Introduction Classical Siegel MFs Satake Galois Reps 000 00000 000 00000 00000 000000

Galois Representations for Siegel Modular Forms

Angus McAndrew

The University of Melbourne

(Supervised by Alex Ghitza)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction	Classical	Siegel MFs	Satake	Galois Reps
000	000000	000	00000	000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Overview

- 2 The Classical Case
- Siegel Modular Forms
- 4 The Satake Isomorphism
- 5 Galois Representations

Introduction	Classical	Siegel MFs	Satake	Galois Reps
000	000000	000	00000	000000

Thank you to the AustMS Student Support Scheme for the funding to attend this conference.

You sure know how to make a guy feel special.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Classical	Siegel MFs	Satake	Galois Reps
•00				

Goal

Describe some features of the correspondence between modular

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

forms and Galois representations.

Introduction	Classical	Siegel MFs	Satake	Galois Reps
•••				

Goal

Describe some features of the correspondence between modular

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

forms and Galois representations.

Goal

A walking tour of some Langlands material.

Introduction	Classical	Siegel MFs	Satake	Galois Reps
000				

Goal

Describe some features of the correspondence between modular

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

forms and Galois representations.

Goal

A speedwalking tour of some Langlands material.

Introduction	Classical	Siegel MFs	Satake	Galois Reps
00●	000000	000	00000	000000

Galois Representation

We are interested in the group

$$\mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) = \{\mathbb{Q}\text{-automorphisms of } \overline{\mathbb{Q}}\}.$$

In particular, we would like to understand the representations

$$\rho: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \operatorname{GL}(V).$$

We will do this by considering the images $\rho(\operatorname{Frob}_{\ell})$.

Introduction	Classical	Siegel MFs	Satake	Galois Reps
000	●00000	000	00000	000000

Modular Forms

Definition (Modular Form)

A modular form of weight k, level N and character ε is a holomorphic function $f : \mathfrak{G}_1 \to \mathbb{C}$ such that

where

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| c \equiv 0 \pmod{N} \right\},$$

and f is holomorphic at infinity.

Introduction	Classical	Siegel MFs	Satake	Galois Reps
000	000000	000	00000	000000
The Basic ⁻	Theory			

Modular forms relate to many interesting objects in number theory, but why would that help us?

In fact, modular forms are extremely explicit and nice to study. For example, when N = 1 we have the following classification.

Example

$$M_*(SL_2(\mathbb{Z});\mathbb{C}) = \mathbb{C}[E_4, E_6],$$

where

$$E_k(q) = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n.$$

Introduction	Classical	Siegel MFs	Satake	Galois Reps
	00000			

Back to Galois Representations

Theorem (Deligne)

Let $f \in M_k(\Gamma_1(N), \varepsilon; \overline{\mathbb{F}}_p)$ be a normalised eigenform with $f(q) = \sum a(n)q^n$. There exists a semisimple continuous Galois representation

$$\rho_f : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \operatorname{GL}_2(\overline{\mathbb{F}}_p)$$

which is unramified for all primes $\ell \nmid pN$ and

charpoly
$$(\rho_f(\operatorname{Frob}_\ell)) = X^2 - a(\ell)X + \varepsilon(\ell)\ell^{k-1}$$

Introduction	Classical	Siegel MFs	Satake	Galois Reps
000	000●00	000	00000	000000

But amazingly...

Theorem (Serre's Conjecture, Khare-Wintenberger)

Let $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\overline{\mathbb{F}}_p)$ be an irreducible, odd Galois representation. Then there exist integers k_ρ , N_ρ , a character ε_ρ and a cusp form $f \in S_{k_\rho}(\Gamma_1(N_\rho), \varepsilon_\rho; \overline{\mathbb{F}}_p)$ such that $\rho \cong \rho_f$.

Where ρ_f refers to the Galois representation attached to f by the theorem of Deligne.

Introduction	Classical	Siegel MFs	Satake	Galois Reps
	000000			

Still unconvinced?

Introduction	Classical	Siegel MFs	Satake	Galois Reps
000	00000●	000	00000	000000
Format's La	et Theorem			

Incredibly, Serre's conjecture \Rightarrow Fermat's Last Theorem.

