Some Recent Results on Nonintegrability of Dynamical Systems

Kazuyuki Yagasaki

Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Japan

Boston-Keio-Tsinghua Workshop 2024:

Differential Equations, Dynamical Systems and Applied Mathematics

Boston University, MA, USA

May 31, 2024

In this talk I review some recent results on nonintegrability of dynamical systems.

- In this talk I review some recent results on nonintegrability of dynamical systems.
- Dynamical systems concerned here include the restricted three-body problem and time-periodic perturbations of single-degree-of-freedom Hamiltonian systems.

- In this talk I review some recent results on nonintegrability of dynamical systems.
- Dynamical systems concerned here include the restricted three-body problem and time-periodic perturbations of single-degree-of-freedom Hamiltonian systems.

References

- [1] Y, Nonintegrability of nearly integrable dynamical systems near resonant periodic orbits, *J. Nonlinear Sci.*, **32** (2022), 4.
- [2] Y, Non-integrability of the restricted three-body problem, *Ergodic Theory Dynam. Systems*, in press.

- In this talk I review some recent results on nonintegrability of dynamical systems.
- Dynamical systems concerned here include the restricted three-body problem and time-periodic perturbations of single-degree-of-freedom Hamiltonian systems.

References

- [1] Y, Nonintegrability of nearly integrable dynamical systems near resonant periodic orbits, *J. Nonlinear Sci.*, **32** (2022), 4.
- [2] Y, Non-integrability of the restricted three-body problem, *Ergodic Theory Dynam. Systems*, in press.

Other applications:

- [3] Shoya Motonaga and Y, Nonintegrability of forced nonlinear oscillators, *Jpn. J. Ind. Appl. Math.*, **41** (2024), 151–164.
- [4] Y, Nonintegrability of dissipative planar systems, *Phys. D*, 461 (2024), 134106.
- [5] Y, A new proof of Poincaré's result on the restricted three-body problem, submitted for publication, arXiv:2111.11031.

Kazuyuki Yagasaki (Kyoto University)

- Definition of integrability for general dynamical systems (including non-Hamiltonian systems)
- Classical results of Poincaré and Kozlov
- Modern theory for determining the nonintegrability:
 Morales-Ramis theory based on differential Galois theory

- Definition of integrability for general dynamical systems (including non-Hamiltonian systems)
- Classical results of Poincaré and Kozlov
- Modern theory for determining the nonintegrability:
 Morales-Ramis theory based on differential Galois theory
- Nonintegrability of nearly integrable systems near periodic orbits

- Definition of integrability for general dynamical systems (including non-Hamiltonian systems)
- Classical results of Poincaré and Kozlov
- Modern theory for determining the nonintegrability: Morales-Ramis theory based on differential Galois theory
- Nonintegrability of nearly integrable systems near periodic orbits
- Restricted three-body problem
- Time-periodic perturbations of single-degree-of-freedom Hamiltonian systems

- Definition of integrability for general dynamical systems (including non-Hamiltonian systems)
- Classical results of Poincaré and Kozlov
- Modern theory for determining the nonintegrability: Morales-Ramis theory based on differential Galois theory
- Nonintegrability of nearly integrable systems near periodic orbits
- Restricted three-body problem
- Time-periodic perturbations of single-degree-of-freedom Hamiltonian systems
- Related results

Definition of Integrability for General Dynamical Systems

Liouville integrability

Consider n-degree-of-freedom Hamiltonian system

$$\dot{x} = J_n \mathrm{D}H(x), \quad J_n = \begin{pmatrix} 0 & \mathrm{id}_n \\ -\mathrm{id}_n & 0 \end{pmatrix}, \quad x \in \mathbb{R}^{2n},$$
(HS)

where $H: \mathbb{R}^{2n} \to \mathbb{R}$ and id_n is the $n \times n$ identity matrix.

Definition 1 (Liouville)
(HS) is called integrable if there exist n scalar-valued functions
F₁(x)(:= H(x)), F₂(x), ..., F_n(x) s.t.
(i) DF₁(x), ..., DF_n(x) are linearly independent almost everywhere (a.e) and the Poisson brackets are zero:

$$\{F_j,F_k\}(x):=\mathrm{D}F_j(x)\cdot J_n\mathrm{D}F_k(x)\equiv 0,\quad j,k=1,\ldots,n.$$

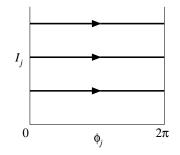
The functions $F_1(x), F_2(x), \ldots, F_n(x)$ are called first integrals.

Remark 1

(i) When n = 1, (HS) is always integrable.

(ii) If the level set $\{x \in \mathbb{R}^{2n} | F_j(x) = c_j, j = 1, ..., n\}$, where c_j , j = 1, ..., n, are const., is compact in \mathbb{R}^{2n} , then there exist actionangle coordinates $(I_j, \phi_j) \in \mathbb{R} \times \mathbb{S}^1$, j = 1, ..., n, s.t. $H = H(I_1, ..., I_n)$:

$$\dot{I}_j=0, ~~ \dot{\phi}_j=rac{\partial H}{\partial I_j}(I_1,\ldots,I_n), ~~ j=1,\ldots,n.$$



Bogoyavlenskij Integarbility

Consider a general *n*-dimensional system

$$\dot{x} = f(x), \quad x \in \mathbb{R}^n.$$
 (GS)

Definition 2 (Bogoyavlenskij '98)

(GS) is called (q, n - q)-integrable if there exist q vector fields $f_1(x)$ (:= f(x)), $f_2(x)$,..., $f_q(x)$ and n - q scalar-valued functions $F_1(x)$, ..., $F_{n-q}(x)$ s.t.

