Forms	Hecke Operators	Theta Operators	Theta on Eigenvalues	

Theta Operators on Hecke Eigenvalues

Angus McAndrew

The University of Melbourne

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Modular Forms	Hecke Operators	Theta Operators	Theta on Eigenvalues	
0000	000	0000000	0000000	
Overview				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 2 Hecke Operators
- 3 Theta Operators
- 4 Theta on Eigenvalues
- 5 The slide where I say thank you

Modular Forms	Hecke Operators	Theta Operators	Theta on Eigenvalues	
●000	000	0000000	0000000	

Modular Forms

Definition (Modular Form)

A modular form of weight k and level N is a holomorphic function $f : \mathbb{H}_1 \to \mathbb{C}$ such that

$$f\left(\frac{az+b}{cz+d}
ight)=(cz+d)^kf(z) \ \ ext{for} \ \ \left(egin{array}{c}a&b\\c&d\end{array}
ight)\in\Gamma(N),$$

where

$$\Gamma(N) = \ker\left(\begin{array}{c} \operatorname{SL}_2(\mathbb{Z}) \to \operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z}) \end{array}
ight),$$

and f is holomorphic at the cusps.

Modular Forms	Hecke Operators	Theta Operators	Theta on Eigenvalues	
o●oo	000	0000000	0000000	
The Basic ⁻	Theory			

In fact, modular forms are extremely explicit and nice to study. For example, when N = 1 we have the following classification.

Example

$$M_*(SL_2(\mathbb{Z});\mathbb{C}) = \mathbb{C}[E_4, E_6],$$

where

$$E_k(q) = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n, \ q = e^{2\pi i z}.$$

We can also construct spaces $M_k(\Gamma(N); \overline{\mathbb{F}}_p)$ by tensoring (reducing mod p).

Modular Forms	Hecke Operators	Theta Operators	Theta on Eigenvalues	
00●0	000	0000000	0000000	

Siegel Modular Forms

Definition (Siegel Modular Form)

Let $\kappa : \operatorname{GL}_g(\mathbb{C}) \to \operatorname{GL}_m(\mathbb{C})$ be a rational representation. A Siegel modular form of degree g, weight κ and level N is a holomorphic function $F : \mathbb{H}_g \to \mathbb{C}^m$ such that

$$F((A\mathbf{z}+B)(C\mathbf{z}+D)^{-1})=\kappa(C\mathbf{z}+D)F(\mathbf{z}), \ \ ext{for} \ \ \gamma\in \mathsf{\Gamma}^{\mathsf{g}}(\mathsf{N}),$$

where

$$\Gamma^{g}(N) = \ker \left(\ \operatorname{Sp}_{2g}(\mathbb{Z}) \to \operatorname{Sp}_{2g}(\mathbb{Z}/N\mathbb{Z}) \right)$$

うして ふゆう ふほう ふほう うらつ

<u>Note</u>: When the weight $\kappa = \det^k$, we will just write k.

Modular Forms 000●	Hecke Operators	Theta Operators 0000000	Theta on Eigenvalues	
T I (10				

The "Basic" Theory

Here things are more tricky. There are quite a few obstacles in even computing examples. There are still some nice qualities, like the following when $\kappa = \det^k$ and g = 2, N = 1.

Theorem (Igusa Generators)

$$M_*(\mathsf{Sp}_4(\mathbb{Z});\mathbb{C}) = \mathbb{C}[\phi_4,\phi_6,\chi_{10},\chi_{12},\chi_{35}]/R$$

Note that we have q-expansions of the form

$$f(\mathbf{q}_N) = \sum_{\mathbf{n}} \mathbf{a}(\mathbf{n}) \mathbf{q}_N^{\mathbf{n}}, \mathbf{q}_N^{\mathbf{n}} = e^{\frac{2\pi i}{N} \operatorname{Tr}(\mathbf{nz})}.$$

うして ふゆう ふほう ふほう うらつ

Modular Forms	Hecke Operators	Theta Operators	Theta on Eigenvalues	
	000			

The Slash Operator

Definition (Weight κ slash operator)

The weight κ slash operator $|_{\kappa}$ gives an action of $\mathrm{GSp}_{2g}(\mathbb{Q})^+$ on weight κ forms by

$$(f|_{\kappa})(\mathbf{z}) = \eta(\gamma)^{\sum \lambda_i - g(g+1)/2} \kappa (C\mathbf{z} + D)^{-1} f(\gamma \mathbf{z}),$$

うして ふゆう ふほう ふほう うらつ

where $(\lambda_i \geq \ldots \geq \lambda_g)$ is the highest weight of κ .

