * R

γ

Ri

θ
T ∗ = 2π/ω∗
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▶ T ∗ = {(I∗, θ) | θ ∈ Tm}: resonant torus.

▶ (I, θ) = (I∗, ω(I∗)t + θ0) on T ∗ for each θ0 ∈ Tm:
resonant periodic orbit.

Theorem 3 (Y). Let D be any domain in C/T ∗Z containing R/T ∗Z and
γθ. Under (A1) and (A2), (AA) is not meromorphically B-integrable near
(I∗, ω(I∗)τ + θ) with τ ∈ D s.t. the first integrals and commutative
vector fields also depend meromorphically on ε near ε = 0. Moreover, if
(A2) holds for θ ∈ ∆, where ∆ is a dense set of Tm, then the conclusion
holds for any resonant periodic orbit on T ∗.

Remark 5. When (AA) is Hamiltonian, it is not meromorphically
L-integrable if the hypotheses of Theorem 3 hold.

Kazuyuki Yagasaki (Kyoto University) Nonintegrability of Dynamical Systems Boston-Keio-Tsinghua Workshop 22 / 39



Sketch of the proof (for k = 0)

Extend (AA) as

İ = εh(I, θ; ε), θ̇ = ω(I) + εg(I, θ; ε), ε̇ = 0 (AAE)

Variational equation (VE) along (I, θ, ε) = (I∗, ω(I∗)t + θ0, 0):

ξ̇ = h(I∗, ω∗t + θ0; 0)χ,

η̇ = Dω(I∗)ξ + g(I∗, ω∗t + θ0; 0)χ,

χ̇ = 0,

(ξ, η, ε) ∈ Cℓ × Cm × C,

which is regarded as a linear system over Kθ

on the Riemann surface Γ, where Kθ ̸= C is
a differential field that contains the elements
of

h(I∗, ω(I∗)t + θ; ε),

g(I∗, ω(I∗)t + θ; ε),

where T ∗ = 2π/ω∗.

R Z

C /T *
Z

Γ

γ− /T *
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Fundamental matrix of VE:

Φ(t; θ0) =

 idℓ 0 Ξ(t; θ0)
Dω(I∗)t idm Ψ(t; θ0)

0 0 1

 ,

Ξ(t; θ) =

∫ t

0
h(I∗, ω(I∗)τ + θ)dτ,

Ψ(t; θ) =

∫ t

0

(
Dω(I∗)Ξ(τ ; θ) + g(I∗, ω(I∗)τ + θ; 0)

)
dτ.

Applying Theorem 2, we obtain the desired result.
For k ≥ 1, we use the Morales-Ramis-Simó theory.
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Restricted Three-Body Problem
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Restricted three-body problem (for the planar case)

ẋ = px + y, ṗx = py +
∂U2

∂x
(x, y),

ẏ = py − x, ṗy = −px +
∂U2

∂y
(x, y),

(R3BP)

where U2(x, y) =
µ√

(x − 1 + µ)2 + y2
+

1 − µ√
(x + µ)2 + y2

.

x

y

−µ 1−µO

Theorem 4 (Poincaré). (R3BP) is not analytically integrable s.t. the
first integrals depend analytically on µ near µ = 0.
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Regard (R3BP) as a Hamiltonian system on

S2 ={(x, y, px, py, u1, u2) ∈ C6

| u2
1 − (x − 1 + µ)2 − y2 = u2 − (x + µ)2 − y2 = 0}.

It is written as a meromorphic (rational) system

ẋ = px + y, ẏ = py − x,

ṗx = py − µ(x − 1 + µ)/u3
1 − (1 − µ)(x + µ)/u2

2,

ṗy = −px − µy/u3
1 − (1 − µ)y/u2

2,

u̇1 = ((x − 1 + µ)(px + y) + y(py − x))/u1,

u̇2 = ((x + µ)(px + y) + y(py − x))/u2.

Theorem 5 (Y). The problem (R3BP) is meromorphically nonintegrable
in punctured neighborhoods of (x, y) = (−µ, 0) and (1 − µ, 0) for any
µ ∈ (0, 1).
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Sketch of the proof

▶ Consider a nbhd of (x, y) = (−µ, 0).

▶ Let ε2ξ = x + µ, ε2η = y, ε−1pξ = px, ε
−1pη = py + µ.

▶ After scaling t → t/ε3, up to the order of ε6,

ξ̇ = pξ + ε3η, ṗξ = −
(1 − µ)ξ

(ξ2 + η2)3/2
+ ε3pη + 2ε6µξ,

η̇ = pη − ε3ξ, ṗη = −
(1 − µ)η

(ξ2 + η2)3/2
− ε3pξ − ε6µη.

▶ Hamiltonian

H = 1
2
(p2

ξ + p2
η) −

1 − µ√
ξ2 + η2

+ ε3(ηpξ − ξpη) − 1
2
ε6µ(2ξ2 − η2).

▶ Using Delaunay elements, we rewrite the above system in action-angle
coordinates.

▶ Application of Theorem 3.1 yields the desired result.

Remark 6. Similarly, we can prove Poincaré’s result (Theorem 4).
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Time-Periodic Perturbations of
Single-Degree-of-Freedom Hamiltonian Systems
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Time-periodic perturbations of s.d.o.f. Hamiltonian system

ẋ = JDH(x) + εu(x, νt), x ∈ R2, (TPP)

where

J =

(
0 1
−1 0

)
.

