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Introduction

In many fields, such as topology, symplectic/complex geometry,
algebraic geometry, an important strategy for studying spaces is to
study their invariants. These are quantities or objects attached to
a space such that if two spaces are equivalent in whatever sense
one is interested (isomorphic, homeomorphic, homotopy
equivalent, etc.), then their invariants are all equal.

Probably the richest invariants studied for such spaces are the
(co)homology groups. These are certain abelian groups (or
sometimes vector spaces) that encode a lot of deep information
about the space.

Some of the most famous problems in modern mathematics were
resolved by cohomology calculations.
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Homology first steps
The story typically begins with the singular homology of a space
X , which studies the following sequence

∂n+1←−−−− Q{dimension n + 1 subspaces} ∂n+2←−−−− · · ·
∂n←−− Q{dimension n subspaces}

· · · ∂n−1←−−−− Q{dimension n − 1 subspaces}

where

I Q{. . .} means the vector space over Q with a basis vector for
each element of the set, and

I ∂n is the boundary operator. For example

∂1(curve from a to b) = [b]− [a].
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Homology first steps

Given the above sequence one constructs the nth homology group
as

Hn(X ,Q) =
ker(∂n)

im(∂n+1)
,

i.e. the group of dimension n subspaces with trivial boundary
(called cycles) up to equivalence by boundaries of dimension n + 1
subspaces.

Exercise
Show that

H0(X ,Q) = Qm

where m is the number of path-connected components of X .
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Homology of the torus

Example

Consider the torus T ∼= R2/Z2, pictured with some cycles below.

To compute H1(T ,Q) we need cycles to have trivial boundary (i.e.
loops rather than curves) and we set the boundarys of any 2d
subspaces to zero.

From this one can prove that H1(T ,Q) = Q{a, b} ∼= Q2.
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Cute application

One can compute that for the usual Euclidean space we have

Hk(Rn \ {0},Q) =

{
Q, if k = 0, n

0, else.

Corollary

If m 6= n, then Rm and Rn are not homeomorphic.

Proof.
Since homology is an invariant, if they were homeomorphic these
should be equal.

This “obvious” fact is curiously difficult to prove for general m and
n otherwise.
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Cohomology first steps

So in general for a cohomlogy theory we want a sequence

Q{dimension n + 1 data on X} dn+1−−−−→ · · ·

Q{dimension n data on X} dn−−−−→

· · · dn−2−−−−→ Q{dimension n − 1 data on X} dn−1−−−−→

from which we’d set the cohomolgy to be Hn(X ) =
ker(dn)

im(dn−1)
.

Example

If we take { dim n data } to be the set of functions on
Q{ dim n subspaces }, i.e. the dual, with dn(f ) = f ◦ ∂n+1, we get
the singular cohomology groups Hn(X ,Q).
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De Rham Cohomology first steps
For the purpose of today’s talk we’ll be focusing on a cohomology
theory called de Rham cohomology. Here our dim n data on X is
the set

Ωn(X ) = { differential k-forms }

and the map dn is the exterior derivative.

Differential forms are objects like f (x , y)dx , g(x , y)dx ∧ dy , etc. In
the complex case one has forms such as h(z)dz ∧ dz , where
dz = dx + idy .
(Note that dx ∧ dx = 0 and dx ∧ dy = −dy ∧ dx .)
The exterior derivative takes the total differential of the function,
for example

d1(f (x , y)dx) = (fxdx + fydy) ∧ dx = fydy ∧ dx = −fydx ∧ dy .
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Complex de Rham cohomology
The sequence (Ωn(X ), dn) defines the de Rham cohomology groups
Hn
dR(X ). These are vector spaces over whatever field X is defined.

In the complex case if the variables on X are z1, . . . , zn, then we
have a dichotomy between the holomorphic differentials dzi and
the antiholomorphic differentials dz j . This induces a
decomposition (called the Hodge decomposition)

Hk
dR(X ) =

⊕
i+j=k

H i ,j(X ),

where H i ,j(X ) consists of classes of the form

dz1 ∧ . . . ∧ dzi ∧ dz i+1 ∧ . . . ∧ dz i+j .
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The Cycle Class Map

Differential forms often arise for integrating over the subspaces of
X . Consider the Q-vector space C r (X )Q of subspaces Z ⊆ X of
codimension r (think “cut out by r equations”). We get a map to
the dual of de Rham cohomology

C r (X ) −→ H
2(n−r)
dR (X )∨

Z 7−→
(
ω 7→

∫
Z
ω

)
.

The trick to get a map to cohomology itself is to use a big
theorem called Poincare duality, which furnishes us with an

isomorphism H
2(n−r)
dR (X )∨

∼−→ H2r
dR(X ).

Hence we get the cycle class map c : C r (X )→ H2r
dR(X ).
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The Hodge Conjecture

Some important notes about the cycle class map:

I Recall we also had a duality between subspaces and
cohomology when we discussed singular cohomology, and
indeed the cycle class map does land in H2r (X ,Q) ⊆ H2r

dR(X ).

I In terms of our Hodge decomposition, the cycle class map
always lands in H r ,r (X ).