(i) $f_1(x), \ldots, f_q(x)$ are linearly independent a.e. and commutative, i.e.,

$$[f_j,f_k](x):=\mathrm{D}f_k(x)f_j(x)-\mathrm{D}f_j(x)f_k(x)\equiv 0;$$

(ii) $DF_1(x), \ldots, DF_{n-q}(x)$ are linearly independent a.e. and $F_1(x)$, $\ldots, F_{n-q}(x)$ are first integrals of f_1, \ldots, f_q , i.e.,

$$\mathrm{D}F_k(x)\cdot f_j(x)\equiv 0.$$

Remark 2

- (i) If (HS) is Liouville-integrable, then it is (n, n)-integrable in the sense of Bogoyavlenskij. Actually, $J_n DF_1(x), \ldots, J_n DF_n(x)$ are commutative vector fields. Thus, Bogoyavlenskij-integrability is a generalization of Liouville-integrability.
- (ii) If (GS) is integrable and the level set

$$\{x\in \mathbb{R}^{2n}\mid F_j(x)=c_j, j=1,\ldots,n-q\},$$

where c_j , j = 1, ..., n - q, are constants, is compact in \mathbb{R}^{2n} , then there exist action-angle coordinates $(I_1, ..., I_{n-q}, \phi_1, ..., \phi_q) \in \mathbb{R}^{n-q} \times \mathbb{T}^q$ with $\mathbb{T}^q = \prod_{j=1}^q \mathbb{S}^1$ s.t.

$$egin{aligned} \dot{I}_j &= 0, \ \ \dot{\phi}_k = \Omega_k(I_1,\ldots,I_{n-q}), \ j &= 1,\ldots,n-q. \ \ k = 1,\ldots,q. \end{aligned}$$

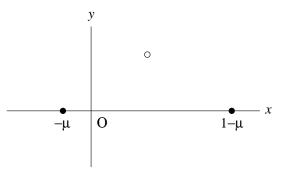
(iii) An *n*-dimensional linear system with f(x) = Ax, $A \in \mathbb{R}^{n \times n}$, is (n, 0)-integrable. For instance, if A is diagonal, then $f_1(x) = Ax$ and $f_j(x) = x_j e_j$, j = 2, ..., n, where $e_1, ..., e_n \in \mathbb{R}^n$ are the standard basis, are commutative vector fields.

Classical Results of Poincaré and Kozlov

Restricted three-body problem (planar case)

$$\begin{split} \dot{x} &= p_x + y, \quad \dot{p}_x = p_y + \frac{\partial U_2}{\partial x}(x, y), \\ \dot{y} &= p_y - x, \quad \dot{p}_y = -p_x + \frac{\partial U_2}{\partial y}(x, y), \end{split} \tag{R3BP}$$

where
$$U_2(x,y) = rac{\mu}{\sqrt{(x-1+\mu)^2+y^2}} + rac{1-\mu}{\sqrt{(x+\mu)^2+y^2}}.$$



▶ Poincaré (1890,1892) showed the nonexistence of a first integral which is analytic in μ as well as the state variables x, y, p_x, p_y and functionally independent of the Hamiltonian.

- ▶ Poincaré (1890,1892) showed the nonexistence of a first integral which is analytic in μ as well as the state variables x, y, p_x, p_y and functionally independent of the Hamiltonian.
- So he won the prize competition celebrating the 60th birthday of King Oscar II in 1889.

- ▶ Poincaré (1890,1892) showed the nonexistence of a first integral which is analytic in μ as well as the state variables x, y, p_x, p_y and functionally independent of the Hamiltonian.
- So he won the prize competition celebrating the 60th birthday of King Oscar II in 1889.
- He considered Hamiltonian systems of the form

$$\dot{I} = -\varepsilon D_{\theta} H_1(I, \theta; \varepsilon), \ \dot{\theta} = DH_0(I) + \varepsilon D_I H_1(I, \theta; \varepsilon), \ (AAH)$$

where $(I, \theta) \in \mathbb{R}^n \times \mathbb{T}^n$, $0 < |\varepsilon| \ll 1$ and H_0, H_1 are analytic in all the arguments.

- ▶ Poincaré (1890,1892) showed the nonexistence of a first integral which is analytic in μ as well as the state variables x, y, p_x, p_y and functionally independent of the Hamiltonian.
- So he won the prize competition celebrating the 60th birthday of King Oscar II in 1889.
- He considered Hamiltonian systems of the form

$$\dot{I} = -\varepsilon D_{\theta} H_1(I, \theta; \varepsilon), \ \dot{\theta} = D H_0(I) + \varepsilon D_I H_1(I, \theta; \varepsilon), \ (AAH)$$

where $(I, \theta) \in \mathbb{R}^n \times \mathbb{T}^n$, $0 < |\varepsilon| \ll 1$ and H_0, H_1 are analytic in all the arguments.

- Recall that
 - (AA) is integrable when $\varepsilon = 0$;
 - Integrable Hamiltonian systems can generally be transformed into (AA) with $\varepsilon = 0$ if the level set of first integrals is compact.