The idea is as follows

Solution $(a, b, c) \mapsto$ Elliptic curve $y^2 = x(x - a^p)(x + b^p)$ \mapsto Galois Representation from E[p] \mapsto Modular Form $f \in S_2(\Gamma_0(2); \overline{\mathbb{F}}_p)$

However, the space $S_2(\Gamma_0(2); \overline{\mathbb{F}}_p) = \{0\}$, so only the zero solution can exist.

Introduction	Classical	Siegel MFs	Satake	Galois Reps
000	000000	●00	00000	000000

Ok, water break!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Introduction	Classical	Siegel MFs	Satake	Galois Reps
000	000000	⊙●⊙	00000	000000

Siegel Modular Forms

Definition (Siegel Modular Form)

Let $\kappa : \operatorname{GL}_g(\mathbb{C}) \to \operatorname{GL}_m(\mathbb{C})$ be a rational representation. A Siegel modular form of degree g, weight κ and level N is a holomorphic function $F : \mathfrak{G}_g \to \mathbb{C}^m$ such that

$$F((A\mathbf{z}+B)(C\mathbf{z}+D)^{-1})=\kappa(C\mathbf{z}+D)F(\mathbf{z}), \ \ ext{for} \ \ \gamma\in \mathsf{\Gamma}^{\mathsf{g}}(\mathsf{N}),$$

where

$$\Gamma^{g}(N) = \ker \left(\operatorname{Sp}_{2g}(\mathbb{Z}) \to \operatorname{Sp}_{2g}(\mathbb{Z}/N\mathbb{Z}) \right)$$

Introduction 000	Classical 000000	Siegel MFs 00●	Satake 00000	Galois Reps 000000
The "Basic'	' Theory			

Here things are more tricky. There are quite a few obstacles in even computing examples. There are still some nice qualities, like the following when $\kappa = \det^k$ and g = 2, N = 1.

Theorem (Igusa Generators)

$$M_*(\mathsf{Sp}_4(\mathbb{Z});\mathbb{C}) = \mathbb{C}[\phi_4,\phi_6,\chi_{10},\chi_{12},\chi_{35}]/R$$

Note that we can construct spaces like

$$M_{\kappa}(\Gamma^{g}(N); \overline{\mathbb{F}}_{p})$$

as before.

Introduction	Classical	Siegel MFs	Satake	Galois Reps
000	000000	000	●0000	000000
The Hecke	algebra			

Consider the local Hecke algebra

 \circ

$$\mathcal{H}_{\ell} = \mathcal{H}(\mathsf{GSp}_{2g}(\mathbb{Q}_{\ell}), \mathsf{GSp}_{2g}(\mathbb{Z}_{\ell})).$$

Elements of this algebra are called *Hecke operators* T. These act as linear operators on the vector space $M_{\kappa}(\Gamma^{g}(N); \overline{\mathbb{F}}_{p})$.

We call a form F an *eigenform* for \mathcal{H}_{ℓ} if it is a simultaneous eigenvector for all $T \in \mathcal{H}_{\ell}$ and we denote the eigenvalue $\Psi_F(T)$.

Introduction	Classical	Siegel MFs	Satake	Galois Reps
			00000	

The Satake Isomorphism

Theorem (Satake Isomorphism)

We have an isomorphism

$$\mathcal{S}_{p,\ell}: \overline{\mathbb{F}}_p \otimes \mathcal{H}_\ell \xrightarrow{\sim} \overline{\mathbb{F}}_p \otimes R(\mathsf{GSpin}_{2g+1})$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

where

- GSpin_{2g+1} is the dual group of GSp_{2g}, and
- R(G) is the representation ring of G.

Introduction	Classical	Siegel MFs	Satake	Galois Reps
000	000000	000	00●00	000000

Now - back to modular forms!

<□ > < @ > < E > < E > E のQ @

Introduction 000	Classical 000000	Siegel MFs 000	Satake 000●0	Galois Reps 000000
Satake Para	ameters			

Let $F \in M_{\kappa}(\Gamma^{g}(N); \overline{\mathbb{F}}_{p})$ be an eigenform. Then we have the eigenvalue character $\Psi_{F} : \overline{\mathbb{F}}_{p} \otimes \mathcal{H}_{\ell} \to \overline{\mathbb{F}}_{p}$.

