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but with estimating moment functions that are allowed to drift to 0 uniformly over the parameter
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of moment (GMM) estimator exhibit a pattern of nonstandard or even heterogeneous rate of

convergence that materializes by some parameter directions being estimated at a slower rate than
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called two-step GMM estimator – using the inverse of estimating function’s variance as weighting
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of loss functions. Monte Carlo simulations are provided that confirm these results.

Keywords: Generalized method of moments, mixed identification strength, weak identification,

estimation, efficiency bounds, semiparametric models.

JEL classification: C01, C14, C36.

*Economics Department, Concordia University, 1455 de Maisonneuve Blvd. West, H 1155, Montreal, Quebec, Canada,

H3G 1M8. Email: prosper.dovonon@concordia.ca (Corresponding author).
�Department of Mathematics and Statistics, Boston University, 111 Cummington Mall, Boston, USA, MA 02215.

Email: atchade@bu.edu.
�School of Economics and Public Policy, The University of Adelaide, 10 Pulteney Street, Adelaide, Australia, SA

5005. Email: firmin.dokotchatoka@adelaide.edu.au.

1



1 Introduction

Moment equality based inference methods have made possible the investigation of the empirical content

of many economic models. The validity of the standard methods popularized by Hansen (1982) in his

seminal paper relies upon the property of point identification which means that the moment condition

model is solved at a single point. This indeed guarantees consistent estimation by the generalized

method of moment (GMM). However, some empirical evidence suggest that point identification can

fail leading to poor inference.

Failure of identification occurs when multiple (or a continuum of) elements in the parameter space

solve the model. While it is hard in general to decide whether identification fails by screening sample

mean functions, it appears in empirical applications failing identification that evidence tends to be

more pronounced as the sample size gets larger. This feature has led Staiger and Stock (1997) and

Stock and Wright (2000) among others – in their attempt to shed some light on the behaviour of

estimators under identification failure – to consider a framework that allows the moment function to

drift to zero at the rate n−1/2 uniformly over the parameter space as the sample size n grows. In

this framework, point identification is possible at any fixed sample size but in the limit the moment

condition becomes uninformative about the true parameter value. They found out that consistent

estimators are not available for weakly identifying models which are those with this identification

property.

Hahn and Kuersteiner (2002) (in linear IV setting) and Antoine and Renault (2009, 2012) (in

the general GMM context) observe that when moment conditions drift uniformly to zero at a rate

n−δ : 0 ≤ δ < 1/2, consistent estimation is possible and they derive the asymptotic distribution of the

GMM estimator in such settings. This configuration includes the standard identification framework

when δ = 0. We refer to Andrews and Cheng (2012), Caner (2009), Han and McCloskey (2019),

among others, for further account of such models. Antoine and Renault (2012) further consider the

so-called moment condition model with mixed identification strength in which the components of the

estimating moment function are allowed to have specific drifting rates. They establish that the GMM

estimator is consistent and, even though the rate of convergence may vary with some directions in the

parameter space, by suitable rotation and scaling this estimator is asymptotically normal.

Interestingly, while the rotation and rates of convergence depend on the drifting parameters δ’s,

they show that usual inference formula of GMM yield valid inference without the need to know δ’s,

the rotation or the convergence rates. This robustness of GMM inference in models with mixed

identification strength motivates a growing literature on the subject. Antoine and Renault (2020)

recently propose a test for weak identification useful to detect whether a moment condition model

permits consistent inference. Dovonon, Doko and Aguessy (2022) propose moment selection methods

that are consistent even if the best model is one with mixed identification strength.

This paper is concerned with efficient inference in moment condition models with mixed identification

strength. We derive semiparametric efficiency bounds for this class of models. Following a similar

approach to Dovonon and Atchadé (2020), we derive the implicit family of density function induced

by the moment condition model. This family can be written f2(θ, h) where θ ∈ Θ is the initial model

parameter lying in the Euclidean space Rp and h is an infinite dimension parameter lying in the Hilbert
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space L2(Pn), where Pn is the probability distribution of the sample. Pn is allowed to depend on the

sample size to accommodate the possibility of drifting moment functions. We then highlight the local

differentiability properties of f that are useful to obtain efficiency bounds.

We follow Begun, Hall, Huang and Wellner (1983) (hereafter, BHHW), and Dovonon and Atchadé

(2020) by proposing a convolution theorem for the asymptotic distribution of regular estimators of θ0,

the true parameter value of the parametric component θ of the model. Nevertheless, our framework

differs from theirs in two main aspects. First, the reference Hilbert space L2(Pn) is sample size

dependent. Second, the rate of convergence of the existing estimators is sharp only after rotation of

the parameter space and this rate is typically not the same for all components. These key differences

require a refinement of some existing results in our process to derive efficiency bounds.

We show that, the fact that the reference space L2(Pn) depends on n alters the essential notion

of tangent space of f(θn, hn) at the true model f(θ0, h0), where (θn, hn) is a sequence of parameters

converging to (θ0, h0). With Pn fixed, say Pn = P0, the tangent space is characterized by the set of

α ∈ L2(P0) such that

‖
√
n(f(θn, hn)− f(θ0, h0))− α‖L2(P0) → 0 as n → ∞

and this imposes that
∫
αfdP0 = 0. This property is important in the literature to derive the local

asymptotic normality (LAN) property of the log-likelihood ratio (see Lemma 2.1 of BHHW). With

L2(Pn) allowed to vary, we have
∫
αfdPn 6= 0 in general but we show that this quantity converges to

0 and establish the LAN property under this weaker condition. The LAN property in turn has been

essential to derive our convolution theorem for regular estimators.

The second main difference led us to introduce a notion of regular estimator that involves possibly

many rates and a rotation of the parameter space. We argue that efficiency bounds should be associated

to directions of estimation in which convergence rates are sharp for existing estimators. We then define

local parameters θn such that ‖ΛnR
′(θn − θ0) − η‖ → 0 as n → ∞, for some η ∈ Rp, where Λn is a

diagonal matrix containing the rates of convergence and R is a suitable rotation matrix. While the

notion of regularity formally introduced in the paper is tied to a rotation through these sequences

of parameters, we show that any estimator regular for a given rotation is also regular for any other

rotation. In addition, an estimator efficient for one rotation is also efficient for any other rotation.

Our main contribution is the semiparametric efficiency bounds for regular estimators of moment

condition models with mixed identification strength. These bounds are obtained via a convolution

theorem that we establish. We also show that the GMM estimators are regular in the sense mentioned

above. Moreover, any GMM estimator with weighting matrix Ŵ converging in probability to the limit

of the inverse variance of the estimating function evaluated at θ0 has its asymptotic variance that is

equal to the semiparametric efficiency bound. This shows that the standard two-step efficient GMM

estimator is also asymptotically efficient in the setting of models with mixed identification strength.

The rest of the paper is organized as follows. Section 2 introduces the moment condition models

with mixed identification strength and provides the existing results about estimation and inference.

The semiparametric model induced by the moment condition model is introduced in Section 3 which

also presents the main results of the paper. Section 4 shows simulation results that illustrate the

efficiency of the two-step GMM estimator in models with mixed identification strength and Section 5
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concludes. Lengthy proofs are relegated to the Appendix. Throughout the paper, ‖a‖ =
√
a′a if a is

a vector or ‖a‖ =
√

trace(a′a) if a is a matrix, and ‖a‖L2(P ) refers to the L2(P )-norm of a ∈ L2(P ).

2 Moment models with mixed identification strength: existing results

In this section, we introduce the set-up of moment condition models with mixed identification strength

along with some existing results on inference about model parameters.

Let {Yni : i = 1, . . . , n} be a triangular array of independent and identically distributed Rd-valued

random variables with common distribution Pn and described by the population moment condition

EPn (ϕ(Yni, θ0)) :=

∫
ϕ(y, θ0)Pn(dy) = 0, (1)

where ϕ(·, ·) is a known Rk-valued function, θ0 is the parameter value of interest which is unknown

but lies in Θ, a subset of Rp (k ≥ p). ‘EPn(·)’ denotes expectation taken under the distribution Pn of

Yni.

Consistent estimation and inference about the true parameter value θ0 hinge on the properties

of the moment function ρ : θ 7→ ρn(θ) := EPn [ϕ(Yni, θ)]. The moment condition model ρn(θ) = 0

is uninformative about θ0 if all of many elements of Θ solve the model. In this case, consistent

estimation is problematic. In the case where the moment equation is solved over Θ only by θ0,

consistent estimation becomes a possibility. This is the point identification condition which is the

backbone of the GMM inference theory. In the context of triangular array that is under consideration

in this paper, point identification can be expressed as:

lim inf
n→∞

inf
θ∈Θ\N

‖ρn(θ)‖ > 0, for any open neighborhood N of θ0. (2)

This strong/point identification property can be restrictive in models where the moment function

is local to zero over Θ, that is:

EPn [ϕ(Yni, θ)] :=
ρ(θ)

nδ
, ρ(θ) ∈ Rk, δ > 0, (3)

with ρ(θ) = 0 if and only if θ = θ0.

In this case, assuming that ρ(θ) is bounded on Θ, the identification condition (2) fails. Especially,

sup
θ∈Θ

‖ρn(θ)‖ = O(n−δ)

so that in the limit as n grows, the moment condition ρn(θ) = 0 becomes uninformative about θ0.

This identification framework is labelled as weak or nearly weak by Antoine and Renault (2009).

Although under the local-to-zero property (3) the model (1) is uninformative about θ0 in the

limit, it is known that consistent estimation is possible. This depends on the possibility to estimate

EPn(ϕ(Yni, θ)) faster than the latter can vanish over the parameter set. In that respect, it is found

that when 0 ≤ δ < 1/2, consistent estimation is possible while this is ruled out when δ ≥ 1/2.

This connection between δ and the possibility of consistent estimation justifies its consideration as
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identification strength of the related moment restriction. The smaller δ is, the stronger is the associated

restriction.

While (3) considers that all the restrictions have the same strength, one can consider the case where

each moment restriction is allowed to have its own strength leading to the following specification:

EPn (ϕ(Yni, θ)) = L−1
n ρ(θ), (4)

with ρ(θ) = 0 ⇔ θ = θ0, where Ln is a (k, k)-diagonal matrix with j-th diagonal element equal to nδj ,

δj ≥ 0, and n the sample size.

The moment condition model in (4) is referred to as a moment condition model with mixed

identification strength. The restrictions’ strengths δj ’s are typically unknown and this family of models

encompasses the standard model when δj = 0 for all j. Although δ < 1/2 is, in general, essential to

claim consistency, not all the δj ’s in (4) need to be smaller than 1/2 for consistency to be granted. For

instance, if there is a subset of moment restrictions with related δj ’s smaller than 1/2 and such that

the corresponding sub-vector of ρ, say ρ[], is identifying (e.g., ρ[](θ) = 0 ⇔ θ = θ0), then consistent

estimation is possible regardless of the magnitude of the identification strength associated to the other

moment restrictions.

Moment condition models with mixed identification strength have been object of study by Antoine

and Renault (2009, 2012, 2020), Caner (2009), and more recently Dovonon, Doko and Aguessy (2022).

The main purpose of these studies is to propose inference methods in standard moment condition

models that are robust to some forms of mixed identification strength.

This paper is concerned with efficiency bounds for the estimation of θ0 in models with mixed

identification strength. For convenience, we shall focus on a simpler model with Ln including only

two possibly different values of δj so that we have the following partition of the moment function with

0 ≤ δ1 ≤ δ2 < 1/21:

ϕ := (ϕ′
1, ϕ

′
2)

′ ∈ Rk1 × Rk2 , ρ := (ρ′1, ρ
′
2)

′ ∈ Rk1 × Rk2 : EPn(ϕj(Yni, θ)) =
ρj(θ)

nδj
, j = 1, 2, (5)

with [ρ(θ) = 0 ⇔ θ = θ0].

It is worth clarifying that the moment condition model of interest is given by (1) while (5) presents

some auxiliary information about the behaviour of the moment function over the parameter set. Note

that the properties in (5) include for δ1 = δ2 = 0, the standard framework where the model is point

identified and the moment function does not drift to 0 uniformly over Θ. In (5), since EPn(ϕ1(Yni, θ))

vanishes on Θ more slowly than EPn(ϕ2(Yni, θ)), the former defines the strongest set of moment

restrictions if δ1 < δ2.