► Poincaré set
$$\mathscr{P} = \{I \in \mathbb{R}^n \mid r \cdot D_I H_0(I) = 0, \hat{h}_r(I) \neq 0\}$$
, where
 $D_I H_1(I, \theta; 0) = \sum_{r \in \mathbb{Z}^m} \hat{h}_r(I) \exp(ir \cdot \theta).$

Theorem 1 (Poincaré 1892, Kozlov '83)

Suppose that $r \cdot D_I H_0(I) \equiv 0$ only for r = 0, $D_I H_0(I_0) \neq 0$ for some $I_0 \in \mathbb{R}^n$ and \mathcal{P} is dense in a nbhd of I_0 . Then (AA) has no first integral which is real-analytic in (I, θ, ε) and functionally independent of the Hamiltonian $H_0(I) + \varepsilon H_1(I.\theta; \varepsilon)$.

Remark 3

- (i) Poincaré applied his original version of Theorem 1 to (R3BP) with ε = μ. In particular, it was very hard to check that H₁(I, θ; ε) satisfies its hypothesis: He used 66 pages for it in the famous monograph published in 1892!
- (ii) Theorem 1 does not say about the possibility that (AA) is integrable for a specific value of ε .
- (iii) Kozlov's result contains more and was extended to a non-Hamiltonian case in his book published in '96.

Modern Theory for Determining the Nonintegrability:

Morales-Ramis Theory Based on the Differential Galois Theory

Consider a linear system on a (Riemann) surface Γ (e.g., a region in \mathbb{C}):

$$\dot{x} = A(t)x, \quad x \in \mathbb{C}^n, \quad t \in \Gamma, \quad A_{ij}(t) \in \mathbb{K},$$
 (LS)

Consider a linear system on a (Riemann) surface Γ (e.g., a region in \mathbb{C}):

$$\dot{x} = A(t)x, \quad x \in \mathbb{C}^n, \quad t \in \Gamma, \quad A_{ij}(t) \in \mathbb{K},$$
 (LS)

- $\Phi(t)$: Fundamental matrix (of solutions) to (LS).
- ▶ $\mathbb{L} \supset \mathbb{K}$: Differential field extension s.t. $\Phi_{ij}(t) \in \mathbb{L}$, which is called the **Picard-Vessiot extension** of (LS).

Consider a linear system on a (Riemann) surface Γ (e.g., a region in \mathbb{C}):

$$\dot{x} = A(t)x, \quad x \in \mathbb{C}^n, \quad t \in \Gamma, \quad A_{ij}(t) \in \mathbb{K},$$
 (LS)

- $\Phi(t)$: Fundamental matrix (of solutions) to (LS).
- ▶ $\mathbb{L} \supset \mathbb{K}$: Differential field extension s.t. $\Phi_{ij}(t) \in \mathbb{L}$, which is called the **Picard-Vessiot extension** of (LS).
- ▶ σ : \mathbb{K} -automorphism of \mathbb{L}

$$\stackrel{
m def}{\Leftrightarrow}$$
 field automorphism of $\mathbb L$ s.t. $\sigma|_{\mathbb K}={
m id}$ and $\sigmarac{{
m d}}{{
m d}t}=rac{{
m d}}{{
m d}t}\sigma_{
m i}$

Consider a linear system on a (Riemann) surface Γ (e.g., a region in \mathbb{C}):

$$\dot{x} = A(t)x, \quad x \in \mathbb{C}^n, \quad t \in \Gamma, \quad A_{ij}(t) \in \mathbb{K},$$
 (LS)

- $\Phi(t)$: Fundamental matrix (of solutions) to (LS).
- ▶ $\mathbb{L} \supset \mathbb{K}$: Differential field extension s.t. $\Phi_{ij}(t) \in \mathbb{L}$, which is called the **Picard-Vessiot extension** of (LS).
- σ: K-automorphism of L
 def field automorphism of L s.t. σ|_K = id and σ d/dt = d/dt σ.
 σ(Φ(t)) is also a fundamental matrix
 - $\because rac{\mathrm{d}}{\mathrm{d}t}\sigma(\Phi(t))=\sigma(\dot{\Phi}(t))=\sigma(A(t)\Phi(t))=A(t)\sigma(\Phi(t)).$

Consider a linear system on a (Riemann) surface Γ (e.g., a region in \mathbb{C}):

$$\dot{x} = A(t)x, \quad x \in \mathbb{C}^n, \quad t \in \Gamma, \quad A_{ij}(t) \in \mathbb{K},$$
 (LS)

- $\Phi(t)$: Fundamental matrix (of solutions) to (LS).
- ▶ $\mathbb{L} \supset \mathbb{K}$: Differential field extension s.t. $\Phi_{ij}(t) \in \mathbb{L}$, which is called the **Picard-Vessiot extension** of (LS).
- σ: K-automorphism of L
 ^{def}/_⇔ field automorphism of L s.t. σ|_K = id and σ^d/_{dt} = ^d/_{dt}σ.

 σ(Φ(t)) is also a fundamental matrix
 - $\because rac{\mathrm{d}}{\mathrm{d}t}\sigma(\Phi(t))=\sigma(\dot{\Phi}(t))=\sigma(A(t)\Phi(t))=A(t)\sigma(\Phi(t)).$
 - \Rightarrow There exists a nonsingular matrix M_σ s.t. $\sigma(\Phi(t)) = \Phi(t)M_\sigma$.

