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Modular Forms

Definition (Modular Form)

A modular form of weight k and level N is a holomorphic function

f : H1 → C such that

f

(
az + b

cz + d

)
= (cz + d)k f (z) for

(
a b

c d

)
∈ Γ(N),

where

Γ(N) = ker ( SL2(Z)→ SL2(Z/NZ) ) ,

and f is holomorphic at the cusps.



Modular Forms Hecke Operators Theta Operators Theta on Eigenvalues

The Basic Theory

In fact, modular forms are extremely explicit and nice to study. For

example, when N = 1 we have the following classification.

Example

M∗(SL2(Z);C) = C[E4,E6],

where

Ek(q) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn, q = e2πiz .

We can also construct spaces Mk(Γ(N);Fp) by tensoring (reducing

mod p).
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Siegel Modular Forms

Definition (Siegel Modular Form)

Let κ : GLg (C)→ GLm(C) be a rational representation. A Siegel

modular form of degree g, weight κ and level N is a holomorphic

function F : Hg → Cm such that

F ((Az + B)(Cz + D)−1) = κ(Cz + D)F (z), for γ ∈ Γg (N),

where

Γg (N) = ker
(

Sp2g (Z)→ Sp2g (Z/NZ)
)

Note: When the weight κ = detk , we will just write k .
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The “Basic” Theory

Here things are more tricky. There are quite a few obstacles in

even computing examples. There are still some nice qualities, like

the following when κ = detk and g = 2, N = 1.

Theorem (Igusa Generators)

M∗(Sp4(Z);C) = C[φ4, φ6, χ10, χ12, χ35]/R

Note that we have q-expansions of the form

f (qN) =
∑
n

a(n)qnN ,q
n
N = e

2πi
N

Tr(nz).
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The Slash Operator

Definition (Weight κ slash operator)

The weight κ slash operator |κ gives an action of GSp2g (Q)+ on

weight κ forms by

(f |κ)(z) = η(γ)
∑
λi−g(g+1)/2κ(Cz + D)−1f (γz),

where (λi ≥ . . . ≥ λg ) is the highest weight of κ.

Note that if γ ∈ Γg (N), then (f |κ)(z) = f (z).



Modular Forms Hecke Operators Theta Operators Theta on Eigenvalues

Hecke Operators

The slash operator is well-defined on cosets Γg (N)γ. Given a

double coset Γg (N)γΓg (N), it can be expressed as a union of

cosets as

Γg (N)γΓg (N) =
⋃
j

Γg (N)γj .

Definition (Hecke Operator)

Let γ ∈ GSp2g (Q)+ have a coset expansion as above. The Hecke

operator Tγ is

(Tγf )(z) =
∑
j

(f |κγj)(z).
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Eigenforms and Eigenvalues

Definition (Eigenform)

An eigenform is a form f which is an simultaneous eigenvector for

all the Hecke operators T , i.e. ∃Ψf (T ) ∈ Fp such that

Tf = Ψf (T )f .

Definition (Eigensystem)

Let H be the algebra of Hecke operators and f an eigenform. The

function
Ψf : H −→ Fp

T 7−→ Ψf (T )

is called the Hecke eigensystem of f .
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The Theta Operator

The word holomorphic may lead one to think that modular forms

should be differentiable. This turns out to be true (mod p), and

for g = 1 we have the operator

ϑ : Mk(Γ(N);Fp) −→ Mk+p+1(Γ(N);Fp)

f 7−→ 1
2πi

d
dz f (z) = d

dq f (q).

One can construct this many ways, either using Rankin-Cohen

brackets or algebraic geometry.
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Siegel Theta Operators

We’d like a similar differential operator on Siegel modular forms.

As it turns out, there are many generalisations of ϑ.

ϑBN from Boecherer-Nagaoka, using Rankin-Cohen-type

brackets.

ϑFG from Flander-Ghitza, using algebraic geometry.

Various operators from Yamauchi, using algebraic geometry in

the special case g = 2.
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Boecherer-Nagaoka

A theorem of Eholzer-Ibukiyama gives us a differential bracket

taking two forms F ,G of weight k1, k2 in characteristic 0 to a form

[F ,G ] of weight k1 + k2 + 2.

There is a form called the Hasse invariant H which reduced (mod

p) is the constant 1. So one defines

ϑ0BN f = [F ,H]

and then splitting ϑ0BN = ϑ1BN + pϑ2BN , one defines

ϑBN = reduction of
(−1)g

(g + 1)!
ϑ1BN (mod p).
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Boecherer-Nagaoka

Theorem

The operator ϑBN acts on Siegel modular forms by

ϑBN : Mk(Γg (N);Fp) −→ Mk+p+1(Γg (N);Fp)

f (q) 7−→ det(∂q)f (q),

i.e.