Examples of moment condition models with mixed identification strength are presented in Dovonon,

Doko and Aguessy (2022), Antoine and Renault (2012), and Han and McCloskey (2019). We present

1The main results derived in this paper stay valid in the more general cases where Ln features more than 2 identification

strengths. They are also valid in cases where the model includes weak and/or uninformative restrictions (δj ≥ 1/2),

so long as enough strong and/or semi-strong restrictions are included to ensure consistent and asymptotically normal

estimation.
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below the linear IV model with nearly weak instruments which also is object of simulation in Section

4.

Example 1 (Linear IV Model with Nearly Weak Instruments). This example relates to linear regression

models with endogenous regressors for which available instrumental variables are possibly weak. Moreover,

the set of instruments may be partitioned in two groups, each with a specific magnitude of partial

correlation with the endogenous regressor(s). As we can se below, such setting leads to a moment

condition model with identification property as in (5).

Specifically, consider the random sample: {wi := (yi, xi, zi) ∈ R×Rp ×Rk : i = 1, . . . , n}. Assume

that:

yi = x′iθ0 + ui, (6)

xi = Π1nz1i +Π2nz2i + vi, (7)

with : E(ziui) = 0, E(zivi) = 0, and, for each n,Rank(E(zix′i)) = p, (8)

where, for j = 1, 2, Πjn = n−δjCj ; Cj ∈ Rp × Rkj ; 0 ≤ δ1 ≤ δ2; zi = (z′1i, z
′
2i)

′; and k1 + k2 = k.

In this representation, δj captures the strength of the instruments zj through the magnitude of its

partial correlation with the endogenous variables. Clearly, θ0 solves the moment restriction:

E(zi(yi − x′iθ)) = 0.

Furthermore, assuming - to simplify - that the sets of instruments z1i and z2i are orthogonal and

letting:

∆11 := E(z1iz′1i); ∆22 := E(z2iz′2i); ρ1(θ) := ∆11C
′
1(θ0 − θ); and ρ2(θ) := ∆22C

′
2(θ0 − θ),

we have:

E(zi(yi − x′iθ)) :=

(
E(z1i(yi − x′iθ))

E(z2i(yi − x′iθ))

)
=

(
n−δ1ρ1(θ)

n−δ2ρ2(θ)

)
.

This shows that the linear IV model in (6)-(7) yields a moment condition model with mixed identification

strength. Thanks to the rank condition in this model specification, we can also verify that

ρ(θ) := (ρ1(θ)
′, ρ2(θ)

′)′ = 0 ⇔ θ = θ0. □

We now review the existing results on inference about the model parameter θ0. We emphasize

those that are useful to us in the next section on the derivation of efficiency bounds. Let the GMM

estimator θ̂n be defined by

θ̂n = argmin
θ∈Θ

ϕ̄n(θ)
′Wnϕ̄n(θ), (9)

where ϕ̄n(θ) := n−1
∑n

i=1 ϕ(Yni, θ) and Wn is a sequence of almost surely symmetric positive definite

matrices converging in probability to W , a symmetric positive definite matrix.

Consistency of θ̂n for θ0 is ensured under Assumption A.1 in Appendix A while Assumptions

A.1, A.2, and A.3 present sufficient conditions for the asymptotic normality of this estimator. The
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asymptotic normality of θ̂n is established by Antoine and Renault (2009, 2012) under the condition

that the Jacobian of ρ(θ) at θ0 is full column rank. The rate of convergence of θ̂n depends on how fast

the strongest moment function EPn(ϕ1(Yni, θ)) vanishes and on the rank s1 of the Jacobian matrix of

ρ1(θ) at θ0. If this rank is smaller than p, the dimension of θ0, then the remaining moment restrictions

determine the rate of convergence of the s2 := p − s1 remaining directions of the parameter. To

introduce this asymptotic distribution, we introduce some notation.

We let s1 = Rank
(
∂ρ1
∂θ′ (θ0)

)
.

� If 0 < s1 < p, define R = (R1
...R2) a (p, p)-matrix such that RR′ = Ip and R2 is a (p, p−s1)-matrix

with columns spanning the null space of ∂ρ1
∂θ′ (θ0) and define:

J =

(
∂ρ1
∂θ′ (θ0)R1 0

0 ∂ρ2
∂θ′ (θ0)R2

)
and Λn =

(
n

1
2
−δ1Is1 0

0 n
1
2
−δ2Is2

)
. (10)

� If s1 = p, set

J =

(
0
...
∂ρ′2
∂θ

(θ0)

)′
, Λn = n

1
2
−δ1Ip, and R = Ip.

� If s1 = 0, set

J =

(
∂ρ′1
∂θ

(θ0)
... 0

)′
, Λn = n

1
2
−δ2Ip, and R = Ip.

� Finally, if δ1 = δ2 = δ, set

J =
∂ρ(θ0)

∂θ′
, Λn = n

1
2
−δIp, and R = Ip.

Under Assumptions A.1, A.2 and A.3 in Appendix A, we can claim, following Antoine and Renault

(2009, 2012) that, under Pn,

ΛnR
−1(θ̂n − θ0)

d−→ N(0,Ω(W )), with Ω(W ) := (J ′WJ)−1J ′WΣWJ(J ′WJ)−1, (11)

where Σ is the asymptotic variance of
√
nϕ̄n(θ0), under Pn.

As is standard in GMM theory, the asymptotic distribution of the GMM estimator depends on the

probability limit W of the weighting matrix. Antoine and Renault (2009) show that the asymptotic

variance is minimal for the choice W = Σ−1. They show (see p.S151) how feasible estimators with

asymptotic variance Ω(Σ−1) = (J ′Σ−1J)−1 can be obtained. Interestingly, the proposed procedure is

the same as that of the two-step GMM estimator in standard models. They also show that standard

formulas for inference based on the two-step GMM are valid in the context of moment condition models

with mixed identification strength. This highlight some robustness of the two-step GMM inference

procedure to the identification pattern in (5) under the conditions in Assumptions A.1, A.2 and A.3.

There is no need to know s1, R, nor the rates of convergence in Λn to build asymptotically valid

inference about θ0 using the two-step GMM estimator.
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In the next section, we derive the asymptotic semiparametric efficiency bound for the estimation

of θ0 in the moment condition model (1) under the mixed identification strength property in (5).

Our results indicate that the minimum variance Ω(Σ−1) corresponds to the semiparametric efficiency

variance-bound for estimators that are regular in a sense that we will make precise.

3 Efficiency bound

This section derives the asymptotic efficiency bound for the estimation of θ0 in the moment condition

model (1) characterized by the mixed identification strength property in (5). For this purpose, we rely

on the technique introduced by Dovonon and Atchadé (2020). Their approach consists in: obtaining

the semiparametric family implicitly induced by (1) in the form {f2(θ, h, ·) : (θ, h) ∈ V}, where

f2(θ, h, ·) is the probability density function of Y with respect to a reference measure, and indexed by

θ in Θ and h lying in a Hilbert space. This semiparametric model is then used to obtain an efficiency

bound in the direction of θ by relying on a similar approach to Begun, Hall, Huang and Wellner (1983).

3.1 (Semi)parametric representation of moment condition models

Consider again the row-wise independent and identically distributed triangular array {Yn1, . . . , Ynn}
of Rd-valued random vectors and common distribution Pn. Let L2(Pn) denote L2(Rd,B(Rd), Pn),

a Hilbert space of real-valued functions on Rd. Following Dovonon and Atchadé (2020), we next

characterize the semiparametric family induced by the moment condition (1) in the form of density

functions with respect to Pn. This allows to handle random variables with finite, discrete or continuous

support in a unified manner. Our approach contrasts with Chamberlain (1987) who mainly considers

random variables with finite support and provides extensions to continuous variables through an

approximation theory. The main difference between the current set-up and Dovonon and Atchadé

(2020) is that the reference measure Pn in the former depends on n to accommodate triangular arrays,

while it is fixed in the latter.

We let ∇(j)
θ ϕ(y, θ) denote the j-th order differential of the map θ 7→ ϕ(y, θ) evaluated at θ with

the convention that ∇(0)
θ ϕ(y, θ) = ϕ(y, θ) and we make the following assumption.

Assumption 1

(i) There exists a neighbourhood Θ of θ0, a L2(Pn)-neighbourhood N of fn,0 ≡ 1, and a finite

constant C > 0, such that for Pn-almost all y ∈ Rd, θ 7→ ϕ(y, θ) is r-times continuously

differentiable on Θ and, for all f ∈ N ,∫
sup
θ∈Θ

∥∥∥∇(j)
θ ϕ(y, θ)

∥∥∥ f2(y)Pn(dy) ≤ C,

for j = 0, . . . , r.

(ii) The matrix Σn =

∫
ϕ(y, θ0)ϕ(y, θ0)

′Pn(dy) is positive definite.
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Assumption 1 imposes some uniform dominance condition on ∇(j)
θ ϕ(y, θ) to ensure that this

function is well-behaved. Note also that fn,0(y) = 1 is the density with respect to Pn of Yni when the

latter is distributed as Pn. This assumption imposes, in particular, that the relevant functions are

integrable with respect to any density function in a certain neighbourhood of fn,0. The second part

of the assumption is quite standard.

Towards the introduction of the implicit model, further notation is needed. We equip L2(Pn) with

the inner product 〈u, v〉 =
∫
u(y)v(y)Pn(dy) := EPn (u(Y )v(Y )). More generally, for u : Rd → Rs×r

and v : Rd → Rq×r, 〈u, v〉 = EPn (u(Y )v(Y )′), where the expectation of any matrix is understood to

be component-wise.

Let φ(y) = (φ1(y), . . . , φk(y))
′ = Σ

−1/2
n ϕ(y, θ0), and φk+1(y) = 1. For all θ ∈ Θ, let φθ(y) =

Σ
−1/2
n ϕ(y, θ). Further, let φ̄ = (1, φ′)′ = (φk+1, φ

′)′ and φ̄θ = (1, φ′
θ)

′ = (φk+1, φ
′
θ)

′. Thanks to the

moment condition (1), the elements of φ̄ are orthonormal elements of L2(Pn). By separability of

L2(Pn), φ̄ can be extended to have an orthonormal basis {φj : j ≥ 1} of L2(Pn) and let E denote the

closed span of the subspace L2(Pn) generated by {φj : j ≥ k+2}. Note that the elements of the basis

{φj : j ≥ 1} ultimately depend on n but we do not stress this in the notation for simplicity.

We introduce the map M defined on Θ × E × L2(Pn) taking values in L2(Pn) such that for any

(θ, h, f) ∈ Θ× E × L2(Pn),

M(θ, h, f) :=
1

2

〈
f2, φθ

〉
φ+

1

2

(∫
f2(y)Pn(dy)− 1

)
φk+1 +

∞∑
j=k+2

〈φj , f − h〉φj . (12)

By construction, the set of solutions of the equation M(θ, h, f) = 0 collects all the combinations

(θ, f) ∈ Θ × L2(Pn) consistent with the moment condition model. That is, all (θ, f) such that∫
ϕ(y, θ)f2(y)Pn(dy) = 0. To see this, note that, for any (θ, h, f), M(θ, h, f) = 0 if and only if∫

ϕ(y, θ)f2(y)Pn(dy) = 0,

∫
f2(y)Pn(dy) = 1, and 〈φj , f − h〉 = 0, ∀j ≥ k + 2.

This means that the triplets (θ, h, f) that set M to zero are those in which f2 is a density function with

respect to Pn and θ is a solution to the moment condition model with Y having f2 as density function

with respect to Pn. Moreover, h is the projection of f on the remaining directions {φj : j ≥ k + 2} of

the considered basis. Conversely, if (θ, f) ∈ Θ × L2(Pn) is such that f2(y) is a density function with

respect to Pn and
∫
ϕ(y, θ)f2(y)Pn(dy) = 0, then M(θ, projE(f), f) = 0, where projE is the orthogonal

projection operator on the subspace E .
Letting h0 = 0E , we have M(θ0, h0, fn,0) = 0. Lemma 2.1 of Dovonon and Atchadé (2020) shows

that under Assumption 1, M is r-times continuously differentiable and for any g ∈ L2(Pn),

∇fM(θ0, h0, fn,0) · g = 〈g, φ̄〉 φ̄+
∑

j≥q+2

〈ϕj , g〉ϕj = g.

It follows that ∇fM(θ0, h0, fn,0) is an isomorphism of L2(Pn) and the implicit function theorem allows

us to claim that there exists a neighbourhood V of (θ0, h0), a neighbourhood U of fn,0 and a r-times

continuously differentiable function f : V → U such that f(θ0, h0) = fn,0 and for all (θ, h) ∈ V ,

M(θ, h, f(θ, h)) = 0.
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The family of functions {f(θ, h, ·) : (θ, h) ∈ V} defines the semiparametric model induced by the

moment condition (1). This family is further characterized by the following proposition which follows

readily from Lemma 2.2 of Dovonon and Atchadé (2020).

