Experimental Evidence for Maeda's Conjecture on Modular Forms

Angus McAndrew The University of Melbourne

(joint with Alex Ghitza)

Australian Mathematical Society 56th Annual Meeting

September 24, 2012

- Modular forms are a prominent area of research in number theory
- The Hecke Operators form a rich theory within the context of Modular forms
- Maeda's conjecture has received attention recently as a new source of insight into this theory
- Our recent work was to provide further numerical evidence for the conjecture, utilizing an improved version of the algorithm of Conrey-Farmer-Wallace, with a view towards the applications of the conjecture

Conjecture (Maeda)

Consider the Hecke operator T_n acting on S_k , the space of level 1 cusp forms. Let F be the characteristic polynomial of T_n . Then:

• the polynomial F is irreducible over \mathbb{Q} ,

the Galois group of the splitting field of F is the full symmetric group Σ_d, where d is the dimension of S_k.

Definition (*L*-function)

If a modular form $f(q) = \sum_{n} a_n q^n$ is a simultaneous eigenvector of all the Hecke Operators, the *L*-function associated to *f* is given by

$$L(f,s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

Theorem (Non-vanishing of *L*-functions)

Suppose $k \equiv 0 \pmod{4}$ and $k \leq 12000$. Then $L(f, k/2) \neq 0$ for any cuspidal eigenform f of level 1 and weight k.

Image: A Image: A

_

Source	weights
Lee-Hung	$k\leq 62,\;k eq 60$
Buzzard	$k=12\ell$, ℓ prime, $2\leq\ell\leq19$
Maeda	$k \leq 468$
Conrey-Farmer	$k \leq$ 500, $k \equiv$ 0 (mod 4)
Farmer-James	$k \leq 2000$
Buzzard-Stein, Kleinerman	$k \leq 3000$
Chu-Wee Lim	$k \le 6000$
Our recent work	$k \leq 12000$

э

글 🖌 🖌 글 🕨

Theorem (Conrey-Farmer-Wallace)

Let k be a positive even integer. Suppose there exists $n \ge 2$ such that the operator T_n acting on S_k satisfies Maeda's conjecture. Then so does T_p acting on S_k , for every prime p in the set of density 5/6 defined by the conditions

$$p \not\equiv \pm 1 \pmod{5}$$
 or $p \not\equiv \pm 1 \pmod{7}$.

Theorem (Ahlgren)

Let k be such that $d := \dim S_k \ge 2$. Suppose there exists $n \ge 2$ such that the operator T_n acting on S_k satisfies Maeda's conjecture. Then

- *T_p* acting on S_k satisfies Maeda's conjecture for all primes p ≤ 4000000;
- **2** T_n acting on S_k satisfies Maeda's conjecture for all $n \leq 10000$.

Basic Lemma

Consider a monic polynomial $F \in \mathbb{Z}[X]$ of degree d. Given a prime p, we denote $F_p \in \mathbb{F}_p[X]$ the reduction modulo p of F. We say that the prime p is

- of type I if F_p is irreducible over \mathbb{F}_p ;
- **2** of type II if F_p factors over \mathbb{F}_p into a product of distinct irrreducible factors

$$F_p = f_0 f_1 \cdots f_s$$

with

deg
$$f_0 = 2$$

deg f_j odd for $j = 1, \ldots, s$;

• of type III if F_p factors over \mathbb{F}_p into a product of distinct irreducible factors

$$F_{p} = f_0 f_1 \cdots f_s$$

with deg $f_0 > d/2$ and prime.

Lemma (Buzzard, Conrey-Farmer)

Let $F \in \mathbb{Z}[X]$ be a monic polynomial of degree d. Suppose that F has primes of respective types I, II and III. Then F is irreducible over \mathbb{Q} and its splitting field over \mathbb{Q} has full Galois group Σ_d (the symmetric group on d letters).

ゆ ト イヨ ト イヨト

We have $F \in \mathbb{Z}[X]$ with splitting field \mathbb{K} and primes of type I, II and III.

Prime of type $I \Rightarrow F$ is irreducible.

