
Experimental Evidence for Maeda’s Conjecture on
Modular Forms

Angus McAndrew
The University of Melbourne

(joint with Alex Ghitza)

Australian Mathematical Society 56th Annual Meeting

September 24, 2012

Angus McAndrew The University of Melbourne Experimental Evidence for Maeda’s Conjecture



Background

Modular forms are a prominent area of research in number
theory

The Hecke Operators form a rich theory within the context of
Modular forms

Maeda’s conjecture has received attention recently as a new
source of insight into this theory

Our recent work was to provide further numerical evidence for
the conjecture, utilizing an improved version of the algorithm
of Conrey-Farmer-Wallace, with a view towards the
applications of the conjecture
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Maeda’s Conjecture

Conjecture (Maeda)

Consider the Hecke operator Tn acting on Sk , the space of level 1
cusp forms. Let F be the characteristic polynomial of Tn. Then:

1 the polynomial F is irreducible over Q,

2 the Galois group of the splitting field of F is the full
symmetric group Σd , where d is the dimension of Sk .
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Motivation (An application)

Definition (L-function)

If a modular form f (q) =
∑

n anqn is a simultaneous eigenvector of
all the Hecke Operators, the L-function associated to f is given by

L(f , s) =
∞∑
n=1

an
ns

Theorem (Non-vanishing of L-functions)

Suppose k ≡ 0 (mod 4) and k ≤ 12000. Then L(f , k/2) 6= 0 for
any cuspidal eigenform f of level 1 and weight k.
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Previous Results (computational)

Source weights

Lee-Hung k ≤ 62, k 6= 60
Buzzard k = 12`, ` prime, 2 ≤ ` ≤ 19
Maeda k ≤ 468
Conrey-Farmer k ≤ 500, k ≡ 0 (mod 4)
Farmer-James k ≤ 2000
Buzzard-Stein, Kleinerman k ≤ 3000
Chu-Wee Lim k ≤ 6000
Our recent work k ≤ 12000
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Previous Results (theoretical)

Theorem (Conrey-Farmer-Wallace)

Let k be a positive even integer. Suppose there exists n ≥ 2 such
that the operator Tn acting on Sk satisfies Maeda’s conjecture.
Then so does Tp acting on Sk , for every prime p in the set of
density 5/6 defined by the conditions

p 6≡ ±1 (mod 5) or p 6≡ ±1 (mod 7).

Theorem (Ahlgren)

Let k be such that d := dim Sk ≥ 2. Suppose there exists n ≥ 2
such that the operator Tn acting on Sk satisfies Maeda’s
conjecture. Then

1 Tp acting on Sk satisfies Maeda’s conjecture for all primes
p ≤ 4000000;

2 Tn acting on Sk satisfies Maeda’s conjecture for all n ≤ 10000.
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Basic Lemma

Consider a monic polynomial F ∈ Z[X ] of degree d . Given a prime
p, we denote Fp ∈ Fp[X ] the reduction modulo p of F . We say
that the prime p is

1 of type I if Fp is irreducible over Fp;

2 of type II if Fp factors over Fp into a product of distinct
irrreducible factors

Fp = f0f1 · · · fs
with

deg f0 = 2

deg fj odd for j = 1, . . . , s;

3 of type III if Fp factors over Fp into a product of distinct
irreducible factors

Fp = f0f1 · · · fs
with deg f0 > d/2 and prime.
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Basic Lemma

Lemma (Buzzard, Conrey-Farmer)

Let F ∈ Z[X ] be a monic polynomial of degree d. Suppose that F
has primes of respective types I, II and III. Then F is irreducible
over Q and its splitting field over Q has full Galois group Σd (the
symmetric group on d letters).
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Basic Lemma (sketch of proof)

We have F ∈ Z[X ] with splitting field K and primes of type I, II
and III.
Prime of type I ⇒ F is irreducible.
Let q, r be the primes of type II and III, respectively. Let
G = Gal(K/Q) < Σd transitive. Let Q and R be primes of K
above q and r , respectively. Then consider the Frobenius elements
at those primes:

FrobQ,FrobR

We now invoke a result of algebraic number theory that the cycle
patterns of these elements are identical to the factorization
patterns of F mod q and r , respectively. Thus there exists powers
of these elements, say τ1, τ2, such that Frobτ1Q and Frobτ2R are a
2-cycle and an `-cycle (where ` > d/2 is prime), respectively.
Then, by a result of group theory, a transitive subgroup of Σd with
a 2-cycle and an `-cycle (` > d/2 prime) must be equal to Σd , as
required.
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Implementation

1 Compute the Victor Miller basis B for Sk .

2 Compute the matrix M of the Hecke operator T2 with respect
to the basis B.

3 Pick a random prime p < 220, uniformly over this range.

4 Reduce M modulo p and compute the characteristic
polynomial Fp ∈ Fp[X ].

5 If Fp is irreducible, then p is a prime of type I.

6 Factor Fp over Fp and use this factorization to decide whether
p is a prime of type II or III.

7 Repeat from step (3) until we have found at least one prime
of each type.
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Densities of Primes

Theorem (Frobenius)

Let F ∈ Z[X ] be monic, let K/Q be the splitting field of F and let
G be the Galois group of K/Q. Let deg F = m1d1 + . . .+ mtdt be
a partition of deg F . The density of primes p for which Fp and
factorization pattern dm1

1 . . . dmt
t is equal to

|{σ ∈ G | the cycle pattern of σ is dm1
1 . . . dmt

t }|
|G |

.
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Densities of Primes (continued)

The density of primes of type I is

DI (d) =
1

d

(This is trivial)

Let d > 2 and let [d ]e be the largest even integer such that
[d ]e ≤ d . The density of primes of type II is

DII (d) =
(([d ]e − 3)!!)2

2([d ]e − 2)!

and satisfies the inequality

DII (d) >
1

4
√

d
.

(This bound comes from an effective version of Stirling’s
approximation)
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Densities of Primes (continued)

The density of primes of type III is

DIII (d) =
∑

d/2<`≤d ,
` prime

1

`
.

If d > 10, then

DIII (d) >
1

3 log d
.

(This bound comes from a bound on sums of reciprocals of
primes by Dusart)
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Perfomance Comparison with Conrey-Farmer-Wallace
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Figure: Histogram illustrating the number of primes tested before finding
a prime of type II, in weights up to 2000. The x-axis represents the ratio
N/E of the actual number of primes tested over the expected number of
primes. The y -axis represents the number of weights featuring that
particular ratio.
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Main Result

Theorem

Let k ≤ 12000 and let

n ∈{2, . . . , 10000} ∪ {p prime | 2 ≤ p ≤ 4000000}
∪ {p prime | p 6≡ ±1 (mod 5)}
∪ {p prime | p 6≡ ±1 (mod 7)}.

Let F be the characteristic polynomial of the Hecke operators Tn

acting on the space Sk of cusp forms of weight k and level 1. Then
F is irreducible over Q and the Galois group of its splitting field is
the full symmetric group Sd , where d is the dimension of the
space Sk .
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Further Questions

Generalizations of Maeda’s Conjecture:

Higher level (Tsaknias, Chow-Ghitza-Withers)
”The number of Galois orbits is a bounded function of the
weight.”

Siegel Modular Forms
”The Satake parameters are as irreducible as possible.”
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