Proposition 3.1 If θ0 satisfies (1), and Assumption 1 holds with r = 2, then there exists a neighborhood

V of (θ0, h0) in Rp × E , where h0 denotes the zero element of E, a family {f(θ, h, ·) : (θ, h) ∈ V} of

measurable functions on Rk, such that f(θ0, h0, ·) = fn,0 := 1, and for all (θ, h) ∈ V,∫
ϕ(y, θ)f2(θ, h, y)Pn(dy) = 0,

∫
f2(θ, h, y)Pn(dy) = 1.

Furthermore, the map (θ, h) 7→ f(θ, h, ·) is differentiable and its first partial derivatives are given by

∀h1 ∈ E , ∇hf(θ, h, ·) · h1 = h1 − 〈fθ,hh1, φ̄θ〉 〈fθ,hφ̄, φ̄θ〉−1 φ̄,

and

∀w ∈ Rp, ∇θf(θ, h, ·) · w = −1

2
w′ 〈f2

θ,h,∇θφ̄θ

〉
〈fθ,hφ̄, φ̄θ〉−1 φ̄,

For j = 1, . . . , p,
∂

∂θj
f(θ, h, ·) = −1

2

〈
f2
θ,h,

∂

∂θj
φ̄θ

〉
〈fθ,hφ̄, φ̄θ〉−1φ̄.

In particular, ∇θf(θ, h, ·) evaluated at (θ0, h0) is ∇θf(θ0, h0, ·) = −1
2Γ

′
nΣ

−1/2
n φ, where

Γn ≡ EPn (∇θϕ(Y, θ0)) .

with fθ,h(·) standing for f(θ, h, ·). Furthermore, for i, k = 1. . . . , p,

∂2

∂θk∂θj
f(θ, h, ·) = −1

2

〈
f2
θ,h,

∂2

∂θk∂θj
φ̄θ

〉
〈fθ,hφ̄, φ̄θ〉−1φ̄

−
〈
f2
θ,h,

∂

∂θk
φ̄θ

〉
〈fθ,hφ̄, φ̄θ〉−1

〈
fθ,hφ̄,

∂

∂θj
φ̄θ

〉
〈fθ,hφ̄, φ̄θ〉−1φ̄

+
1

2

〈
f2
θ,h,

∂

∂θj
φ̄θ

〉
〈fθ,hφ̄, φ̄θ〉−1

〈
fθ,hφ̄,

∂

∂θk
φ̄θ

〉
〈fθ,hφ̄, φ̄θ〉−1φ̄

+
1

2

〈
f2
θ,h,

∂

∂θj
φ̄θ

〉
〈fθ,hφ̄, φ̄θ〉−1

〈
φ̄

∂

∂θk
fθ,h, φ̄θ

〉
〈fθ,hφ̄, φ̄θ〉−1φ̄. (13)

3.2 Efficiency bounds for the (semi)parametric representation

To obtain semiparametric efficiency bounds for the estimation of θ0 in model (1), we focus on the

family of semiparametric density functions {f(θ, h, ·) : (θ, h) ∈ V} induced by the moment condition

model as established by Proposition 3.1. Our goal from this point consists in obtaining a bound for

the parametric component θ in this induced semiparametric model and then show that this bound is

sharp.

Of interest to us is the approach of BHHW (1983) to derive efficiency bounds for parameters of

semiparametric models represented by a family of density functions depending on both a finite and

an infinite dimension parameters. Their consists in collecting all the elements α ∈ L2(µ) – where µ is

10



a dominating measure with respect to which the family of model densities are expressed – and all the

sequences θn, hn converging to θ0 and h0 such that:

‖
√
n(f(θn, hn)− fn,0)− α‖L2(µ) −→ 0, as n → ∞.

Such α’s necessarily belong to the tangent set of f(θn, hn) at (θ0, h0) so that
∫
αfdµ = 0. This property

is used to establish that the log-likelihood ratio of the sample under the distributions f(θn, hn) and fn,0

is asymptotically normal. Then, this local asymptotic normality (LAN) property of the log-likelihood

is used to derive efficiency bounds for a class of regular estimators.

Although our semiparametric model of interest fits with that analysed by BHHW, a key difference

resides in the fact that our model involves density functions with respect to a dominating measure Pn

that varies with the sample size. We first re-examine the result of BHHW in light of this difference and

we propose a refined version of the LAN property established by their Lemma 2.1 that accommodates

our settings.

We propose the extension in a context more general than needed for us. Let (X,C ) be a measurable

space and µn, n ≥ 0 a sequence of sigma-finite measures on (X,C ). Let f2
n, n ≥ 0 and g2n, n ≥ 0 be

two sequences of density functions on X with respect to µn. Let L2(µn) denote L2(X,C , µn). By

definition, fn, gn ∈ L2(µn) and ‖fn‖µn = 1 and ‖gn‖µn = 1; where ‖h‖2µ =
∫
h2dµ. Let αn ∈ L2(µn)

such that a2 = limn→∞ ‖αn‖2µn
< ∞.

Let Xn1, . . . , Xnn be a row-wise independent and identically distributed triangular array of X-

valued random variables. Define the likelihood ratio Ln by:

Ln = log

{
n∏

i=1

g2n(Xni)

/
n∏

i=1

f2
n(Xni)

}
. (14)

We have the following result:

Theorem 3.2 (Local asymptotic normality.) If gn and fn defined above are such that, for αn ∈
L2(µn),

‖
√
n(gn − fn)− αn‖µn → 0, as n → ∞, (15)

then:

(i) νn :=

∫
fnαndµn → 0 as n → ∞.

(ii) If in addition, ‖αn‖2µn
→ a2 < ∞ as n → ∞, then, for every ϵ > 0,

Pfn

(∣∣∣∣∣Ln − 2n−1/2
n∑

i=1

[αn(Xni)/fn(Xni)− νn] + σ2/2

∣∣∣∣∣ > ϵ

)
→ 0

as n → ∞, where, for any µ-measurable set A, Pf (A) =
∫
A f2dµ, and σ2 = 4a2. Furthermore,

under Pfn,

Ln
d−→ N(−σ2/2, σ2)

as n → ∞ and the sequences
{∏n

i=1 g
2
n(xi)

}
and

{∏n
i=1 f

2
n(xi)

}
are contiguous.

11



Proof: See Appendix. □

This result shows that in our context, if αn ∈ L2(Pn) is such that

‖
√
n(f(θn, hn)− fn,0)− αn‖L2(Pn) → 0, (16)

we do not necessarily have
∫
αnfn,0dPn = 0 but instead

lim
n→∞

∫
αnfn,0dPn → 0

and the LAN property of in Part (ii) can be obtained from this asymptotic form of tangent space. We

shall rely on this refinement to establish the main results in this paper.

Perhaps, at this point, it is worth addressing the fact that, for the same sequence (f(θn, hn), fn,0),

many sequences αn of elements of L2(Pn) may satisfy (16). We observe, thanks to the triangle

inequality, that any pair of sequences α1,n and α2,n that satisfy (16) are such that

∣∣‖α1,n‖L2(Pn) − ‖α2,n‖L2(Pn)

∣∣ ≤ ‖α1,n − α2,n‖L2(Pn)

≤ ‖
√
n(f(θn, hn)− fn,0)− α1,n‖L2(Pn) + ‖

√
n(f(θn, hn)− fn,0)− α2,n‖L2(Pn) → 0.

As a result, ‖α1,n‖L2(Pn) and ‖α2,n‖L2(Pn) have the same limit inferior and the same limit superior.

This property is of particular interest since αn is related to the local asymptotic normal distribution

in Theorem 3.2 only through the limit of its L2(Pn)-norm if such a limit exists. Clearly, the existence

of the limit for one solution of (16) implies that any other solution has the same limit. The practical

consequence of this is that we can focus on any solution of (16) to develop our asymptotic efficiency

theory.

Characterization of the asymptotic tangent space. Let us now give a more specific sense to

gn(·) := f(θn, hn, ·) by determining the set of all sequences of {(θn, hn)}n of interest and the associated

αn that guarantee (16). For this, we need to make a choice about the rate of convergence of (θn, hn)

to (θ0, h0). If all the components of θ0 were estimable at the same rate, rn, the standard approach

consists in using that rate to characterize the local parameters (θn, hn). This is the case in the theory

of BHHW where rn =
√
n. However, the asymptotic distribution in (11) shows that, except for the

extreme cases of s1 = 0 and s1 = p, standard estimators of θ0 do not converge at the same rate in all

directions.

If we were to determine the local sequences θn based directly on the rate of convergence of the

GMM estimator, it appears that information related to the directions estimable at a faster rate would

be lost and, thereby compromising efficiency. The results in Section 2 on GMM estimation provide an

intuition about this claim. The rate of convergence of this estimator is n1/2−δ2 which is related to the

directions estimable at the slowest rate. From (11), we can claim that, under Pn,

n1/2−δ2(θ̂n − θ0)
d−→ N

(
0, R2Ω(W )22R

′
2

)
,

12



where Ω(W )22 is the lower-right (s2, s2)-sub-matrix of Ω(W ). This is a degenerated Gaussian limit

that accounts only for a subset of estimation directions by omitting the faster ones.

Because of this, it makes more sense to focus on the rotation of the parameter that disentangle the

estimation directions with sharp rates. As established by (11), the first s1 components of ν0 = R−1θ0

are estimable at rate n
1
2
−δ1 while the remaining s2 are at rate n

1
2
−δ2 and those rates are sharp. We

shall consider this fact and explore sequences (θn) such that:

ΛnR
−1(θn − θ0)− η → 0, (17)

as n → ∞ for some η ∈ Rp, and R a rotation matrix satisfying the definition in (10).

Effectively, efficient bounds for θ0 are explored in the case 0 < s1 < p through its linear transformation

ν0 = R−1θ0. We will say that an estimator θ̃ of θ0 is asymptotically efficient if there is a rotation R

as defined in (10) such that R−1θ̃ is an asymptotically efficient estimator of ν0,R := R−1θ0. We shall

see that if θ̃ is asymptotically efficient for a specific rotation, it is also asymptotically efficient for any

other rotation consistent with that definition.

Remark 1 It is worth mentioning that the set of sequences (θn) determined by (17) is the same

regardless of the choice of rotation matrix R. To see this, note that if R is another rotation matrix

consistent with the definition (10) (i.e., R = (R1|R2) such that RR′ = Ip and R2’s columns span the

null space of ∂ρ1(θ0)/∂θ
′), we have:

R = RA, A =

(
A1 0

0 A2

)
, Aj is (sj , sj)-matrix such that A′

jAj = Isj , (j = 1, 2).

Hence, it is not hard to establish that, if (θn) satisfies (17) with the rotation matrix R, it also satisfies

(17) with the rotation matrix R and η replaced by A′η.

This remark shows that the choice of rotation matrix is immaterial in the collection of local

sequences (θn) given by (17). We reiterate that the discussion on rotation is relevant only in models

where 0 < s1 < p. Note that the relevant sequences (θn) are such that for some η ∈ Rp,

if s1 = p, ΛnR
−1(θn − θ0)− η = n1/2−δ1(θn − θ0)− η → 0, and

if s1 = 0, ΛnR
−1(θn − θ0)− η = n1/2−δ2(θn − θ0)− η → 0 (18)

so that no rotation is explicitly involved. Our aim is to derive an efficiency bound for the estimation

of θ0 that is valid whether s1 = 0, p or 0 < s1 < p. For this reason, we will consider sequences defined

by (17) with the understanding that this definition collapses to (18) in the extreme cases.

Regarding the non-parametric component of the model, we consider (hn) such that

‖
√
n(hn − h0)− β‖L2(Pn) → 0 (19)

as n → ∞, for some β ∈ L2(Pn). The parametric rate in the definition of (hn) may seem arbitrary

but the consequence of this choice is that the set of sequences (hn) thus defined is small and may lead

to irrelevant bounds. We shall see later that this set is actually the right one as the resulting bound

13



will be proved sharp.

Following similar lines to BHHW, we collect all these sequences in specific sets by letting Θ(θ0, η)

denote the set of all sequences (θn) satisfying (17) and Θ(θ0) =
⋃

η∈Rp Θ(θ0, η). Similarly, C(h0, β)
denotes the collection of all sequences (hn) such that (19) holds and C(h0) =

⋃
β∈B(h0)

C(h0, β), where

B(h0) = {β ∈ E such that (19) holds for some sequence (hn) of elements of E} .