Consider a linear system on a (Riemann) surface Γ (e.g., a region in \mathbb{C}):

$$\dot{x} = A(t)x, \quad x \in \mathbb{C}^n, \quad t \in \Gamma, \quad A_{ij}(t) \in \mathbb{K},$$
 (LS)

where \mathbb{K} is a differential field (i.e., a field endowed with differentiation).

- $\Phi(t)$: Fundamental matrix (of solutions) to (LS).
- ▶ $\mathbb{L} \supset \mathbb{K}$: Differential field extension s.t. $\Phi_{ij}(t) \in \mathbb{L}$, which is called the **Picard-Vessiot extension** of (LS).
- σ : K-automorphism of L $\stackrel{\text{def}}{\Leftrightarrow}$ field automorphism of L s.t. $\sigma|_{\mathbb{K}} = \text{id}$ and $\sigma \frac{\mathrm{d}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}\sigma$.
- $\sigma(\Phi(t))$ is also a fundamental matrix
 - $\because rac{\mathrm{d}}{\mathrm{d}t}\sigma(\Phi(t))=\sigma(\dot{\Phi}(t))=\sigma(A(t)\Phi(t))=A(t)\sigma(\Phi(t)).$

 \Rightarrow There exists a nonsingular matrix M_σ s.t. $\sigma(\Phi(t)) = \Phi(t)M_\sigma$.

• $Gal(\mathbb{L}/\mathbb{K}) = \{M_{\sigma} \mid \sigma \text{ is a } \mathbb{K}\text{-automorphism of } \mathbb{L}\}:$ differential Galois group of (LS)

Consider a linear system on a (Riemann) surface Γ (e.g.,a region in \mathbb{C}):

$$\dot{x} = A(t)x, \quad x \in \mathbb{C}^n, \quad t \in \Gamma, \quad A_{ij}(t) \in \mathbb{K},$$
 (LS)

where \mathbb{K} is a differential field (i.e., a field endowed with differentiation).

- $\Phi(t)$: Fundamental matrix (of solutions) to (LS).
- ▶ $\mathbb{L} \supset \mathbb{K}$: Differential field extension s.t. $\Phi_{ij}(t) \in \mathbb{L}$, which is called the **Picard-Vessiot extension** of (LS).
- σ : \mathbb{K} -automorphism of \mathbb{L} $\stackrel{\text{def}}{\Leftrightarrow}$ field automorphism of \mathbb{L} s.t. $\sigma|_{\mathbb{K}} = \text{id}$ and $\sigma \frac{\mathrm{d}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}\sigma$.

• $\sigma(\Phi(t))$ is also a fundamental matrix

$$\therefore \ \frac{\mathrm{d}}{\mathrm{d}t}\sigma(\Phi(t)) = \sigma(\dot{\Phi}(t)) = \sigma(A(t)\Phi(t)) = A(t)\sigma(\Phi(t)).$$

 \Rightarrow There exists a nonsingular matrix M_σ s.t. $\sigma(\Phi(t)) = \Phi(t)M_\sigma$.

- $Gal(\mathbb{L}/\mathbb{K}) = \{M_{\sigma} \mid \sigma \text{ is a } \mathbb{K}\text{-automorphism of } \mathbb{L}\}:$ differential Galois group of (LS)
- ► An algebraic group such as Gal(L/K) has a connected component containing the identity, which is called the identity component.

If the identity component of Gal(L/K) is conjugate to a triangular group, then (LS) is solved by quadrature.

Simple example

$$\dot{x}=egin{pmatrix} 2t & 0\ 2t & 2t \end{pmatrix} x, \hspace{1em} x\in \mathbb{C}^2, \hspace{1em} t\in \Gamma=\mathbb{C}.$$

• $\mathbb{K} = \mathbb{C}(t)$, which consists of all rational functions of t.

•
$$x = \begin{pmatrix} e^{t^2} \\ t^2 e^{t^2} \end{pmatrix}, \begin{pmatrix} 0 \\ e^{t^2} \end{pmatrix}$$
 are linearly independent solutions.
• $\Phi(t) = \begin{pmatrix} e^{t^2} & 0 \\ t^2 e^{t^2} & e^{t^2} \end{pmatrix}$ is a fundamental matrix.
• $\mathbb{L} = \mathbb{C}(t, e^{t^2})$, which consists of all rational functions t and e^{t^2}
• For $\sigma \in \text{Gal}(\mathbb{L}/\mathbb{K})$,

$$rac{rac{\mathrm{d}}{\mathrm{d}t}\sigma(e^{t^2})}{\sigma(e^{t^2})}=\sigma\!\left(\!rac{\mathrm{d}}{\mathrm{d}t}e^{t^2}\over e^{t^2}
ight)=\sigma(2t)=2t.$$

 $\therefore \log |\sigma(e^{t^2})| = \log |e^{t^2}| + C_0 \text{ for some } C_0 \in \mathbb{C}.$ $\therefore \sigma(e^{t^2}) = Ce^{t^2} \text{ with } C = e^{\pm C_0} \in \mathbb{C}^* := \mathbb{C} \setminus \{0\}.$

$$\begin{aligned} \bullet \ \sigma(\Phi(t)) &= \begin{pmatrix} Ce^{t^2} & 0\\ Ct^2e^{t^2} & Ce^{t^2} \end{pmatrix} = \Phi(t) \begin{pmatrix} C & 0\\ 0 & C \end{pmatrix}. \\ \bullet \ \operatorname{Gal}(\mathbb{L}/\mathbb{K}) &= \left\{ \begin{pmatrix} C & 0\\ 0 & C \end{pmatrix} \middle| C \in \mathbb{C}^* \right\}. \end{aligned}$$