(ϑBN f )(q) =
1

Ng

∑
n

det(n)a(n)qnN .
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Flander-Ghitza

Simplified construction:

ϑFG : Eκ ↪→ (H1
dR)λ

∇λ

−−−→ (H1
dR)⊗ Ω1

id⊗KS−1⊗h−−−−−−−→ (E⊕ E∨)λ ⊗ Sym2 E⊗ ω⊗(p−1)

−→ Eκ ⊗ ω(p−1) ⊗ Sym2 E.

Important features:

E is the Hodge bundle on Ag ,N .

∇ is the Gauss-Manin connection.

KS is the Kodaira-Spencer isomorphism.
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Flander-Ghitza

Theorem

The operator ϑFG acts on Siegel modular forms by

ϑFG : Mκ(Γg (N);Fp) −→ Mκ⊗det(p−1)⊗ Sym2(Γg (N);Fp)

f (q) 7−→ (ϑFG f )(q),

where

(ϑFG f )(q) =
∑
n

(n⊗ a(n))qnN .
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Yamauchi

The operator of Flander-Ghitza ends in a projection to make the

weight irreducible. Working with g = 2, Yamauchi does this in a

highly explicit way, achieveing multiple maps ϑi . Further, if one

begins with κ = detk and applies ϑ twice, one gets a new map Θ

from k to k + p + 1, which is in fact the same as ϑBN . We will

thus discuss these operators in no further detail.

Thus in g = 1 and g = 2 we have a direct relationship between the

Rankin-Cohen bracket and algebro-geometric constructions.
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Theta on Eigenvalues

One of the most fascinating properties of the theta operator on

modular forms its the following.

Theorem

Let f be an eigenform with eigensystem Ψf . If ϑf 6= 0, then ϑf is

an eigenform and

Ψϑf (Tγ) = det(γ)Ψf (Tγ).

One proves this by demonstrating the commutation relation

Tγ ◦ ϑ = det(γ) · ϑ ◦ Tγ
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Main Theorem

Theorem

Let f be an eigenform with eigensystem Ψf . Then

(1) If ϑBN f 6= 0, then ϑBN f is an eigenform and

ΨϑBN f (Tγ) = det(γ)Ψf (Tγ).

(2) If ϑFG f 6= 0, then ϑFG f is an eigenform and

ΨϑFG f (Tγ) = η(γ)Ψf (Tγ).

We will describe the proof for part (1).
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Some lemmas

Lemma

A double coset Γg (N)γΓg (N) can be decomposed into right cosets

of the form

Γg (N)

(
η(γ)(D>)−1 B

0 D

)
.

Lemma

If γ =

(
η(γ)(D>)−1 B

0 D

)
then

(|k+p+1γ) ◦ ϑ1BN = det(γ) · ϑ1BN ◦ (|kγ).
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The advantage of having a block upper triangular matrix is that we

can do explicit calculations on q-expansions.

Furthermore, splitting ϑ0BN = ϑ1BN + pϑ2BN allows us to avoid

certain issues when coming to reduction (mod p).
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Proof of second Lemma.

We will omit all the actual effort and just show the big impressive

equations.

((ϑ1BNF )|k+p+1γ)(q) =
(
η(γ)g det(D)−1

)p−1
η(γ)g

× 1

Ng
η(γ)(k+1)g−g(g+1)/2 det(D)−(k+2)

×
∑
n

det(n)a(n)c(n)qn
′

N ,

(ϑ1BN(F |k))(q) =
1

Ng
η(γ)(k+1)g−g(g+1)/2 det(D)−(k+2)

×
∑
n

det(n)a(n)c(n)qn
′

N ,

where n′ = η(γ)D−1n(D>)−1 and c(n) = e2πi Tr(nBD
−1)/N .
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Proof of Theorem part (1).

By the first lemma, we can expand

Γg (N)γΓg (N) =
⋃
j

Γg (N)γj

where γj is block upper triangular, and det(γj) = det(γ).

By the second lemma, these each commute with the slash

operator, up to det(γ). Thus, the result follows.
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Some Further Questions

1 Relationship between theta constructions

2 Generalised Rankin-Cohen brackets

3 Theta cycles

4 “Weight in Serre’s Conjecture” analogue
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Thanks for listening!
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