The sequences of experiments that we shall consider are:

g2n(·) := f2(θn, hn, ·), with {(θn), (hn)} ∈ Θ(θ0)× C(h0). (20)

From Proposition 3.1, (θ, h) 7→ f(θ, h) is twice continuously Fréchet differentiable and this is sufficient

to claim that it is Hellinger differentiable at (θ0, h0). Actually, by the Taylor’s formula, there exists a

function rn,θ0 ∈ L2(Pn) and a bounded linear operator An : L2(Pn) → L2(Pn) such that:

‖gn − fn,0 − rn,θ0 · (θn − θ0)−An · (hn − h0)‖L2(Pn) = ‖R2(θn, hn, ·)‖L2(Pn), (21)

where the norm of the Lagrange remainder R2(θn, hn, ·) satisfies:

‖R2(θn, hn, ·)‖L2(Pn) ≤

∥∥∥∥∥∥12
p∑

j,k=1

∂2

∂θj∂θk
f(θ̄, h̄, ·)(θn,j − θ0,j)(θn,k − θ0,k)

+O
(
‖θn − θ0‖‖hn − h0‖L2(Pn)

)
+O

(
‖hn − h0‖2L2(Pn)

)∥∥∥
L2(Pn)

.

Thus,
√
n‖R2(θn, hn, ·)‖L2(Pn) ≤

√
n

2

p∑
j,k=1

∥∥∥∥ ∂2

∂θj∂θk
f(θ̄, h̄, ·)

∥∥∥∥
L2(Pn)

· ‖θn − θ0‖2 + o(1), (22)

with θ̄ = tθn + (1− t)θ0 and h̄ = thn + (1− t)h0; t ∈ (0, 1).

Recall that ‖hn−h0‖L2(Pn) = O(n−1/2) and ‖θn−θ0‖ = O(n−1/2+δ2) and, although the identification

properties allow for small order of magnitude, the second-order differentiability assumption ensures

that: ‖∂2f(θ̄, h̄, ·)/∂θj∂θk‖L2(Pn) = O(1).

Hence, if δ2 < 1/4,
√
n‖R2(θn, hn, ·)‖L2(Pn) = o(1). (23)

The magnitude of this remainder is obtained in the case δ2 ≥ 1/4 by relying on Lemma B.1 in

Appendix B which shows under some regularity conditions that∥∥∥∥ ∂2

∂θj∂θk
f(θ̄, h̄, ·)

∥∥∥∥
L2(Pn)

= O(n−δ1 ∨ n−1+2δ2). (24)

The set on which (23) holds is given by (δ1, δ2) satisfying

[−δ1 ≤ −1 + 2δ2; δ2 < 3/8; δ2 ≥ 1/4; δ2 ≥ δ1]
⋃

[−δ1 > −1 + 2δ2; δ2 < 1/4 + δ1/2; δ2 ≥ 1/4; δ2 ≥ δ1.]
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This amounts to (δ1, δ2) satisfying:

C :=

[
δ1 ≤ δ2 <

1

4
+

δ1
2

and
1

4
≤ δ2 <

3

8

]
.

Let the set ∆ be defined by:

∆ := {(δ1, δ2) ∈ [0, 1/2[×[0, 1/2[ such that (δ1 ≤ δ2 < 1/4) ∨ C} . (25)

For any (δ1, δ2) ∈ ∆, the discussion above implies that

‖
√
n(gn − fn)−

√
n(rn,θ0 · (θn − θ0) +An · (hn − h0))‖L2(Pn) → 0, as n → ∞. (26)

Therefore, we can define αn satisfying (16) as any element of L2(Pn) such that:

‖αn −
√
n (rn,θ0 · (θn − θ0) +An · (hn − h0)) ‖L2(Pn) → 0 as n → ∞.

For the rest of our analysis, more relevant than the sequence {(θn), (hn)} ∈ Θ(θ0)× C(h0) itself is its
scaled limit which is some (η, β) ∈ Rp ×B(h0). The following proposition characterizes αn in terms of

η and β.

Proposition 3.3 Let R, J , and Λn be defined as in (10) with (δ1, δ2) ∈ ∆. Assume that: θ0 satisfies

(1); the estimating function ϕ(·, ·) satisfies (5); ∂ρ(θ0)/∂θ
′ is full column rank; Assumptions 1 and

B.1 hold with r = 2. Then, with {(θn), (hn)} ∈ Θ(θ0)× C(θ0), the set H0 of αn’s such that (16) holds

is essentially given by

H0 =

{
αn ∈ L2(Pn) : αn = −1

2
η′J ′Σ−1/2

n φ+An · β, η ∈ Rp, β ∈ B(h0)
}
,

where φ(·) = Σ
−1/2
n ϕ(·, θ0) and An = ∇hf(θ0, h0, ·) is given by Proposition 3.1.

In the statement of Proposition 3.3, by “essentially,” we mean that any other solution (α1,n) of

(16) satisfies ‖αn − α1,n‖L2(Pn) = o(1) for some αn ∈ H0. See comment following Theorem 3.2.

Proof: See Appendix. □

Remark 2 As it is commonly done, thanks to Proposition 3.3, we can index the sequence g2n =

f2(θn, hn) by its associated αn ∈ H0, i.e. αn ∈ H0 such that (16) holds or even by the parameter

(η, β) ∈ Rp × B(h0).

The efficiency bounds that we derive in the next section apply to (δ1, δ2) ∈ ∆. Note that asymptotic

normality of GMM estimators has been established under the condition that 0 ≤ δ1 ≤ δ2 ≤ 1/4+δ1/2 <

1/2 which is a bit larger than ∆. This result is obtained by exploiting the local properties of the

moment condition model at (θ0, Pn) – including the null space and the range of parts of the Jacobian

matrix which are encapsulated in the definition of the rotation matrix R. Our results would hold for

the extra combination of identification strengths if the range and null space of interest are fixed for

all (θ, P̃n) consistent with the model in a neighbourhood of (θ0, Pn). We do not see an obvious reason
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making such an assumption realistic in general. Nevertheless, simulations in Section 4 show that the

bounds derived are valid even for combination of (δ1, δ2) outside ∆.

Convolution results. Under the sequence of experiments g2n as defined in (20) and the reference

distribution f2
n,0, the log-likelihood ratio Ln has the expression given in (14) with Xni replaced by Yni

and fn by fn,0. The LAN property of g2n at (θ0, h0) follows from Theorem 3.2. Specifically, for any

αn ∈ H0,

Ln
d→ N(−σ2/2, σ2),

under f2
n,0 as n → ∞, where σ2 = 4 limn→∞ ‖α2

n‖L2(Pn) if this limit exists.

This LAN property is key to the convolution result that we introduce next. We rule out cases of

super-efficient estimators, by restricting ourselves to regular estimators of θ0. The definition of regular

estimator that we rely on is different from the standard one. A meaningful definition shall reflect the

heterogeneity of convergence rates of standard estimators as obtained in (11). Our definition below

accounts for the directions in which information about θ0 has the potential to be maximum.

Definition 1 (Λn-Regularity) An estimator θ̃n of θ0 is Λn-regular at f2
n,0 if, for every sequence

gn(·) := f(θn, hn, ·) with {(θn), (hn)} ∈ Θ(θ0)×C(h0), ΛnR
−1(θ̃n− θn) converges in distribution under

g2n and f2
n,0 = f2(θ0, h0) to the same limit S.

Remark 3 Note that S in this definition may depend on R. However, the Λn-regularity property of

a sequence of estimators θ̃n is not associated to a particular rotation as the definition may suggest.

Indeed, we can show that if Definition 1 holds for θ̃n, it continue to hold if R is replaced by a different

rotation matrix, say R = RA (see Remark 1). In this case, the limiting distribution is A′S instead of

S.

To introduce our main result, we observe that, since h0 = 0, B(h0) is a closed subspace of L2(Pn)

hence, αn’s in Proposition 3.3 can also be written

η′
(
J ′Σ−1/2

n φ−An · b
)
,

with η ∈ Rp, b = (β1, . . . , βp) ∈ B(h0)p and An · b := (An · β1, . . . , An · βp)′.

LetAn·b∗
n, with b∗

n ∈ B(h0)p, be the orthogonal projection of −1
2J

′Σ
−1/2
n φ onto {An · b : b ∈ B(h0)p}

and define

sn = −1

2
J ′Σ−1/2

n φ−An · b∗
n and I∗ = 4 lim

n→∞
〈sn, sn〉,

if this limit exists; sn is the efficient score in the direction of θ. We have the following result.

Theorem 3.4 Let θ̃n be an estimator of θ0, Λn-regular at f2
n,0 with limit distribution S. If the

conclusion of Proposition 3.3 holds and I∗ exists and is nonsingular, then:

S
d
= Z + U,

where Z ∼ N(0, I−1
∗ ) and is independent of the random vector U .
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Proof: See Appendix. □

Theorem 3.4 states that any regular estimator of θ0 has an asymptotic variance that is at least as

large as I−1
∗ . The next corollary gives a more explicit expression of this bound in terms of moments

of the estimating function ϕ(Y, θ).

Corollary 3.5 Let R, J , and Λn be defined as in (10) with (δ1, δ2) ∈ ∆. Assume that: θ0 satisfies

(1); the estimating function ϕ(·, ·) satisfies (5); ∂ρ(θ0)/∂θ
′ is full column rank; Assumptions 1 and

B.1 hold with r = 2; and, as n → ∞, Σn := EPn [ϕ(Y, θ0)ϕ(Y, θ0)
′] → Σ a symmetric positive definite

matrix.

If θ̃n is Λn-regular estimator of θ0 with limit distribution S, then

S
d
= Z + U, (27)

where Z ∼ N(0, I−1
∗ ), with I∗ = J ′Σ−1J and Z independent of U .

Proof: See Appendix. □

This result sets Lb := I−1
∗ =

(
J ′Σ−1J

)−1
as the lowest asymptotic variance reachable by any

regular estimator of θ0. Note that this result holds regardless of the value of s1 = Rank(∂ρ1(θ0)/∂θ
′).

If s1 = 0 or p, then

J =
∂ρ(θ0)

∂θ′
and Lb =

(
∂ρ(θ0)

′

∂θ
Σ−1∂ρ(θ0)

∂θ′

)−1

.

In the case where 0 < s1 < p, J is given by (10) and the bound L is as given above. This is effectively

the efficiency bound for the estimation of ν0 = R−1θ0. However, this result seems to channel more

information than that. From the previous discussion, any estimator θ̃ of θ0 that is Λn-regular for one

choice of rotation stays so for any other rotation defined by (10). In addition, the convolution result

above shows that being efficient in terms of one rotation implies efficiency in any other rotation. This

provides some rational to the notion that, when 0 < s1 < p, a regular and efficient estimator θ̃ is

one that is Λn-regular for one choice of rotation and reaches the asymptotic semiparametric efficiency

bound for that rotation.

One additional point that is worth mentioning is that Dovonon, Doko Tchatoka and Aguessy (2022)

have established that det[(J ′Σ−1J)−1] is rotation invariant. Also, the asymptotic variance of a regular

estimator θ̃ is given by

I−1
∗ + V, with V = V ar(U).

We know that det(I−1
∗ + V ) ≥ det(I−1

∗ ), with equality if and only if V = 0.2 We can therefore

relate efficiency of any regular estimator θ̃ to the fact that the determinant of its asymptotic variance

is equal to det(I−1
∗ ) which is rotation invariant. We recall that the determinant of the variance-

covariance matrix, also known as generalized variance is introduced by Wilks (1932) as the scalar

measure of dispersion in a multivariate statistical population.

2See Magnus and Neudecker (2002, Th. 22, p.21).
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Finally, in relation to GMM estimation, recall that, from Equation (11), the GMM estimator

θ̂n,Σ−1 using the weighting matrix Wn with the inverse of Σ = limn→∞ V arPn(ϕ(Yni, θ0)) as limit, is

asymptotically distributed N(0, (J ′Σ−1J)−1). This implies that the bound derived by Corollary 3.5

is sharp and θ̂n,Σ−1 is asymptotically efficient. Note that this choice of weighting matrix is known to

be efficient in the standard GMM estimation setting (see Chamberlain, 1987) and also in singularity

settings of first-order local identification failure (see Dovonon and Atchadé, 2020).

Antoine and Renault (2012) have shown that θ̂n,Σ−1 has the smallest asymptotic variance in the

family of GMM estimators. As a result, no other choice of weighting matrix can lead to an estimator

that improves over this bound. We will show in the next section that GMM estimators are regular

and this would provide further confirmation of their finding.