Morales-Ramis theory (extension by Ayoul & Zung)

General system

$$\dot{x} = f(x), \quad x \in \mathbb{R}^n.$$
 (GS)

- $x = \phi(t)$: nonconstant solution
- Variational equation (VE) along $x = \phi(t)$:

$$\dot{\xi} = \mathbf{D}g(\phi(t))\xi, \quad \xi \in \mathbb{C}^n.$$
 (VE)

Morales-Ramis theory (extension by Ayoul & Zung)

General system

$$\dot{x} = f(x), \quad x \in \mathbb{R}^n.$$
 (GS)

- $x = \phi(t)$: nonconstant solution
- Variational equation (VE) along $x = \phi(t)$:

$$\dot{\xi} = \mathrm{D}g(\phi(t))\xi, \quad \xi \in \mathbb{C}^n.$$
 (VE)

Theorem 2 (Morales-Ruiz & Ramis 2001, Ayoul & Zung, 2010) If (GS) is meromorphically integrable near $x = \phi(t)$, then the identity component of the **differential Galois group** is commutative.

Morales-Ramis theory (extension by Ayoul & Zung)

General system

$$\dot{x} = f(x), \quad x \in \mathbb{R}^n.$$
 (GS)

- $x = \phi(t)$: nonconstant solution
- Variational equation (VE) along $x = \phi(t)$:

$$\dot{\xi} = \mathbf{D}g(\phi(t))\xi, \quad \xi \in \mathbb{C}^n.$$
 (VE)

Theorem 2 (Morales-Ruiz & Ramis 2001, Ayoul & Zung, 2010) If (GS) is meromorphically integrable near $x = \phi(t)$, then the identity component of the **differential Galois group** is commutative.

Hence, the identity component of the differential Galois group is not commutative, then (GS) is not meromorphically integrable near $x = \phi(t)$,

Remark 4.

- (i) The original version of the Morales-Ramis theory treats Hamiltonian systems.
- (ii) A higher-order theory beyond (VE) was also developed by Morales, Ramis and Simó (2007), and is called the Morales-Ramis-Simó theory.

Remark 4.

- (i) The original version of the Morales-Ramis theory treats Hamiltonian systems.
- (ii) A higher-order theory beyond (VE) was also developed by Morales, Ramis and Simó (2007), and is called the Morales-Ramis-Simó theory.
- (iii) The Morales-Ramis and Morale-Ramis-Simó theories have been applied successfully to many systems including Henon-Heiles system, general N-body problems ($N \ge 3$), heavy top, homogeneous potentials, Lorentz equation, SEIR epidemic system and so on.

Remark 4.

- (i) The original version of the Morales-Ramis theory treats Hamiltonian systems.
- (ii) A higher-order theory beyond (VE) was also developed by Morales, Ramis and Simó (2007), and is called the Morales-Ramis-Simó theory.
- (iii) The Morales-Ramis and Morale-Ramis-Simó theories have been applied successfully to many systems including Henon-Heiles system, general N-body problems ($N \ge 3$), heavy top, homogeneous potentials, Lorentz equation, SEIR epidemic system and so on.
- (iv) It is an important fact in application of the Morales-Ramis theory that the identity component of the differential Galois group may be triangularizable, the corresponding linear system is solved by quadrature, even it is not commutative.

3. Nonintegrability of Nearly Integrable Systems near Periodic Orbits

Nearly integrable systems

Action-angle coordinates

$$\dot{I} = \varepsilon h(I, \theta; \varepsilon), \ \dot{\theta} = \omega(I) + \varepsilon g(I, \theta; \varepsilon), \ (I, \theta) \in \mathbb{R}^{\ell} \times \mathbb{T}^{m}$$
 (AA)

(A1) For some $I^* \in \mathbb{R}^\ell$, $\dim_{\mathbb{Q}} \langle \omega_1(I^*), \dots, \omega_m(I^*) \rangle = 1$, i.e., $\exists \omega^* > 0$ s.t. $\omega(I^*) / \omega^* \in \mathbb{Z}^m \setminus \{0\}.$

(A2) For some $k \geq 0$, there exists a closed loop γ_{θ} for some $\theta \in \mathbb{T}^m$ s.t.

$$\mathscr{I}^k(heta):=\mathrm{D}\omega(I^*)\int_{\gamma_{ heta}}\mathrm{D}^k_arepsilon h(I^*,\omega(I^*) au+ heta;0)\mathrm{d} au
eq 0.$$

 $\begin{array}{c|c} i \mathbb{R} \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ T^* \mathbb{R} \end{array} \qquad T^* = 2\pi/\omega^*$

Theorem 3 (Y). Let D be any domain in $\mathbb{C}/T^*\mathbb{Z}$ containing $\mathbb{R}/T^*\mathbb{Z}$ and γ_{θ} . Under (A1) and (A2), (AA) is not meromorphically B-integrable near $(I^*, \omega(I^*)\tau + \theta)$ with $\tau \in D$ s.t. the first integrals and commutative vector fields also depend meromorphically on ε near $\varepsilon = 0$. Moreover, if (A2) holds for $\theta \in \Delta$, where Δ is a dense set of \mathbb{T}^m , then the conclusion holds for any resonant periodic orbit on \mathscr{T}^* .