We can thus construct a character

$$\Psi_{\mathsf{F}} \circ \mathcal{S}_{p,\ell}^{-1} : \overline{\mathbb{F}}_p \otimes R(\mathsf{GSpin}_{2g+1}) \to \overline{\mathbb{F}}_p.$$

This corresponds to $s_{F,\ell} \in \operatorname{GSpin}_{2g+1}(\overline{\mathbb{F}}_p)$, called the ℓ -Satake parameter of F.

Introduction	Classical	Siegel MFs	Satake	Galois Reps
000	000000	000	0000●	000000

C'mon, Galois representations already!

Introduction	Classical	Siegel MFs	Satake	Galois Reps
000	000000	000	00000	●00000

Galois Representations

Conjecture

Let $F \in M_{\kappa}(\Gamma^{g}(N); \overline{\mathbb{F}}_{p})$ be an eigenform for each \mathcal{H}_{ℓ} where $\ell \nmid pN$. There exists a representation, unramified for each $\ell \nmid pN$, such that

$$\begin{array}{rcl} \rho_F : & \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) & \longrightarrow & \mathsf{GSpin}_{2g+1}(\overline{\mathbb{F}}_p) \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

This is in fact a theorem in the cases g = 1 (seen earlier) and g = 2 (due to Taylor, Laumon and Weissauer).

Introduction	Classical	Siegel MFs	Satake	Galois Reps
000	000000	000	00000	⊙●0000

How does one actually play with these?

Introduction	Classical	Siegel MFs	Satake	Galois Reps
000	000000	000	00000	00●000
The Thete C) - ovotov			

The Theta Operator

In the classical case, there is a differential operator

 $\theta: M_k(\Gamma_1(N), \varepsilon; \overline{\mathbb{F}}_p) \to M_{k+p+1}(\Gamma_1(N), \varepsilon; \overline{\mathbb{F}}_p).$ This has the

following nice property when related to Galois representations.

Theorem

Let $f \in M_k(\Gamma_1(N), \varepsilon; \overline{\mathbb{F}}_p)$ be an eigenform such that $\theta f \neq 0$. Then

 $\rho_{\theta f} = \chi \otimes \rho_f,$

where χ is the cyclotomic character (mod p).

This is useful, since it allows one to reduce to the case $k \le p+1$ and work with low weights.

000	000000	000	00000	000000		
Carol Thata Onevetare						

Siegel Theta Operators

We'd like a similar result for differential operators on Siegel modular forms. As it turns out, there are many generalisations of the theta operator. The crucial feature is how they interact with the Hecke operators T, since those define the Galois representation. For example:

Theorem

• $\Psi_{\theta_{BN}F}(T) = \det(T) \cdot \Psi_F(T)$

•
$$\Psi_{\theta_{FG}F}(T) = \eta(T) \cdot \Psi_F(T)$$

Introduction	Classical	Siegel MFs	Satake	Galois Reps
				000000

Theta Operators on Galois Representations

Theorem (Ghitza-M.)

Let $\omega_{\lambda} : \operatorname{GSpin}_{2g+1}(\overline{\mathbb{F}}_p) \to \operatorname{GL}(V)$ be the representation with highest weight λ . Let ϑ be such that ϑF is an eigenform and

$$\Psi_{\vartheta F}(T) = \eta(T)^m \cdot \Psi_F(T).$$

Then

$$\omega_{\lambda} \circ \rho_{\vartheta F} = \chi^{\boldsymbol{m} \cdot \boldsymbol{\alpha}(\lambda)} \otimes (\omega_{\lambda} \circ \rho_{F}),$$

where χ is the cyclotomic character (mod p), and $\alpha(\lambda) = \log_{\ell}(\eta(\lambda(\ell)))$ for any prime $\ell \neq p$.

Introduction	Classical	Siegel MFs	Satake	Galois Reps
000	000000	000	00000	00000●

Thanks for listening!