Along with the convolution result in Corollary 3.5, we also derive an asymptotic minimax optimality

result for a general class of loss functions. Let ℓ : Rp → R+ be a loss function that is subconvex, i.e.,

{x : ℓ(x) ≤ a} is closed, convex and symmetric for every a ≥ 0. We have the following.

Theorem 3.6 Under the same conditions as in Corollary 3.5, if ℓ is subconvex and θ̃n is a measurable

sequence of estimator of θ0, then

sup
I⊂H0

lim inf
n→∞

sup
αn∈I

Egn,αn
ℓ
(
ΛnR

−1
(
θ̃n − θn

))
≥ Eℓ(Z),

where Z is defined as in Corollary 3.5 and g2n,αn
is a sequence f2(θn, hn, ·) such that (16) holds. The

first supremum is taken over all finite subset I of H0.

Using Corollary 3.5, the proof of this result follows readily by the application of Theorem 3.11.5

of van der Vaart and Wellner (1996), page 417.

Regularity of the GMM estimator. We now establish that the GMM estimator is Λn-regular

at fn,0. Consider the GMM estimator, θ̂n, defined by (9) with a sequence of weighting matrix Wn

converging in probability under Pn to W , a symmetric positive definite matrix. Equation (11) gives

the asymptotic distribution of θ̂n, under Pn:

ΛnR
−1(θ̂n − θ0)

d−→ N(0,Ω(W ))

which is valid under (1), (5) and Assumptions A.1-A.3. To claim regularity for θ̂n, we will establish

that

ΛnR
−1(θ̂n − θn)

d−→ N(0,Ω(W )), under g2n := f2(θn, hn),

with ΛnR
−1(θn − θ0)− η −→ 0 and

√
n(hn − h0)− β −→ 0 in L2(Pn) for some η ∈ Rp and β ∈ E .

We will use the fact that the measures {
∏n

i=1 g
2
n(yi)} and {

∏n
i=1 f

2
n,0(yi)} are contiguous, see

Theorem 3.2. That is, for each sequence of sets Fn measurable on the probability space (Rd × · · · ×
Rd,B(Rd × · · · × Rd),Pn := Pn ⊗ · · · ⊗ Pn), Pn(Fn) → 0, as n → ∞ implies that Qn(Fn) → 0,

where Qn has density
∏n

i=1 g
2
n(yi) with respect to Pn. (The products in the definition are n-fold.)

The consequence of contiguity is that any sequence of random variable of order oP (1) (respectively

OP (1)) under Pn are also oP (1) (respectively OP (1)) under g2n. We establish regularity of GMM by

strengthening Assumptions A.1-A.3 by the following assumption:
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Assumption 2 (a) There exists a neighbourhood N of θ0 and a constant C > 0 such that, for all g

in a L2(Pn)-neighbourhood of fn,0,

sup
θ∈N

∫
‖ϕ(y, θ)‖4g2(y)dPn(y) ≤ C.

(b) For any non-random sequence (θn) such that θn → θ0, as n → ∞,
∫
ϕ(y, θn)ϕ(y, θn)

′dPn → Σ,

with Σ := limn→∞ V arPn(ϕ(Yni, θ0)).

This assumption is useful to establish that
√
nϕ̄n(θn) converges in distribution to N(0,Σ), under g2n.

Part (a) requires fourth moments for the estimating function ϕ(y, θ) under distributions near the

reference distribution Pn. We can interpret Part (b) as a continuity assumption. If Pn were fixed in n,

it would follow from the continuity of θ 7→ ϕ(y, θ) for Pn-almost all y and some dominance condition.

Proposition 3.7 Assume θ0 satisfies (1) and the estimating function ϕ(·, ·) satisfies (5). If Assumptions

A.1-A.3 and 2 hold, then the GMM estimator θ̂n is Λn-regular.

Proof: See Appendix. □

This proposition establishes the regularity of the GMM estimator. Its asymptotic normality and the

conclusion of 3.5 imply that the asymptotic distribution of θ̂n is a convolution of independent random

variables Z and U with Z ∼ N(0, (J ′Σ−1J)−1) and U ∼ N(0,Ω(W ) − (J ′Σ−1J)−1). The choice

W = Σ−1 yields U ≡ 0 making the GMM estimator θ̂nΣ−1 semiparametrically efficient. The regularity

of GMM estimators also ensures that their asymptotic variance cannot be smaller than (J ′Σ−1J)−1,

which, as as already mentioned is further confirmation of Antoine and Renault (2009,2012) who claim

that this is the smallest variance for GMM estimators.

4 Simulations

We analyze the finite sample performance of the two-step GMM estimator of θ0 in the moment

condition model (1) in the presence of moment restrictions with nonstandard or mixed identification

strength. We focus on the following linear IV model with conditional heteroskedasticity and two

endogenous variables, as it offers a suitable framework for this exercise:

yi = x1iθ1 + x2iθ2 + ui, i = 1, . . . , n

x1i = z1iπ1n + v1i, x2i = z2iπ2n + z3π3n + v2i,

ui = σ−1
ε (x21iεi − µxε), εi = ρv1i + ρv2i + ηi,

σ2
ε = V ar(x21iεi)− µ2

xε, µxε := E(x21iεi) = 2ρ
√
2,

(28)

where π1n = 1.48n−δ1 , π2n = π3n = 1.48n−δ2 ; yi ∈ R is the ith observation on the dependent

variable; x1i ∈ R and x2i ∈ R are observations on two possibly endogenous regressors; θ1 and θ2

are unknown scalar structural parameters; z1i, z2i, z3i are instrumental variables, whose strengths

19



are δ1, δ2 and δ2 respectively [see Dovonon, Doko Tchatoka and Aguessy (2022)]; ui is a structural

disturbance and (v1i, v2i) are reduced-form disturbances. The variance of εi is explicitly given by

σ2
ε = 3π4

1n + 6π2
1n + 84π2

1nρ
2 + 732ρ2 + 15. The expression of the structural errors ui in (28) clearly

illustrates the presence of conditional heteroskedasticity in this IV model. The true values of θ1 and

θ2 are set at θ01 = θ02 = 0.1, and (v1, v2, η, z1, z2, z3)
′ ∼ N(0,V), where

V =

 V 0 0

0 I2 0

0 0 Vz

 , V =

(
1 ρ

ρ 1

)
, Vz =

(
1 ρz

ρz 1

)
.

In (28) ρ measures the correlation between εi and vji, j = 1, 2, and is kept fixed across observations.

Note from the above parametrization that ρ also determines the degree of endogeneity in the model

(i.e., the correlation between the structural error ui and the reduced-form errors v1j , j = 1, 2) when

the sample n goes to infinity. We set ρ to 0.5 and 0.0925. For ρ = 0.5, corr(ui, vji) tends to 0.533 as

n grows, while for ρ = 0.0925, corr(ui, vji) tends to 0.301, for both j = 1 and 2. Therefore, ρ = 0.5

corresponds to relatively high endogeneity in the model, while ρ = 0.0925 implies moderate endogeneity

in the model. Throughout the experiments, following Dovonon, Doko Tchatoka and Aguessy (2022), we

consider cases where z1, z2 and z3 have equal strength – δ1 = δ2 ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.45, 0.5} – and

cases where they have mixed strength – (δ1, δ2) ∈ {(0, 0.2), (0, 0.3), (0, 0.4), (0.1, 0.2)(0.1, 0.3), (0.3, 0.4)}.
We set the sample size n to 100, 500, 1000, 5000, 8000, and 10000.

The baseline GMM estimator considered is the two-step GMM in (9) with optimal weighting

matrix Ŵ opt
n =

(
1
n

∑n
i=1 û

2
i ziz

′
i

)−1
, where ûi are the 2SLS residuals and zi = (z1i, z2i, z3i)

′. We assess

its performance against the following two non-optimal GMM estimators of θ: (1) the 2SLS estimator

obtained by setting Wn =
(
1
n

∑n
i=1 ziz

′
i

)−1
in (9); (2) and the naive GMM estimator obtained with

Wn = Ik in (9). The performance measures used to compare these estimators are the mean squared

error (MSE), the mean absolute deviation (MAD), and the generalized variance (gVAR) captured by

the determinant of the MSE matrix.

Tables 1-2 show for each identification strength, the performance ratios (naive estimator to optimal

GMM and 2SLS estimator to optimal GMM) for the considered sample sizes. Table 1 corresponds to

relatively high endogeneity (ρ = 0.5), while endogeneity is moderate (ρ = 0.0925) in Table 2. The

results indicate clearly that, for all performance measures (MSE, MAD, gVAR), all level of endogeneity

(ρ ∈ {0.0925, 0.5}), and all sample sizes, the benchmark optimal two-step GMM outperform both the

2SLS estimator and the naive GMM estimator with Wn = Ik. This result holds irrespective of the

patterns of instrument strengths. In particular, the dominance of the optimal two-step GMM is

remarkable when the sample is small but tends to stabilize as the sample size increases. In essence,

these experiments support of our theoretical findings. It is worth mentioning that even in the case

δ1 = δ2 = 0.5 not covered by our theory and where none of the estimators considered is consistent,

the two-step GMM estimator is favoured by the displayed ratios.
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5 Concluding remarks

This paper is concerned with efficient estimation in moment condition models with mixed identification

strength. These models are point identifying at any given sample size but their moment function drifts

to zero uniformly over the parameter space as the sample size grows. This feature makes identification

somewhat weak since the moment function becomes uninformative in the limit. When the moment

function does not drift to zero too fast, consistent estimation is possible and GMM estimators are

shown to be asymptotically normally distributed.

The purpose of this paper is to derive semiparametric efficiency bounds for parameter estimation

in these models. We rely on the approach of Dovonon and Atchadé (2020) that we refine to account

for the fact that the sampling process follows a drifting distribution Pn that depends on the sample

size, n, instead of a fixed distribution as commonly considered in the literature.

We show that the asymptotic minimum variance bound for the estimation by regular estimators is

given by (J ′Σ−1J)−1, where J is given (10) in Section 2. This bound corresponds to the asymptotic

variance of the GMM estimator using a weighting matrix Wn converging to Σ−1, where Σ is the limit

variance under Pn of the estimating function evaluated at θ0. This is the the well-known two-step

GMM estimator. We establish that this estimator is regular and also asymptotically minimax efficient

with respect to a large class of loss functions. Our result extends that of Chamberlain (1987) to the

class of moment condition models with mixed identification strength.

One possible extension that we plan for future work is to consider models describing weakly

dependent data. Hallin, van den Akker, and Werker (2015) have developed a framework useful to

study such models in the parametric framework. An extension of their approach to semiparametric

models can be an interesting contribution. The main challenge that we foresee for moment condition

models with dependent data is related to the formulation of the dynamics in the data generating

process that will be general enough to accommodate a relevant class of models while being explicit

enough to fit with the framework of Hallin, van den Akker, and Werker (2015).
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Table 1: Relative performance of the Optimal Two-Step GMM: ρ = 0.5

Ratio Naive to Optimal GMM Ratio 2SLS to Optimal GMM

IV strength ↓ n → 100 500 1000 5000 8000 10000 100 500 1000 5000 8000 10000

δ1 < δ2

MSE-ratio (θ̂1) 0 0.2 1.374 1.161 1.104 1.029 1.020 1.017 1.387 1.164 1.106 1.029 1.020 1.017

0 0.3 1.381 1.159 1.105 1.030 1.021 1.018 1.389 1.161 1.107 1.030 1.021 1.018

0 0.4 1.383 1.157 1.100 1.029 1.020 1.017 1.391 1.159 1.102 1.029 1.020 1.017

0.1 0.2 1.513 1.205 1.130 1.038 1.023 1.022 1.529 1.213 1.134 1.040 1.024 1.023

0.1 0.3 1.433 1.245 1.136 1.037 1.025 1.020 1.455 1.252 1.140 1.039 1.026 1.021

0.3 0.4 1.356 1.314 1.249 1.085 1.056 1.057 1.338 1.317 1.248 1.095 1.065 1.067

MSE-ratio (θ̂2) 0 0.2 1.617 1.298 1.211 1.083 1.064 1.059 1.604 1.294 1.211 1.081 1.064 1.057