Note that if $\gamma \in \Gamma^{g}(N)$, then $(f|_{\kappa})(\mathbf{z}) = f(\mathbf{z})$.

0000	O●O	0000000	0000000	
Hocko Opora	tore			

The slash operator is well-defined on cosets $\Gamma^{g}(N)\gamma$. Given a double coset $\Gamma^{g}(N)\gamma\Gamma^{g}(N)$, it can be expressed as a union of cosets as

$$\Gamma^{g}(N)\gamma\Gamma^{g}(N) = \bigcup_{j}\Gamma^{g}(N)\gamma_{j}.$$

Definition (Hecke Operator)

Let $\gamma \in \mathrm{GSp}_{2g}(\mathbb{Q})^+$ have a coset expansion as above. The Hecke operator \mathcal{T}_γ is

$$(T_{\gamma}f)(\mathsf{z}) = \sum_{j} (f|_{\kappa}\gamma_{j})(\mathsf{z}).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ 今 へ ?

Modular Forms	Hecke Operators	Theta Operators	Theta on Eigenvalues
0000	00●	0000000	

Eigenforms and Eigenvalues

Definition (Eigenform)

An eigenform is a form f which is an simultaneous eigenvector for all the Hecke operators T, i.e. $\exists \Psi_f(T) \in \overline{\mathbb{F}}_p$ such that

 $Tf = \Psi_f(T)f.$

Definition (Eigensystem)

Let \mathcal{H} be the algebra of Hecke operators and f an eigenform. The function

$$egin{array}{rcl}
 \Psi_f: & \mathcal{H} & \longrightarrow & \overline{\mathbb{F}}_p \\
 & \mathcal{T} & \longmapsto & \Psi_f(\mathcal{T})
\end{array}$$

is called the *Hecke eigensystem* of f.

Modular Forms	Hecke Operators	Theta Operators	Theta on Eigenvalues	
0000	000	●000000	0000000	
The Theta	Operator			

The word *holomorphic* may lead one to think that modular forms should be differentiable. This turns out to be true (mod p), and for g = 1 we have the operator

$$\begin{array}{rcl} \vartheta : & M_k(\Gamma(N);\overline{\mathbb{F}}_p) & \longrightarrow & M_{k+p+1}(\Gamma(N);\overline{\mathbb{F}}_p) \\ & f & \longmapsto & \frac{1}{2\pi i}\frac{d}{dz}f(z) = \frac{d}{dq}f(q). \end{array}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

One can construct this many ways, either using Rankin-Cohen brackets or algebraic geometry.

Modular Forms	Hecke Operators	Theta Operators	Theta on Eigenvalues	
0000	000	0●00000	0000000	
Siegel Thet	a Operators			

We'd like a similar differential operator on Siegel modular forms.

As it turns out, there are many generalisations of ϑ .

- ϑ_{BN} from Boecherer-Nagaoka, using Rankin-Cohen-type brackets.
- ϑ_{FG} from Flander-Ghitza, using algebraic geometry.
- Various operators from Yamauchi, using algebraic geometry in the special case g = 2.

Modular Forms 0000	Hecke Operators 000	Theta Operators 00●0000	Theta on Eigenvalues 0000000	

Boecherer-Nagaoka

A theorem of Eholzer-Ibukiyama gives us a differential bracket taking two forms F, G of weight k_1, k_2 in characteristic 0 to a form [F, G] of weight $k_1 + k_2 + 2$. There is a form called the *Hasse invariant H* which reduced (mod p) is the constant 1. So one defines

$$\vartheta_{BN}^0 f = [F, H]$$

and then splitting $\vartheta^0_{BN}=\vartheta^1_{BN}+p\vartheta^2_{BN}$, one defines

$$\vartheta_{BN} = \text{reduction of } \frac{(-1)^g}{(g+1)!} \vartheta_{BN}^1 \pmod{p}.$$