Let q, r be the primes of type II and III, respectively. Let $G = \text{Gal}(\mathbb{K}/\mathbb{Q}) < \Sigma_d$ transitive. Let Q and \mathcal{R} be primes of \mathbb{K} above q and r, respectively. Then consider the Frobenius elements at those primes:

 $\mathrm{Frob}_\mathcal{Q},\mathrm{Frob}_\mathcal{R}$

We now invoke a result of algebraic number theory that the cycle patterns of these elements are identical to the factorization patterns of $F \mod q$ and r, respectively. Thus there exists powers of these elements, say τ_1, τ_2 , such that $\operatorname{Frob}_{\mathcal{Q}}^{\tau_1}$ and $\operatorname{Frob}_{\mathcal{R}}^{\tau_2}$ are a 2-cycle and an ℓ -cycle (where $\ell > d/2$ is prime), respectively. Then, by a result of group theory, a transitive subgroup of Σ_d with a 2-cycle and an ℓ -cycle ($\ell > d/2$ prime) must be equal to Σ_d , as required.

- Compute the Victor Miller basis \mathcal{B} for S_k .
- **②** Compute the matrix M of the Hecke operator T_2 with respect to the basis \mathcal{B} .
- Solution Pick a random prime $p < 2^{20}$, uniformly over this range.
- Reduce *M* modulo *p* and compute the characteristic polynomial *F_p* ∈ 𝔽_{*p*}[*X*].
- **(3)** If F_p is irreducible, then p is a prime of type I.
- Factor F_p over \mathbb{F}_p and use this factorization to decide whether p is a prime of type II or III.
- Repeat from step (3) until we have found at least one prime of each type.

伺 ト イ ヨ ト イ ヨ ト

Theorem (Frobenius)

Let $F \in \mathbb{Z}[X]$ be monic, let \mathbb{K}/\mathbb{Q} be the splitting field of F and let G be the Galois group of \mathbb{K}/\mathbb{Q} . Let deg $F = m_1d_1 + \ldots + m_td_t$ be a partition of deg F. The density of primes p for which F_p and factorization pattern $d_1^{m_1} \ldots d_t^{m_t}$ is equal to

$$\frac{|\{\sigma \in G \mid \text{the cycle pattern of } \sigma \text{ is } d_1^{m_1} \dots d_t^{m_t}\}|}{|G|}$$

Densities of Primes (continued)

• The density of primes of type I is

$$D_I(d) = \frac{1}{d}$$

(This is trivial)

 Let d > 2 and let [d]_e be the largest even integer such that [d]_e ≤ d. The density of primes of type II is

$$D_{II}(d) = rac{(([d]_e - 3)!!)^2}{2([d]_e - 2)!}$$

and satisfies the inequality

$$D_{II}(d) > rac{1}{4\sqrt{d}}.$$

(This bound comes from an effective version of Stirling's approximation)

Densities of Primes (continued)

• The density of primes of type III is

$$D_{III}(d) = \sum_{\substack{d/2 < \ell \le d, \ \ell \text{ prime}}} \frac{1}{\ell}.$$

If d>10, then $D_{III}(d)>rac{1}{3\log d}.$

(This bound comes from a bound on sums of reciprocals of primes by Dusart)

Perfomance Comparison with Conrey-Farmer-Wallace

Figure: Histogram illustrating the number of primes tested before finding a prime of type II, in weights up to 2000. The x-axis represents the ratio N/E of the actual number of primes tested over the expected number of primes. The y-axis represents the number of weights featuring that particular ratio.

Theorem

Let $k \leq 12000$ and let

$$n \in \{2, \dots, 10000\} \cup \{p \text{ prime } | 2 \le p \le 4000000\} \\ \cup \{p \text{ prime } | p \not\equiv \pm 1 \pmod{5}\} \\ \cup \{p \text{ prime } | p \not\equiv \pm 1 \pmod{7}\}.$$

Let F be the characteristic polynomial of the Hecke operators T_n acting on the space S_k of cusp forms of weight k and level 1. Then F is irreducible over \mathbb{Q} and the Galois group of its splitting field is the full symmetric group \mathfrak{S}_d , where d is the dimension of the space S_k .

4 3 5 4

Generalizations of Maeda's Conjecture:

- Higher level (Tsaknias, Chow-Ghitza-Withers)
 "The number of Galois orbits is a bounded function of the weight."
- Siegel Modular Forms

"The Satake parameters are as irreducible as possible."

4 3 5 4