0 0.3 1.502 1.284 1.264 1.100 1.075 1.062 1.486 1.276 1.255 1.097 1.072 1.061

0 0.4 1.428 1.329 1.210 1.088 1.072 1.071 1.405 1.302 1.198 1.079 1.063 1.063

0.1 0.2 1.710 1.393 1.296 1.111 1.074 1.073 1.691 1.386 1.291 1.109 1.072 1.070

0.1 0.3 1.636 1.374 1.282 1.115 1.094 1.080 1.624 1.369 1.277 1.113 1.091 1.078

0.3 0.4 1.534 1.397 1.293 1.115 1.086 1.085 1.473 1.362 1.274 1.104 1.079 1.079

MAD-ratio (θ̂1) 0 0.2 1.287 1.144 1.093 1.028 1.019 1.016 1.298 1.147 1.095 1.028 1.020 1.017

0 0.3 1.299 1.142 1.095 1.029 1.020 1.017 1.310 1.145 1.097 1.029 1.021 1.018

0 0.4 1.287 1.138 1.088 1.028 1.020 1.016 1.297 1.141 1.090 1.028 1.020 1.016

0.1 0.2 1.373 1.169 1.105 1.032 1.019 1.019 1.391 1.178 1.111 1.033 1.020 1.020

0.1 0.3 1.363 1.175 1.109 1.030 1.022 1.017 1.384 1.184 1.114 1.032 1.023 1.018

0.3 0.4 1.403 1.265 1.197 1.072 1.051 1.043 1.425 1.280 1.207 1.084 1.063 1.055

MAD-ratio (θ̂2) 0 0.2 1.428 1.256 1.175 1.082 1.065 1.057 1.418 1.253 1.174 1.080 1.065 1.054

0 0.3 1.404 1.240 1.199 1.089 1.069 1.056 1.389 1.234 1.194 1.086 1.066 1.054

0 0.4 1.387 1.253 1.166 1.083 1.068 1.063 1.359 1.234 1.156 1.074 1.061 1.055

0.1 0.2 1.530 1.328 1.250 1.102 1.071 1.067 1.516 1.323 1.248 1.102 1.070 1.064

0.1 0.3 1.503 1.315 1.243 1.103 1.086 1.072 1.487 1.308 1.239 1.102 1.082 1.070

0.3 0.4 1.521 1.337 1.249 1.108 1.082 1.074 1.466 1.310 1.232 1.097 1.074 1.070

gVAR-ratio 0 0.2 4.930 2.271 1.787 1.240 1.178 1.159 4.937 2.270 1.792 1.237 1.177 1.156

0 0.3 4.303 2.214 1.949 1.283 1.205 1.169 4.259 2.195 1.929 1.277 1.198 1.166

0 0.4 3.898 2.364 1.773 1.252 1.195 1.185 3.816 2.279 1.743 1.232 1.178 1.168

0.1 0.2 6.650 2.818 2.144 1.329 1.206 1.203 6.636 2.826 2.146 1.330 1.204 1.196

0.1 0.3 5.503 2.922 2.118 1.338 1.258 1.213 5.588 2.937 2.119 1.337 1.253 1.211

0.3 0.4 4.379 3.374 2.606 1.464 1.317 1.315 3.923 3.215 2.528 1.460 1.319 1.325

δ1 = δ2

MSE-ratio (θ̂1) 0 0 1.376 1.156 1.106 1.029 1.020 1.018 1.385 1.159 1.107 1.029 1.020 1.018

0.1 0.1 1.544 1.231 1.134 1.036 1.026 1.020 1.540 1.239 1.139 1.037 1.027 1.021

0.2 0.2 1.596 1.303 1.186 1.050 1.033 1.027 1.610 1.316 1.195 1.056 1.037 1.031

0.3 0.3 1.382 1.338 1.278 1.090 1.057 1.048 1.347 1.338 1.291 1.098 1.067 1.057

0.4 0.4 1.324 1.236 1.209 1.147 1.079 1.071 1.282 1.129 1.169 1.086 1.060 1.058

0.45 0.45 1.223 1.233 1.206 1.077 1.244 1.141 1.096 1.147 1.068 1.024 1.030 1.022

0.5 0.5 1.243 1.128 1.167 1.108 1.085 1.078 1.127 1.081 1.064 1.024 1.016 1.009

MSE-ratio (θ̂2) 0 0 1.600 1.297 1.238 1.083 1.064 1.067 1.597 1.294 1.237 1.081 1.064 1.064

0.1 0.1 1.790 1.334 1.275 1.124 1.097 1.074 1.767 1.329 1.271 1.122 1.095 1.072

0.2 0.2 1.730 1.438 1.246 1.111 1.094 1.087 1.686 1.431 1.243 1.108 1.093 1.084

0.3 0.3 1.509 1.367 1.277 1.113 1.082 1.088 1.442 1.352 1.263 1.109 1.077 1.084

0.4 0.4 1.421 1.286 1.243 1.135 1.097 1.093 1.341 1.237 1.211 1.109 1.077 1.076

0.45 0.45 1.289 1.259 1.283 1.117 1.107 1.079 1.227 1.202 1.174 1.048 1.019 1.041

0.5 0.5 1.125 1.124 1.193 1.069 1.060 1.086 1.070 1.090 1.090 1.021 1.021 1.021

MAD-ratio (θ̂1) 0 0 1.303 1.144 1.093 1.028 1.019 1.017 1.313 1.148 1.095 1.028 1.020 1.018

0.1 0.1 1.378 1.175 1.107 1.029 1.022 1.018 1.394 1.184 1.113 1.030 1.023 1.019

0.2 0.2 1.458 1.234 1.154 1.037 1.023 1.020 1.482 1.251 1.165 1.044 1.029 1.025

0.3 0.3 1.436 1.276 1.211 1.074 1.048 1.038 1.450 1.292 1.227 1.086 1.061 1.049

0.4 0.4 1.323 1.223 1.184 1.090 1.062 1.058 1.326 1.215 1.187 1.091 1.063 1.064

0.45 0.45 1.251 1.186 1.146 1.070 1.069 1.059 1.225 1.174 1.132 1.066 1.043 1.042

0.5 0.5 1.175 1.124 1.098 1.060 1.048 1.045 1.157 1.108 1.081 1.040 1.033 1.024

MAD-ratio (θ̂2) 0 0 1.466 1.244 1.188 1.081 1.065 1.058 1.462 1.241 1.187 1.081 1.065 1.055

0.1 0.1 1.583 1.304 1.238 1.108 1.090 1.069 1.572 1.300 1.235 1.106 1.089 1.067

0.2 0.2 1.615 1.372 1.241 1.102 1.086 1.078 1.594 1.365 1.238 1.100 1.085 1.075

0.3 0.3 1.548 1.337 1.245 1.105 1.076 1.085 1.503 1.322 1.234 1.101 1.072 1.079

0.4 0.4 1.438 1.300 1.229 1.117 1.091 1.088 1.370 1.262 1.201 1.099 1.075 1.072

0.45 0.45 1.398 1.267 1.213 1.117 1.095 1.090 1.313 1.223 1.168 1.080 1.058 1.054

0.5 0.5 1.269 1.188 1.158 1.091 1.072 1.077 1.209 1.148 1.113 1.055 1.041 1.038

gVAR-ratio 0 0 4.844 2.249 1.874 1.241 1.178 1.180 4.892 2.252 1.877 1.238 1.177 1.174

0.1 0.1 7.603 2.695 2.091 1.355 1.267 1.200 7.383 2.708 2.094 1.353 1.264 1.198

0.2 0.2 7.690 3.510 2.183 1.362 1.277 1.247 7.417 3.550 2.207 1.370 1.285 1.251

0.3 0.3 4.348 3.348 2.662 1.473 1.306 1.300 3.775 3.274 2.658 1.481 1.321 1.312

0.4 0.4 3.694 2.539 2.264 1.689 1.400 1.372 3.088 1.967 2.019 1.453 1.305 1.296

0.45 0.45 2.481 2.418 2.385 1.435 1.784 1.526 1.801 1.911 1.566 1.172 1.152 1.134

0.5 0.5 1.974 1.607 1.798 1.432 1.315 1.362 1.487 1.391 1.342 1.102 1.077 1.063
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Table 2: Relative performance of the Optimal Two-Step GMM: ρ = 0.0925

Ratio Naive to Optimal GMM Ratio 2SLS to Optimal GMM

IV strength ↓ n → 100 500 1000 5000 8000 10000 100 500 1000 5000 8000 10000

δ1 < δ2

MSE-ratio (θ̂1) 0 0.2 1.128 1.066 1.056 1.024 1.017 1.015 1.131 1.067 1.057 1.024 1.018 1.015

0 0.3 1.140 1.068 1.053 1.025 1.017 1.016 1.142 1.069 1.054 1.025 1.017 1.017

0 0.4 1.150 1.075 1.058 1.024 1.018 1.015 1.152 1.075 1.059 1.024 1.018 1.016

0.1 0.2 1.259 1.138 1.121 1.044 1.028 1.024 1.262 1.141 1.123 1.045 1.029 1.025

0.1 0.3 1.217 1.162 1.107 1.043 1.031 1.025 1.223 1.165 1.109 1.045 1.032 1.026

0.3 0.4 1.549 1.228 1.182 1.059 1.044 1.035 1.524 1.225 1.174 1.063 1.046 1.039

MSE-ratio (θ̂2) 0 0.2 1.180 1.096 1.060 1.027 1.017 1.021 1.175 1.094 1.058 1.026 1.017 1.020

0 0.3 1.216 1.093 1.073 1.027 1.024 1.016 1.205 1.088 1.068 1.024 1.021 1.012

0 0.4 1.186 1.109 1.065 1.024 1.023 1.026 1.162 1.089 1.057 1.018 1.015 1.019

0.1 0.2 1.371 1.210 1.153 1.061 1.044 1.044 1.360 1.205 1.150 1.059 1.043 1.042

0.1 0.3 1.320 1.193 1.151 1.063 1.050 1.048 1.309 1.187 1.146 1.060 1.048 1.045

0.3 0.4 1.524 1.279 1.188 1.078 1.052 1.053 1.462 1.243 1.171 1.069 1.046 1.046

MAD-ratio (θ̂1) 0 0.2 1.109 1.060 1.058 1.025 1.019 1.016 1.110 1.061 1.058 1.025 1.019 1.016

0 0.3 1.108 1.065 1.052 1.026 1.019 1.018 1.109 1.066 1.053 1.026 1.019 1.018

0 0.4 1.120 1.066 1.054 1.025 1.019 1.016 1.122 1.067 1.055 1.026 1.019 1.016

0.1 0.2 1.196 1.125 1.108 1.041 1.026 1.022 1.200 1.128 1.110 1.042 1.027 1.023

0.1 0.3 1.171 1.129 1.100 1.041 1.031 1.023 1.174 1.132 1.103 1.042 1.032 1.024

0.3 0.4 1.273 1.197 1.150 1.053 1.042 1.035 1.274 1.197 1.149 1.057 1.045 1.039

MAD-ratio (θ̂2) 0 0.2 1.151 1.083 1.056 1.024 1.018 1.017 1.147 1.080 1.054 1.024 1.018 1.016

0 0.3 1.165 1.079 1.062 1.026 1.022 1.019 1.156 1.075 1.058 1.023 1.020 1.014

0 0.4 1.160 1.088 1.055 1.024 1.020 1.025 1.139 1.073 1.045 1.018 1.013 1.018

0.1 0.2 1.272 1.168 1.133 1.055 1.043 1.039 1.264 1.165 1.131 1.052 1.042 1.038

0.1 0.3 1.254 1.159 1.122 1.062 1.046 1.045 1.243 1.152 1.118 1.060 1.044 1.042

0.3 0.4 1.342 1.219 1.159 1.070 1.050 1.050 1.305 1.196 1.146 1.060 1.044 1.042

gVAR-ratio 0 0.2 1.772 1.365 1.254 1.107 1.070 1.074 1.766 1.364 1.250 1.105 1.070 1.071

0 0.3 1.922 1.364 1.276 1.109 1.085 1.067 1.893 1.354 1.266 1.102 1.080 1.059

0 0.4 1.860 1.421 1.270 1.098 1.085 1.086 1.791 1.372 1.251 1.087 1.068 1.072

0.1 0.2 2.978 1.894 1.669 1.225 1.152 1.143 2.947 1.891 1.667 1.223 1.150 1.140

0.1 0.3 2.579 1.923 1.624 1.229 1.172 1.155 2.561 1.912 1.616 1.227 1.169 1.149

0.3 0.4 5.070 2.467 1.973 1.304 1.205 1.187 4.504 2.320 1.889 1.290 1.197 1.179

δ1 = δ2

MSE-ratio (θ̂1) 0 0 1.128 1.072 1.057 1.023 1.017 1.015 1.131 1.073 1.057 1.023 1.018 1.015