(M1) When ε = 0, there exists a one-parameter family of periodic orbits
xα(t), α ∈ (α1, α2), with period Tα > 0 for some α1 < α2;

(M2) xα(t) is analytic with respect to α ∈ (α1, α2).

xα (t)
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Action variable:

Iα =
1

2π

∫
xα

x2dx1 =
1

2π

∫ Tα

0
xα
2 (t)ẋ

α
1 (t)dt

Symplectic transformation:

x = xα(I)

(
θ1

Ω(I)

)
, Ω(I) =

2π

Tα(I)
.

Action-angle coordinates:

İ = εh(I, θ1, θ2), θ̇1 = Ω(I) + εg1(I, θ1, θ2), θ̇2 = ν,

where

h(I, θ1, θ2) =
1

Ω(I)
DH

(
xα(I)

(
θ1

Ω(I)

))
· u
(
xα(I)

(
θ1

Ω(I)

)
, θ2

)
,

g1(I, θ1, θ2) = J
∂

∂I
xα(I)

(
θ1

Ω(I)

)
· u
(
xα(I)

(
θ1

Ω(I)

)
, θ2

)
.
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▶ At α = αl/n, 2π/Tα = nν/l for l, n > 0 relatively prime integers.

▶ (A1) holds with ω∗ = 2π/nTα = ν/l.

▶ Subharmonic Melnikov function:

M l/n(ϕ) =

∫ 2πl/ν

0
DH(xα(t)) · u(xα(t), νt + ϕ)dt.

▶ M l/n(ϕ) has a simple zero at ϕ = ϕ0 and dTα/dα ̸= 0
⇒ ∃periodic orbit near (x, ϕ) = (xα(t), νt + ϕ0) in (TPP).

Theorem 6 (Y). At α = αl/n, dTα/dα ̸= 0 and ∃γϕ for some ϕ ∈ S1
s.t.

Î (ϕ) :=

∫
γϕ

DH(xα(t)) · u (xα(τ ), ντ + ϕ) dτ ̸= 0.

⇒ (TPP) is not meromorphically integrable in the meaning of Theorem 3
near the resonant periodic orbit (xα(τ ), ντ + ϕ) with α = αl/n

on any domain Γ̂ in C/(2πl/ν)Z containing R/(2πl/ν)Z and γ̂ϕ.
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Other applications

Duffing Oscillators:

ẋ1 = x2, ẋ2 = −ax1 − x3
1 + ε(β cos νt − δx2), (DO)

where a = 1, 0,−1.
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Forced pendulum:

ẋ1 = x2, ẋ2 = − sinx1 + ε(β cos νt − δx2). (FP)

0

3

-3

x
2

x1

−π 0 π

Remark 7. Motonaga and Y (2023,2024) showed that (DO) with
a = −1 and (FP) are not real-analytically integrable in the meaning of
Theorem 3 near homoclinic orbits. Moreover, Motonaga (2024) also
obtained similar results for resonant periodic orbits.
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▶ Nonintegrability near degenerate equilibria:

Df(0) =

0 −ω 0
ω 0 0
0 0 0

 or


0 −ω1 0 0
ω1 0 0 0
0 0 0 −ω2

0 0 ω2 0


with ω2/ω1 ̸∈ Q.

Y, Nonintegrability of dynamical systems near degenerate equilibria, Comm.
Math. Phys., 398 (2023), 1129–1152.

Y, Nonintegrability of truncated Poincare-Dulac normal forms of resonance

degree two, J. Differential Equations, 373 (2024), 526–563.

In particular, we use the result to show that the Rösler system and
coupled van der Pol oscillators are analytically nonintegrable near
equilibria.
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▶ Two-degree-of-freedom Hamiltonian systems:

ẋ = JDxH(x, y), ẏ = JDyH(x, y), (x, y) ∈ R2 × R2.

Y, Galoisian obstructions to integrability and Melnikov criteria for chaos in
two-degree-of-freedom Hamiltonian systems with saddle centres, Nonlinearity,
16 (2003), 2003-2012.
Y & Yamanaka, Nonintegrability of dynamical systems with homo- and
heteroclinic orbits, J. Differential Equations, 263 (2017), 1009–1027.

Y & Yamanaka, Heteroclinic orbits and nonintegrability in two-degree-of-

freedom Hamiltonian systems with saddle-centers, SIGMA, 15 (2019), 049.

In particular, the following were shown:
• When there exists a saddle-centers, the stable manifolds of periodic
orbits near the saddle-center intersect their unstable manifolds trans-
versely if the system is nonintegrable near the manifolds.

• When there exist two saddle-centers,
the stable manifolds of periodic orbits near one of the saddle-centers
may not intersect the unstable manifolds of periodic orbits near the
other even if the system is nonintegrable near the manifolds.
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▶ Nonintegrability of semiclassical model by Osawa & Leok (2013) and
Osawa (2021):
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Hamiltonian systems, submitted for publication.

▶ Integrability of integrable PDEs by quadrature:
Y, Integrability of the Zakharov-Shabat systems by quadrature, Comm. Math.

Phys., 400, 315–340.
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