Remark 5. When (AA) is Hamiltonian, it is not meromorphically L-integrable if the hypotheses of Theorem 3 hold.

Sketch of the proof (for k = 0)

Extend (AA) as

$$\dot{I} = \varepsilon h(I, \theta; \varepsilon), \quad \dot{\theta} = \omega(I) + \varepsilon g(I, \theta; \varepsilon), \quad \dot{\varepsilon} = 0$$
 (AAE)

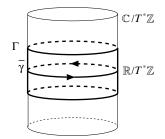
Variational equation (VE) along $(I, \theta, \varepsilon) = (I^*, \omega(I^*)t + \theta_0, 0)$:

$$egin{aligned} \dot{\xi} &= h(I^*, \omega^*t + heta_0; 0) \chi, \ \dot{\eta} &= \mathrm{D} \omega(I^*) \xi + g(I^*, \omega^*t + heta_0; 0) \chi, \ \ (\xi, \eta, arepsilon) \in \mathbb{C}^\ell imes \mathbb{C}^m imes \mathbb{C}, \ \dot{\chi} &= 0, \end{aligned}$$

which is regarded as a linear system over \mathbb{K}_{θ} on the Riemann surface Γ , where $\mathbb{K}_{\theta} \neq \mathbb{C}$ is a differential field that contains the elements of

$$egin{aligned} h(I^*, \omega(I^*)t + heta; arepsilon), \ g(I^*, \omega(I^*)t + heta; arepsilon), \end{aligned}$$

where $T^*=2\pi/\omega^*$.



Fundamental matrix of VE:

$$egin{aligned} \Phi(t; heta_0) &= egin{pmatrix} \mathrm{id}_\ell & 0 & \Xi(t; heta_0) \ \mathrm{D}\omega(I^*)t & \mathrm{id}_m & \Psi(t; heta_0) \ 0 & 0 & 1 \end{pmatrix}, \ \Xi(t; heta) &= \int_0^t h(I^*,\omega(I^*) au+ heta)\mathrm{d} au, \ \Psi(t; heta) &= \int_0^t (\mathrm{D}\omega(I^*)\Xi(au; heta) + g(I^*,\omega(I^*) au+ heta;0))\mathrm{d} au. \end{aligned}$$

Applying Theorem 2, we obtain the desired result. For $k \ge 1$, we use the Morales-Ramis-Simó theory.

Restricted Three-Body Problem

Restricted three-body problem (for the planar case)

Theorem 4 (Poincaré). (R3BP) is not analytically integrable s.t. the first integrals depend analytically on μ near $\mu = 0$.

Kazuyuki Yagasaki (Kyoto University)

Regard (R3BP) as a Hamiltonian system on

$$egin{aligned} \mathscr{S}_2 =& \{(x,y,p_x,p_y,u_1,u_2)\in \mathbb{C}^6 \ & \mid u_1^2-(x-1+\mu)^2-y^2=u_2-(x+\mu)^2-y^2=0\}. \end{aligned}$$

It is written as a meromorphic (rational) system

$$egin{aligned} \dot{x} &= p_x + y, \quad \dot{y} = p_y - x, \ \dot{p}_x &= p_y - \mu (x - 1 + \mu) / u_1^3 - (1 - \mu) (x + \mu) / u_2^2, \ \dot{p}_y &= -p_x - \mu y / u_1^3 - (1 - \mu) y / u_2^2, \ \dot{u}_1 &= ((x - 1 + \mu) (p_x + y) + y (p_y - x)) / u_1, \ \dot{u}_2 &= ((x + \mu) (p_x + y) + y (p_y - x)) / u_2. \end{aligned}$$

Theorem 5 (Y). The problem (R3BP) is meromorphically nonintegrable in punctured neighborhoods of $(x, y) = (-\mu, 0)$ and $(1 - \mu, 0)$ for any $\mu \in (0, 1)$.

Sketch of the proof

- Consider a nbhd of $(x,y) = (-\mu, 0)$.
- ▶ Let $\varepsilon^2 \xi = x + \mu$, $\varepsilon^2 \eta = y$, $\varepsilon^{-1} p_{\xi} = p_x$, $\varepsilon^{-1} p_{\eta} = p_y + \mu$.

• After scaling $t \to t/\varepsilon^3$, up to the order of ε^6 ,

$$egin{aligned} \dot{\xi} &= p_{\xi} + arepsilon^3\eta, \quad \dot{p}_{\xi} &= -rac{(1-\mu)\xi}{(\xi^2+\eta^2)^{3/2}} + arepsilon^3 p_{\eta} + 2arepsilon^6 \mu\xi, \ \dot{\eta} &= p_{\eta} - arepsilon^3 \xi, \quad \dot{p}_{\eta} &= -rac{(1-\mu)\eta}{(\xi^2+\eta^2)^{3/2}} - arepsilon^3 p_{\xi} - arepsilon^6 \mu\eta. \end{aligned}$$

Hamiltonian

$$H = rac{1}{2}(p_{\xi}^2 + p_{\eta}^2) - rac{1-\mu}{\sqrt{\xi^2 + \eta^2}} + arepsilon^3(\eta p_{\xi} - \xi p_{\eta}) - rac{1}{2}arepsilon^6\mu(2\xi^2 - \eta^2).$$

- Using Delaunay elements, we rewrite the above system in action-angle coordinates.
- Application of Theorem 3.1 yields the desired result.