0.1 0.1 1.222 1.143 1.116 1.042 1.030 1.026 1.227 1.146 1.118 1.044 1.031 1.026

0.2 0.2 1.350 1.226 1.150 1.052 1.038 1.030 1.334 1.230 1.154 1.055 1.040 1.032

0.3 0.3 1.766 1.223 1.193 1.063 1.053 1.039 1.463 1.226 1.186 1.065 1.055 1.042

0.4 0.4 1.280 1.059 1.215 1.074 1.046 1.050 1.222 1.098 1.132 1.048 1.036 1.040

0.45 0.45 1.712 1.148 1.371 1.027 1.014 1.144 1.437 1.099 1.037 1.019 1.012 1.025

0.5 0.5 1.043 1.111 1.107 1.382 1.014 1.058 1.039 1.069 1.050 1.017 1.011 1.052

MSE-ratio (θ̂2) 0 0 1.186 1.101 1.066 1.020 1.020 1.014 1.184 1.100 1.063 1.017 1.018 1.012

0.1 0.1 1.303 1.197 1.146 1.063 1.054 1.035 1.297 1.193 1.143 1.062 1.052 1.033

0.2 0.2 1.363 1.244 1.187 1.078 1.052 1.044 1.352 1.241 1.184 1.075 1.050 1.042

0.3 0.3 1.490 1.251 1.192 1.082 1.055 1.050 1.399 1.235 1.185 1.079 1.052 1.046

0.4 0.4 1.470 1.145 1.170 1.088 1.054 1.057 1.366 1.154 1.144 1.069 1.043 1.046

0.45 0.45 1.483 1.185 1.187 1.059 1.035 1.061 1.337 1.156 1.104 1.036 1.022 1.032

0.5 0.5 1.023 1.122 1.130 1.124 1.070 1.032 1.017 1.078 1.057 1.014 1.020 1.046

MAD-ratio (θ̂1) 0 0 1.107 1.067 1.054 1.025 1.019 1.016 1.109 1.068 1.055 1.026 1.019 1.016

0.1 0.1 1.182 1.125 1.106 1.041 1.029 1.024 1.185 1.128 1.109 1.042 1.030 1.025

0.2 0.2 1.264 1.181 1.131 1.049 1.034 1.028 1.267 1.185 1.135 1.052 1.037 1.031

0.3 0.3 1.304 1.196 1.158 1.059 1.048 1.035 1.295 1.199 1.157 1.062 1.051 1.039

0.4 0.4 1.239 1.157 1.136 1.055 1.041 1.041 1.225 1.147 1.121 1.051 1.036 1.036

0.45 0.45 1.218 1.128 1.118 1.040 1.033 1.043 1.200 1.113 1.082 1.030 1.024 1.028

0.5 0.5 1.138 1.098 1.070 1.061 1.027 1.030 1.129 1.073 1.052 1.021 1.016 1.016

MAD-ratio (θ̂2) 0 0 1.159 1.082 1.060 1.022 1.019 1.014 1.157 1.080 1.057 1.018 1.017 1.012

0.1 0.1 1.253 1.167 1.125 1.057 1.050 1.034 1.246 1.163 1.123 1.056 1.047 1.034

0.2 0.2 1.371 1.209 1.153 1.071 1.051 1.041 1.362 1.206 1.151 1.069 1.049 1.039

0.3 0.3 1.380 1.212 1.157 1.078 1.055 1.048 1.350 1.202 1.153 1.076 1.053 1.044

0.4 0.4 1.313 1.200 1.146 1.071 1.055 1.051 1.275 1.183 1.126 1.058 1.044 1.041

0.45 0.45 1.303 1.177 1.138 1.060 1.051 1.056 1.255 1.146 1.106 1.042 1.033 1.033

0.5 0.5 1.214 1.137 1.106 1.073 1.055 1.049 1.167 1.100 1.075 1.028 1.025 1.024

gVAR-ratio 0 0 1.789 1.394 1.269 1.088 1.076 1.058 1.793 1.393 1.264 1.083 1.074 1.055

0.1 0.1 2.534 1.872 1.635 1.229 1.179 1.125 2.531 1.868 1.631 1.228 1.177 1.124

0.2 0.2 3.390 2.327 1.862 1.285 1.193 1.157 3.254 2.329 1.865 1.287 1.193 1.157

0.3 0.3 6.748 2.344 2.019 1.323 1.233 1.189 4.156 2.291 1.975 1.320 1.232 1.186

0.4 0.4 3.370 1.543 2.020 1.363 1.215 1.234 2.678 1.635 1.677 1.256 1.168 1.184

0.45 0.45 5.510 1.850 2.523 1.177 1.104 1.475 3.418 1.614 1.313 1.113 1.073 1.118

0.5 0.5 1.253 1.553 1.565 2.134 1.177 1.100 1.184 1.327 1.232 1.065 1.064 1.162
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A Assumptions

Assumption A.1 (i) ρ := (ρ′1, ρ
′
2)

′ ∈ Rk1 × Rk2 is continuous on the compact parameter set Θ ⊂ Rp such

that, ∀θ ∈ Θ, ρ(θ) = 0 ⇔ θ = θ0.

(ii) supθ∈Θ

√
n
∥∥ϕ̄n(θ)− EPn

(ϕ(Yin, θ))
∥∥ = OPn

(1), with ϕ̄n(θ) = n−1
∑n

i=1 ϕ(Yin, θ).

Assumption A.2 (i) θ0 is interior to Θ and ϕ(y, θ) is continuously differentiable on Θ for Pn-almost all y.

(ii)
√
nϕ̄n(θ0)

d→ N(0,Σ), under Pn.

(iii) ∂ρ(θ0)
∂θ′ =

(
∂ρ′

1(θ0)
∂θ

...
∂ρ′

2(θ0)
∂θ

)′

is full column rank and, for j = 1, 2,

EPn

(
∂ϕj(Yin, θ0)

∂θ′

)
= n−δj

∂ρj(θ0)

∂θ′
, and

√
n sup

θ∈Nθ0

∥∥∥∥∂ϕ̄n,j(θ)

∂θ′
− EPn

(
∂ϕj(Yin, θ)

∂θ′

)∥∥∥∥ = OPn(1),

where Nθ0 is a neighbourhood of θ0.

Assumption A.3 (i) ϕ1(y, θ) is linear in θ or δ2 < 1
4 + δ1

2 .

(ii) θ 7→ ϕ(Yin, θ) is twice continuously differentiable Pn-almost everywhere in a neighbourhood Nθ0 of θ0 and,

with j = 1, 2,

∀s : 1 ≤ s ≤ kj , nδj
∂2ϕ̄n,js

∂θ∂θ′
(θ)

Pn−→ Hjs(θ),

uniformly over Nθ0 , where Hjs(θ)’s are (p, p)-matrix functions of θ and ϕ̄n,js is the s-th entry of ϕ̄n,j.

B Proofs

Assumption B.1 There exists a neighbourhood Nθ0 of θ0 and a L2(Pn)-neighbourhood N1 of fn,0 := 1 such

that, with j, k = 1, . . . , p, and Ln =

(
nδ1Ik1

0

0 nδ2Ik2

)
,

EPn

(
∂ϕ(Y, θ)

∂θj

)
= L−1

n

∂ρ(θ)

∂θj
, EPn

(
∂2ϕ(Y, θ)

∂θj∂θk

)
= L−1

n

∂2ρ(θ)

∂θj∂θk
, ∀θ ∈ Nθ0 ,

sup
θ∈Nθ0

EPn

(
‖ϕ(Y, θ)‖4

)
= O(1), sup

θ∈Nθ0

EPn

(
‖∂ϕ(Y, θ)/∂θj‖4

)
= O(1),

sup
θ∈Nθ0

,f∈N1

∫ ∥∥∥∥∂ϕ(y, θ)∂θj

∥∥∥∥2 f2(y)dPn(y) = O(1), sup
θ∈Nθ0

,f∈N1

∫ ∥∥∥∥∂2ϕ(y, θ)

∂θj∂θk

∥∥∥∥2 f2(y)dPn(y) = O(1).

Lemma B.1 Let {(θn), (hn)} ∈ Θ(θ0)× C(h0) and (θ̄, h̄) such that:

θ̄ = tnθn + (1− tn)θ0, h̄ = tnhn + (1− tn)h0, tn ∈ (0, 1).

Assume θ0 satisfies (1) and 1/4 ≤ δ2 < 1/2. If Assumptions 1 and B.1 hold with r = 2, then: ∀j, k = 1, . . . , p,∥∥∥∥ ∂2

∂θj∂θk
f(θ̄, h̄, ·)

∥∥∥∥
L2(Pn)

= O(n−δ1 ∨ n−1+2δ2), (B.1)

where f(θ, h, ·) is as defined by Proposition 3.1.
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Proof of Lemma B.1: ∂2f(θ, h, ·)/∂θj∂θk is given by (13). We next derive the limits or bounds for each of

the inner products involved in this expression. But first, we claim that:

‖n1−2δ2(fθ̄,h̄ − fn,0)‖L2(Pn) = O(1), (B.2)

where fθ,h(·) ≡ f(θ, h, ·).
To see this, we observe that (21) holds with θn, hn replaced by θ̄, h̄ and with the Lagrange remainder

similarly bounded with second derivative evaluated at an intermediate point lying between (θ0, h0) and (θ̄, h̄).

Thus:

‖n1−2δ2(fθ̄,h̄ − fn,0)‖L2(Pn) ≤ ‖n1−2δ2(rn,θ0 · (θ̄ − θ0)−An · (h̄− h0))‖L2(Pn) + ‖n1−2δ2R2(θ̄, h̄, ·)‖L2(Pn).

From the proof of Proposition 3.3, ‖
√
n(rn,θ0 · (θ̄ − θ0) − An · (h̄ − h0))‖L2(Pn) = O(1) and it follows that, for

1/4 ≤ δ2 < 1/2,

‖n1−2δ2(rn,θ0 · (θ̄ − θ0)−An · (h̄− h0))‖L2(Pn) = O(1).

Also, since ΛnR
−1(θ̄ − θ0) = tnΛnR

−1(θn − θ0), we have ‖θ̄ − θ0‖ = O(n−1/2+δ2). It results using an analogue

bound to (22) that: ‖n1−2δ2R2(θ̄, h̄, ·)‖L2(Pn) = O(1) and this completes the proof of (B.2).

(a) Consider: 〈fθ̄,h̄φ̄, φ̄θ̄〉. Note that

φ̄(y) =

(
1

Σ
−1/2
n ϕ(y, θ0)

)
, φ̄θ(y) =

(
1

Σ
−1/2
n ϕ(y, θ)

)
.

Hence,

〈fθ̄,h̄φ̄, φ̄θ̄〉 =
∫

fθ̄,h̄(y)

(
1 ϕ(y, θ̄)′Σ

−1/2
n

Σ
−1/2
n ϕ(y, θ0) Σ

−1/2
n ϕ(y, θ0)ϕ(y, θ̄)

′Σ
−1/2
n

)
dPn(y).

We have: (a.1) ∫
fθ̄,h̄dPn = 1 +

∫
(fθ̄,h̄ − 1)dPn.

But, from (B.2), ∣∣∣∣∫ (fθ̄,h̄ − 1)dPn

∣∣∣∣ ≤ (∫ (fθ̄,h̄ − 1)2dPn

)1/2

= O(n−1+2δ2).

Thus: ∫
fθ̄,h̄dPn = 1 +O(n−1+2δ2).

(a.2)∫
fθ̄,h̄(y)ϕ(y, θ0)dPn(y) =

∫
ϕ(y, θ0)dPn(y) +

∫
(fθ̄,h̄(y)− 1)ϕ(y, θ0)dPn(y) =

∫
(fθ̄,h̄(y)− 1)ϕ(y, θ0)dPn(y).

Note that ∣∣∣∣∫ (fθ̄,h̄(y)− 1)ϕ(y, θ0)dPn(y)

∣∣∣∣ ≤ (∫ (fθ̄,h̄ − 1)2dPn

)1/2(∫
‖ϕ(y, θ0)‖2dPn(y)

)1/2

.

Thus, ∫
fθ̄,h̄(y)ϕ(y, θ0)dPn(y) = O(n−1+2δ2).
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(a.3)∫
fθ̄,h̄(y)ϕ(y, θ̄)dPn(y) =

∫
ϕ(y, θ̄)dPn(y) +

∫
(fθ̄,h̄(y)− 1)ϕ(y, θ̄)dPn(y)

= O(n−δ1) +

∫
(fθ̄,h̄(y)− 1)ϕ(y, θ̄)dPn(y) = O(n−δ1) +O(n−1+2δ2).