Conjecture (Hodge Conjecture)

Every class in H2r (X ,Q) ∩ H r ,r (X ) is the image of some
Z ∈ C r (X )Q under the cycle class map.
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Elliptic Curves
Let’s actually get to an example!

Complex elliptic curves are quotient spaces of the form E = C/Λ,
where Λ is some lattice in C. (In fact we can always take
Λ = Z⊕ Zτ , with Im(τ) > 0). Topologically then, these are just
tori as we saw before! This allows us to compute the homology,
and it is possible to also compute the de Rham cohomology as
follows:

H0(E ,Q) = Q H1(E ,Q) = Q{γ, γ′} ∼= Q2 H2(E ,Q) = Q
H0
dR(E ) = C H1

dR(E ) = C{dz , dz} ∼= C2 H2
dR(E ) = C.

Since the only subspaces of E of positive codimension are just
points, they are not so interesting from the perspective of the
Hodge conjecture.
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A Power of an Elliptic Curve
Consider instead the space E × E , which is now two dimensional
over C. The space of codimension 1 subspaces (up to “algebraic
equivalence”) is denoted NS(E × E )Q, and importantly on this
space the cycle class map c is injective.

Since these are just curves on E × E they are either “vertical”,
“horizontal”, or “diagonal”. In the vertical and horizontal case
they just descend to cycles on the first and second copies of E . In
the diagonal case we actually get the graph of a function E → E .
Thus we get:

NS(E × E )Q = NS(E )Q ⊕ NS(E )Q ⊕ End(E )Q

∼= Q⊕Q⊕

{
Q2, if τ + τ , ττ ∈ Q
Q, else.

Angus McAndrew Community Seminar

How to Prove the Hodge Conjecture



The Hodge Conjecture for E × E
We now have an injective cycle class map of Q-vector spaces

c : NS(E × E )Q −→ H2(E × E ,Q) ∩ H1,1(E × E ).

Thus if our goal is to prove the r = 1 Hodge conjecture for
X = E × E we are reduced to proving the following:

Proposition

dimH2(E × E ,Q) ∩ H1,1(E × E ) =

{
4, if τ + τ , ττ ∈ Q
3, else.

The final ingredient we need is how to view the singular
cohomology H2(E × E ,Q) inside the de Rham cohomology.
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The Proof

Write δ, δ′ for the basis of H1(E ,Q) dual to the basis γ, γ′ of
H1(E ,Q). Then we have

dz = δ + τδ′ and dz = δ + τδ′,

where τ is as in E = C/(Z⊕ Zτ).
Writing z1, z2 for the coordinates on each copy of E , we have

H1,1(E × E ) = C{dz1 ∧ dz1, dz1 ∧ dz2, dz1 ∧ dz2, dz2 ∧ dz2}.

The strategy is then to expand linear combinations of these in
terms of δ1, δ

′
1, δ2, δ

′
2 and find which ones are possible over Q.
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The Proof Continues

Since we want rational classes, in particular they must be real (i.e.
preserved by complex conjugation) so it is sufficient to consider the
classes

a(dz1 ∧ dz2) + a(dz1 ∧ dz2)

= a(δ1 + τδ′1) ∧ (δ2 + τδ′2) + a(δ1 + τδ′1) ∧ (δ2 + τδ′2)

= (a + a)δ1 ∧ δ2 + (aτ + aτ)δ1 ∧ δ′2 + (aτ + aτ)δ′1 ∧ δ2
+ (a + a)(ττ)δ′1 ∧ δ′2

bi (dzi ∧ dz i ) = bi (δi + τδ′i ) ∧ (δi + τδ′i )

= bi (τδi ∧ δ′i + τδ′i ∧ δi ) = bi (τ − τ)δi ∧ δ′i
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The Proof Never Ends

This gives us the conditions

a + a ∈ Q, aτ + aτ ∈ Q, aτ + aτ ∈ Q, (a + a)(ττ) ∈ Q,

and bi (τ − τ) ∈ Q. This last condition gives two Q-degrees of
freedom, one each for b1 and b2. (If you’re careful you can see
these ones correspond to the two factors of NS(E )Q.)

The first and fourth condition above tell us either a + a = 0, or
ττ ∈ Q. Adding the second and third gives (a + a)(τ + τ) ∈ Q so
again either a + a = 0, or τ + τ ∈ Q. The difference of the second
and third gives the condition (a− a)(τ − τ) ∈ Q.
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Oh Wait Yes It Does

Hence we get one Q-degree of freedom for a− a, and a second for
a + a if τ + τ , ττ ∈ Q.

Putting all the above together gives

dimH2(E × E ,Q) ∩ H1,1(E × E ) =

{
4, if τ + τ , ττ ∈ Q
3, else,

as desired!
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Final Remarks

While this computation is good fun, it’s unfortunately not a “new”
result, as it were. The Hodge conjecture is open in general, but is
known in the following cases:

I Any X in the case r = 1, known as the Lefschetz
(1, 1)-theorem.

I Any abelian variety X .

I Probably some other cases I dunno.

Thanks for listening!
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