Remark 6. Similarly, we can prove Poincaré's result (Theorem 4).

Time-Periodic Perturbations of Single-Degree-of-Freedom Hamiltonian Systems

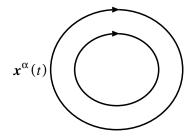
Time-periodic perturbations of s.d.o.f. Hamiltonian system

$$\dot{x} = JDH(x) + \varepsilon u(x, \nu t), \quad x \in \mathbb{R}^2,$$
 (TPP)

where

$$J = egin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix}.$$

(M1) When ε = 0, there exists a one-parameter family of periodic orbits x^α(t), α ∈ (α₁, α₂), with period T^α > 0 for some α₁ < α₂;
(M2) x^α(t) is analytic with respect to α ∈ (α₁, α₂).



Action variable:

$$I^lpha = rac{1}{2\pi}\int_{x^lpha} x_2 \mathrm{d} x_1 = rac{1}{2\pi}\int_0^{T^lpha} x_2^lpha(t) \dot{x}_1^lpha(t) \mathrm{d} t$$

Symplectic transformation:

$$x=x^{lpha(I)}\left(rac{ heta_1}{\Omega(I)}
ight), \quad \Omega(I)=rac{2\pi}{T^{lpha(I)}}.$$

Action-angle coordinates:

$$\dot{I}=arepsilon h(I, heta_1, heta_2), \quad \dot{ heta}_1=\Omega(I)+arepsilon g_1(I, heta_1, heta_2), \quad \dot{ heta}_2=
u,$$

where

$$\begin{split} h(I,\theta_1,\theta_2) &= \frac{1}{\Omega(I)} \mathrm{D}H\left(x^{\alpha(I)}\left(\frac{\theta_1}{\Omega(I)}\right)\right) \cdot u\left(x^{\alpha(I)}\left(\frac{\theta_1}{\Omega(I)}\right),\theta_2\right),\\ g_1(I,\theta_1,\theta_2) &= J\frac{\partial}{\partial I} x^{\alpha(I)}\left(\frac{\theta_1}{\Omega(I)}\right) \cdot u\left(x^{\alpha(I)}\left(\frac{\theta_1}{\Omega(I)}\right),\theta_2\right). \end{split}$$

• At $lpha=lpha^{l/n}$, $2\pi/T^lpha=n
u/l$ for l,n>0 relatively prime integers.

• (A1) holds with $\omega^* = 2\pi/nT^{lpha} = \nu/l$.

Subharmonic Melnikov function:

$$M^{l/n}(\phi) = \int_0^{2\pi l/\nu} \mathrm{D}H(x^\alpha(t)) \cdot u(x^\alpha(t), \nu t + \phi) \mathrm{d}t.$$

• $M^{l/n}(\phi)$ has a simple zero at $\phi = \phi_0$ and $dT^{\alpha}/d\alpha \neq 0$ $\Rightarrow \exists$ periodic orbit near $(x, \phi) = (x^{\alpha}(t), \nu t + \phi_0)$ in (TPP).

Theorem 6 (Y). At $\alpha = \alpha^{l/n}$, $dT^{\alpha}/d\alpha \neq 0$ and $\exists \gamma_{\phi}$ for some $\phi \in \mathbb{S}^1$ s.t.

$$\hat{\mathscr{I}}(\phi):=\int_{\gamma_{\phi}}\mathrm{D}H(x^{lpha}(t))\cdot u\left(x^{lpha}(au),
u au+\phi
ight)\mathrm{d} au
eq 0.$$

 $\Rightarrow (\text{TPP}) \text{ is not meromorphically integrable in the meaning of Theorem 3} \\ \text{near the resonant periodic orbit } (x^{\alpha}(\tau), \nu\tau + \phi) \text{ with } \alpha = \alpha^{l/n} \\ \text{on any domain } \hat{\Gamma} \text{ in } \mathbb{C}/(2\pi l/\nu)\mathbb{Z} \text{ containing } \mathbb{R}/(2\pi l/\nu)\mathbb{Z} \text{ and } \hat{\gamma}_{\phi}.$

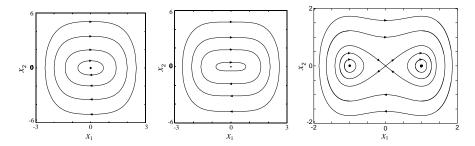
32 / 39

Other applications

Duffing Oscillators:

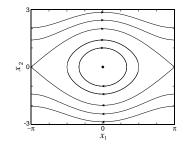
$$\dot{x}_1 = x_2, \quad \dot{x}_2 = -ax_1 - x_1^3 + \varepsilon(\beta \cos \nu t - \delta x_2),$$
 (D0)

where a = 1, 0, -1.