うして ふゆう ふほう ふほう うらつ

Modular Forms 0000	Hecke Operators	Theta Operators	Theta on Eigenvalues	

Boecherer-Nagaoka

Theorem

The operator ϑ_{BN} acts on Siegel modular forms by

$$\begin{array}{ccc} \vartheta_{BN} : & M_k(\Gamma^g(N); \overline{\mathbb{F}}_p) & \longrightarrow & M_{k+p+1}(\Gamma^g(N); \overline{\mathbb{F}}_p) \\ & & f(\mathbf{q}) & \longmapsto & \det(\partial_{\mathbf{q}})f(\mathbf{q}), \end{array}$$

i.e.

$$(\vartheta_{BN}f)(\mathbf{q}) = \frac{1}{N^g} \sum_{\mathbf{n}} \det(\mathbf{n}) a(\mathbf{n}) \mathbf{q}_N^{\mathbf{n}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Modular Forms	Hecke Operators	Theta Operators	Theta on Eigenvalues	
0000	000	0000€00	0000000	

Flander-Ghitza

Simplified construction:

$$\begin{split} \vartheta_{FG} &: \mathbb{E}_{\kappa} \hookrightarrow (H^{1}_{\mathsf{dR}})^{\lambda} \\ & \xrightarrow{\nabla^{\lambda}} (H^{1}_{\mathsf{dR}}) \otimes \Omega^{1} \\ & \xrightarrow{\operatorname{id} \otimes KS^{-1} \otimes h} (\mathbb{E} \oplus \mathbb{E}^{\vee})^{\lambda} \otimes \operatorname{Sym}^{2} \mathbb{E} \otimes \omega^{\otimes (p-1)} \\ & \longrightarrow \mathbb{E}_{\kappa} \otimes \underline{\omega}^{(p-1)} \otimes \operatorname{Sym}^{2} \mathbb{E}. \end{split}$$

Important features:

- \mathbb{E} is the Hodge bundle on $\mathcal{A}_{g,N}$.
- ∇ is the Gauss-Manin connection.

Modular Forms	Hecke Operators	Theta Operators	Theta on Eigenvalues	
0000	000	00000€0	0000000	
Flander-Gh	itza			

Theorem

The operator ϑ_{FG} acts on Siegel modular forms by

$$\begin{array}{ccc} \vartheta_{FG}: & M_{\kappa}(\Gamma^{g}(N);\overline{\mathbb{F}}_{p}) & \longrightarrow & M_{\kappa\otimes \det^{(p-1)}\otimes \operatorname{Sym}^{2}}(\Gamma^{g}(N);\overline{\mathbb{F}}_{p}) \\ & f(\mathbf{q}) & \longmapsto & (\vartheta_{FG}f)(\mathbf{q}), \end{array}$$

where

$$(\vartheta_{FG}f)(\mathbf{q}) = \sum_{\mathbf{n}} (\mathbf{n} \otimes \mathbf{a}(\mathbf{n})) \mathbf{q}_N^{\mathbf{n}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

000000	0000000	
	000000	0000000 0000000

The operator of Flander-Ghitza ends in a projection to make the weight irreducible. Working with g = 2, Yamauchi does this in a highly explicit way, achieveing multiple maps ϑ_i . Further, if one begins with $\kappa = \det^k$ and applies ϑ twice, one gets a new map Θ from k to k + p + 1, which is in fact the same as ϑ_{BN} . We will thus discuss these operators in no further detail.

Thus in g = 1 and g = 2 we have a direct relationship between the Rankin-Cohen bracket and algebro-geometric constructions.

Modular Forms	Hecke Operators	Theta Operators	Theta on Eigenvalues	
0000	000	0000000	●000000	
Theta on E	igenvalues			

One of the most fascinating properties of the theta operator on modular forms its the following.