Forced pendulum:

$$\dot{x}_1=x_2, \quad \dot{x}_2=-\sin x_1+arepsilon(eta\cos
u t-\delta x_2).$$
 (FP)



Remark 7. Motonaga and Y (2023,2024) showed that (DO) with a = -1 and (FP) are not real-analytically integrable in the meaning of Theorem 3 near homoclinic orbits. Moreover, Motonaga (2024) also obtained similar results for resonant periodic orbits.

Related Results

 Real-analytic nonintegrability: More direct extension of Poincaré and Kozlov to general systems:

Motonaga and Y, Obstructions to integrability of nearly integrable dynamical systems near regular level sets, *Arch. Ration. Mech. Anal.*, **247** (2023), 44.

[3] Motonaga and Y, Nonintegrability of forced nonlinear oscillators, *Jpn. J. Ind. Appl. Math.*, **41** (2024), 151–164. Real-analytic nonintegrability: More direct extension of Poincaré and Kozlov to general systems:

Motonaga and Y, Obstructions to integrability of nearly integrable dynamical systems near regular level sets, *Arch. Ration. Mech. Anal.*, **247** (2023), 44.

- [3] Motonaga and Y, Nonintegrability of forced nonlinear oscillators, *Jpn. J. Ind. Appl. Math.*, **41** (2024), 151–164.
- Real-meromorphic nonintegrability of periodic perturbations of s.d.o.f Hamiltonian systems near homo- and heteroclinic orbits: Y, Nonintegrability of time-periodic perturbations of single-degree-of-freedom Hamiltonian systems near homo- and heteroclinic orbits, *Physi. D* (2024), 464, 134189.

Real-analytic nonintegrability: More direct extension of Poincaré and Kozlov to general systems:

Motonaga and Y, Obstructions to integrability of nearly integrable dynamical systems near regular level sets, *Arch. Ration. Mech. Anal.*, **247** (2023), 44.

- [3] Motonaga and Y, Nonintegrability of forced nonlinear oscillators, *Jpn. J. Ind. Appl. Math.*, **41** (2024), 151–164.
- Real-meromorphic nonintegrability of periodic perturbations of s.d.o.f Hamiltonian systems near homo- and heteroclinic orbits: Y, Nonintegrability of time-periodic perturbations of single-degree-of-freedom Hamiltonian systems near homo- and heteroclinic orbits, *Physi. D* (2024), 464, 134189.
- Normal forms of codimension-two (fold-Hopf & double Hopf) bifurcations:

Y, Nonintegrability of the unfolding of the fold-Hopf bifurcation, *Nonlinearity*, **31** (2018), 341-350.

Acosta-Humánez & Y, Nonintegrability of the unfoldings of codimension-two bifurcations, *Nonlinearity*, **31** (2020), 1366-1387.

The Morales-Ramis-Simó theory was used and a very useful result for planar systems was obtained and applied.

Nonintegrability near degenerate equilibria:

$$\mathbf{D}f(0) = \begin{pmatrix} 0 & -\omega & 0 \\ \omega & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ or } \begin{pmatrix} 0 & -\omega_1 & 0 & 0 \\ \omega_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\omega_2 \\ 0 & 0 & \omega_2 & 0 \end{pmatrix}$$

with $\omega_2/\omega_1 \not\in \mathbb{Q}$.

Y, Nonintegrability of dynamical systems near degenerate equilibria, *Comm. Math. Phys.*, **398** (2023), 1129–1152.

Y, Nonintegrability of truncated Poincare-Dulac normal forms of resonance degree two, *J. Differential Equations*, **373** (2024), 526–563.

In particular, we use the result to show that the Rösler system and coupled van der Pol oscillators are analytically nonintegrable near equilibria.

Two-degree-of-freedom Hamiltonian systems:

 $\dot{x}=J\mathrm{D}_{x}H(x,y), \hspace{1em} \dot{y}=J\mathrm{D}_{y}H(x,y), \hspace{1em} (x,y)\in \mathbb{R}^{2} imes \mathbb{R}^{2}.$

Y, Galoisian obstructions to integrability and Melnikov criteria for chaos in two-degree-of-freedom Hamiltonian systems with saddle centres, *Nonlinearity*, **16** (2003), 2003-2012.

Y & Yamanaka, Nonintegrability of dynamical systems with homo- and heteroclinic orbits, *J. Differential Equations*, **263** (2017), 1009–1027.

Y & Yamanaka, Heteroclinic orbits and nonintegrability in two-degree-offreedom Hamiltonian systems with saddle-centers, *SIGMA*, **15** (2019), 049.

In particular, the following were shown:

- When there exists a saddle-centers, the stable manifolds of periodic orbits near the saddle-center intersect their unstable manifolds transversely if the system is nonintegrable near the manifolds.
- When there exist two saddle-centers,

the stable manifolds of periodic orbits near one of the saddle-centers may not intersect the unstable manifolds of periodic orbits near the other even if the system is nonintegrable near the manifolds. Nonintegrability of semiclassical model by Osawa & Leok (2013) and Osawa (2021):

Y, Nonintegrability of semiclassical perturbations of single-degree-of-freedom Hamiltonian systems, submitted for publication.

Nonintegrability of semiclassical model by Osawa & Leok (2013) and Osawa (2021):

Y, Nonintegrability of semiclassical perturbations of single-degree-of-freedom Hamiltonian systems, submitted for publication.

Integrability of integrable PDEs by quadrature:

Y, Integrability of the Zakharov-Shabat systems by quadrature, *Comm. Math. Phys.*, **400**, 315–340.