Theorem

Let f be an eigenform with eigensystem $\Psi_f.$ If $\vartheta f\neq 0,$ then ϑf is an eigenform and

$$\Psi_{\vartheta f}(T_{\gamma}) = \det(\gamma) \Psi_f(T_{\gamma}).$$

One proves this by demonstrating the commutation relation

$$T_{\gamma} \circ \vartheta = \mathsf{det}(\gamma) \cdot \vartheta \circ T_{\gamma}$$

うして ふゆう ふほう ふほう うらつ

Modular Forms	Hecke Operators	Theta Operators	Theta on Eigenvalues	
0000	000	0000000	o●ooooo	
Main Theo	rem			

Theorem

Let f be an eigenform with eigensystem Ψ_{f} . Then (1) If $\vartheta_{BN}f \neq 0$, then $\vartheta_{BN}f$ is an eigenform and

$$\Psi_{\vartheta_{BN}f}(T_{\gamma}) = \det(\gamma)\Psi_f(T_{\gamma}).$$

(2) If $\vartheta_{FG} f \neq 0$, then $\vartheta_{FG} f$ is an eigenform and

$$\Psi_{\vartheta_{FG}f}(T_{\gamma}) = \eta(\gamma)\Psi_f(T_{\gamma}).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

We will describe the proof for part (1).

Modular Forms	Hecke Operators	Theta Operators	Theta on Eigenvalues	
0000	000	0000000	00●0000	
Some lemm	las			

Lemma

A double coset $\Gamma^{g}(N)\gamma\Gamma^{g}(N)$ can be decomposed into right cosets of the form

$$\Gamma^{g}(N)\begin{pmatrix} \eta(\gamma)(D^{\top})^{-1} & B\\ 0 & D \end{pmatrix}$$

Lemma

If
$$\gamma = \begin{pmatrix} \eta(\gamma)(D^{\top})^{-1} & B \\ 0 & D \end{pmatrix}$$
 then
 $(|_{k+p+1}\gamma) \circ \vartheta_{BN}^{1} = \det(\gamma) \cdot \vartheta_{BN}^{1} \circ (|_{k}\gamma).$

Modular Forms	Hecke Operators	Theta Operators	Theta on Eigenvalues	
			0000000	

The advantage of having a block upper triangular matrix is that we can do explicit calculations on **q**-expansions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Furthermore, splitting $\vartheta_{BN}^0 = \vartheta_{BN}^1 + p \vartheta_{BN}^2$ allows us to avoid certain issues when coming to reduction (mod p).

Modular Forms	Hecke Operators	Theta Operators	Theta on Eigenvalues
0000	000	0000000	0000●00

Proof of second Lemma.

We will omit all the actual effort and just show the big impressive equations.

$$\begin{split} ((\vartheta_{BN}^{1}F)|_{k+\rho+1}\gamma)(\mathbf{q}) &= \left(\eta(\gamma)^{g}\det(D)^{-1}\right)^{\rho-1}\eta(\gamma)^{g} \\ &\times \frac{1}{N^{g}}\eta(\gamma)^{(k+1)g-g(g+1)/2}\det(D)^{-(k+2)} \\ &\times \sum_{\mathbf{n}}\det(\mathbf{n})a(\mathbf{n})c(\mathbf{n})\mathbf{q}_{N}^{\mathbf{n}'}, \\ (\vartheta_{BN}^{1}(F|_{k}))(\mathbf{q}) &= \frac{1}{N^{g}}\eta(\gamma)^{(k+1)g-g(g+1)/2}\det(D)^{-(k+2)} \\ &\times \sum_{\mathbf{n}}\det(\mathbf{n})a(\mathbf{n})c(\mathbf{n})q_{N}^{\mathbf{n}'}, \\ \end{split}$$
where $\mathbf{n}' = \eta(\gamma)D^{-1}\mathbf{n}(D^{\top})^{-1}$ and $c(\mathbf{n}) = e^{2\pi i\operatorname{Tr}(\mathbf{n}BD^{-1})/N}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Modular Forms 0000	Hecke Operators	Theta Operators 0000000	Theta on Eigenvalues 00000€0	

Proof of Theorem part (1).

By the first lemma, we can expand

$$\Gamma^{g}(N)\gamma\Gamma^{g}(N) = \bigcup_{j}\Gamma^{g}(N)\gamma_{j}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

where γ_j is block upper triangular, and $\det(\gamma_j) = \det(\gamma)$. By the second lemma, these each commute with the slash operator, up to $\det(\gamma)$. Thus, the result follows.

Modular Form 0000	Hecke Ope	Theta Operat	Theta on Eig 000000●	envalues	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Some Further Questions

- Relationship between theta constructions
- Generalised Rankin-Cohen brackets
- O Theta cycles
- Weight in Serre's Conjecture" analogue

Modular Forms	Hecke Operators	Theta Operators	Theta on Eigenvalues	
				٠

Thanks for listening!