(a.4)∫
fθ̄,h̄(y)ϕ(y, θ0)ϕ(y, θ̄)

′dPn(y) =

∫
ϕ(y, θ0)ϕ(y, θ̄)

′dPn(y) +

∫
(fθ̄,h̄(y)− 1)ϕ(y, θ0)ϕ(y, θ̄)

′dPn(y).

Under the conditions of the lemma, θ̄ 7→
∫
ϕ(y, θ0)ϕ(y, θ̄)

′dPn(y) is continuously differentiable in a neighbourhood

of θ0 and we write ∫
ϕ(y, θ0)ϕ(y, θ̄)

′dPn(y) = Σn +O(‖θ̄ − θ0‖) = Σn +O(n−1/2+δ2).

By the Cauchy-Schwarz inequality,∣∣∣∣∫ (fθ̄,h̄(y)− 1)ϕ(y, θ0)ϕ(y, θ̄)
′dPn(y)

∣∣∣∣
≤
(∫

(fθ̄,h̄ − 1)2dPn

)1/2(∫
‖ϕ(y, θ0)‖4dPn

)1/4(∫
‖ϕ(y, θ̄)‖4dPn

)1/4

= O(n−1+2δ2).

As a result,

〈fθ̄,h̄φ̄, φ̄θ̄〉 = Ik+1 + o(1)

and we can also claim that

〈fθ̄,h̄φ̄, φ̄θ̄〉−1 = Ik+1 + o(1).

(b) Consider:
〈
f2
θ̄,h̄

, ∂2

∂θk∂θj
φ̄θ̄

〉
〈
f2
θ̄,h̄,

∂2

∂θk∂θj
φ̄θ̄

〉
=

∫
f2
θ̄,h̄(y)

(
0 ∂2

∂θk∂θj
ϕ(y, θ̄)′Σ

−1/2
n

)
dPn(y).

We can write:

∫
f2
θ̄,h̄(y)

∂2

∂θk∂θj
ϕ(y, θ̄)dPn(y) =

∫
∂2

∂θk∂θj
ϕ(y, θ̄)dPn(y) +

∫
(f2

θ̄,h̄(y)− 1)
∂2

∂θk∂θj
ϕ(y, θ̄)dPn(y) = (1) + (2).

By assumption, (1) = L−1
n

∂2ρ(θ̄)
∂θk∂θj

. It follows that (1) = O(n−δ1). It is not hard to see that

‖(2)‖ ≤
(∫

(fθ̄,h̄ − 1)2dPn

)1/2
(
2 sup
θ∈Nθ,f∈N1

∫
f2(y)‖∂2ϕ(y, θ)/∂θk∂θj‖2dPn(y)

)1/2

= O(n−1+2δ2).

Thus:∥∥∥〈f2
θ̄,h̄

, ∂2

∂θk∂θj
φ̄θ̄

〉∥∥∥ = O(n−δ1) +O(n−1+2δ2) = O(n−δ1 ∨ n−1+2δ2).

(c) Consider:
〈
f2
θ̄,h̄

, ∂
∂θj

φ̄θ̄

〉
〈
f2
θ̄,h̄,

∂

∂θj
φ̄θ̄

〉
=

∫
f2
θ̄,h̄(y)

(
0 ∂

∂θj
ϕ(y, θ̄)′Σ

−1/2
n

)
dPn(y)

26



and we establish as in (b) that the norm of this quantity is of order O(n−δ1 ∨ n−1+2δ2).

(d) Consider:
〈
fθ̄,h̄φ̄,

∂
∂θj

φ̄θ̄

〉
.

〈
fθ̄,h̄φ̄,

∂

∂θj
φ̄θ̄

〉
=

∫
fθ̄,h̄(y)

(
0 ∂ϕ(y,θ̄)′

∂θj
Σ

−1/2
n

0 Σ
−1/2
n ϕ(y, θ0)

∂ϕ(y,θ̄)′

∂θj
Σ

−1/2
n

)
dPn(y).

We have:∥∥∥∥∫ fθ̄,h̄(y)
∂ϕ(y, θ̄)′

∂θj
dPn(y)

∥∥∥∥ ≤
∥∥∥∥∫ ∂ϕ(y, θ̄)′

∂θj
dPn(y)

∥∥∥∥+ ∥∥∥∥∫ (fθ̄,h̄(y)− 1)
∂ϕ(y, θ̄)′

∂θj
dPn(y)

∥∥∥∥
≤
∫ ∥∥∥∥∂ϕ(y, θ̄)′∂θj

∥∥∥∥ dPn(y) +

(∫
(fθ̄,h̄ − 1)2dPn

)1/2
(∫ ∥∥∥∥∂ϕ(y, θ̄)′∂θj

∥∥∥∥2 dPn(y)

)1/2

= O(1) +O(n−1+2δ2).

∥∥∥∥∫ fθ̄,h̄(y)ϕ(y, θ0)
∂ϕ(y, θ̄)′

∂θj
dPn(y)

∥∥∥∥ ≤
∥∥∥∥∫ ϕ(y, θ0)

∂ϕ(y, θ̄)′

∂θj
dPn(y)

∥∥∥∥+∥∥∥∥∫ (fθ̄,h̄(y)− 1)ϕ(y, θ0)
∂ϕ(y, θ̄)′

∂θj
dPn(y)

∥∥∥∥
≤
∫

‖ϕ(y, θ0)‖
∥∥∥∥∂ϕ(y, θ̄)′∂θj

∥∥∥∥ dPn(y) +

(∫
(fθ̄,h̄ − 1)2dPn

)1/2
(∫

‖ϕ(y, θ0)‖2
∥∥∥∥∂ϕ(y, θ̄)′∂θj

∥∥∥∥2 dPn(y)

)1/2

= O(1) +O(n−1+2δ2).

It follows that
〈
fθ̄,h̄φ̄,

∂
∂θj

φ̄θ̄

〉
= O(1).

(e) Consider:
〈
φ̄ ∂

∂θj
fθ̄,h̄, φ̄θ̄

〉
.

We know from Proposition 3.1,

∂

∂θj
fθ̄,h̄ = −1

2

〈
f2
θ̄,h̄,

∂φ̄θ̄

∂θj

〉〈
fθ̄,h̄φ̄, φ̄θ̄

〉−1
φ̄ := a′φ̄.

Hence,〈
φ̄

∂

∂θj
fθ̄,h̄, φ̄θ̄

〉
= 〈a′φ̄ · φ̄, φ̄θ̄〉 =

∫ (
a′φ̄ a′φ̄ · ϕ(y, θ̄)Σ−1/2

n

Σ
−1/2
n a′φ̄ · ϕ(y, θ0) Σ

−1/2
n a′φ̄ · ϕ(y, θ0)ϕ(y, θ̄)′Σ−1/2

n

)
dPn(y).

We have: ∣∣∣∣∫ a′φ̄dPn

∣∣∣∣ ≤ ‖a‖
∫
(1 + ‖ϕ(y, θ0)‖)dPn(y) = O(n−δ1 ∨ n−1+2δ2),

where we use (c) and (a).∥∥∥∥∫ a′φ̄ · ϕ(y, θ0)dPn(y)

∥∥∥∥ ≤ ‖a‖
∫
(1 + ‖ϕ(y, θ0)‖) ‖ϕ(y, θ0)‖ dPn(y) = O(n−δ1 ∨ n−1+2δ2).

∥∥∥∥∫ a′φ̄ · ϕ(y, θ̄)dPn(y)

∥∥∥∥ ≤ ‖a‖
∫
(1 + ‖ϕ(y, θ0)‖)

∥∥ϕ(y, θ̄)∥∥ dPn(y)

≤ ‖a‖
(∫

(1 + ‖ϕ(y, θ0)‖)2dPn(y)

)1/2(∫ ∥∥ϕ(y, θ̄)∥∥2 dPn(y)

)1/2

= O(n−δ1 ∨ n−1+2δ2).

∥∥∥∥∫ a′φ̄ · ϕ(y, θ0)ϕ(y, θ̄)′dPn(y)

∥∥∥∥ ≤ ‖a‖
∫
(1 + ‖ϕ(y, θ0)‖) ‖ϕ(y, θ0)‖

∥∥ϕ(y, θ̄)∥∥ dPn(y)

≤ ‖a‖
(∫

(1 + ‖ϕ(y, θ0)‖)2 ‖ϕ(y, θ0)‖2 dPn(y)

)1/2(∫ ∥∥ϕ(y, θ̄)∥∥2 dPn(y)

)1/2

= O(n−δ1 ∨ n−1+2δ2).
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Since the eigenvalues of Σn are bounded from above and away from 0, we can claim that
∥∥∥〈φ̄ ∂

∂θj
fθ̄,h̄, φ̄θ̄

〉∥∥∥ =

O(n−δ1 ∨ n−1+2δ2).

We obtain (B.1) by applying the triangle inequality and then the Cauchy-Schwarz inequality to the terms in

(13) that gives ∂2f(θ̄, h̄, ·)/∂θj∂θk. Then, the order of magnitude follows from (a), (b), (c), (d), and (e) above.

□

Proof of Theorem 3.2:

(i) Writing εn =
√
n(gn − fn)− αn, we have gn = fn + αn/

√
n+ εn/

√
n. Thus:

g2n = f2
n +

α2
n

n
+

ε2n
n

+ 2
αnfn√

n
+ 2

εnfn√
n

+ 2
αnεn
n

.

Integrating each side with respect to µn yields:

2

∫
αnfndµn = − 1√

n

∫
α2
ndµn − 1√

n

∫
ε2ndµn − 2

∫
εnfndµn − 2√

n

∫
αnεndµn

and the result follows by the Cauchy-Schwarz inequality and the fact that
∫
α2
ndµn is bounded,

∫
ε2ndµn → 0

as n → ∞ and
∫
f2
ndµn = 1.

(ii) We establish this result by relying on Le Cam’s second lemma (see Bickel, Klassen, Ritov and Wellner,

1998, Lemma 2, p.500). To obtain the first and second conclusion in (ii), it suffices to show that:

(a) For all ϵ > 0 and as n → ∞,

max
1≤i≤n

Pfn

(∣∣∣∣g2n(Xni)

f2
n(Xni)

− 1

∣∣∣∣ > ϵ

)
→ 0,

and (b) Under f2
n,

Wn := 2

n∑
i=1

(
gn(Xni)

fn(Xni)
− 1

)
d→ N(−σ2/4, σ2).

By the triangle inequality, (15) implies that ‖
√
n(gn − fn)‖µn

− ‖αn‖µn
→ 0 as n → ∞ and as a result,

n‖gn − fn‖2µn
→ a2 ≡ limn→∞ ‖αn‖2µn

and ‖gn − fn‖µn
→ 0.

To establish (a), pick ϵ > 0; we have:

ϵPfn

(∣∣∣ g2
n(Xni)

f2
n(Xni)

− 1
∣∣∣ > ϵ

)
≤ Efn

(∣∣∣ g2
n(Xni)

f2
n(Xni)

− 1
∣∣∣) =

∫
|g2n − f2

n|dµn =

∫
|gn − fn||gn + fn|dµn

≤
(∫

(gn − fn)
2dµn

)1/2(∫
(gn + fn)

2dµn

)1/2

and the expected result follows since
∫
(gn + fn)

2dµn ≤ 4.

To establish (b), let

Zn =
2√
n

n∑
i=1

(
αn(Xni)

fn(Xni)
− νn

)
,

with νn ≡ Efn(αn(Xni)/fn(Xni)) =

∫
αnfndµn. We obtain (b) by showing that under f2

n, Zn converges in

distribution to N(0, 4a2) and that Efn(Wn − Zn + a2)2 = o(1).
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Under f2
n, Efn(αn(Xni)/fn(Xni) − νn) = 0 and V arfn(αn(Xni)/fn(Xni) − νn) =

∫
α2
ndµn − ν2n → a2 as

n → ∞. Therefore, the central limit theorem for row-wise independent and identically distributed triangular

arrays ensures that under f2
n,

Zn
d→ N(0, σ2).

Next, we observe that Efn(Wn − Zn + a2)2 = Varfn(Wn − Zn + a2) + [Efn(Wn − Zn + a2)]2. We have:

Efn(Wn − Zn + a2) = Efn(Wn) + a2 = 2n

(∫
gnfndµn − 1

)
+ a2 = −n

∫
(gn − fn)

2dµn + a2 → 0

as n → ∞.

V arfn(Wn − Zn + a2) = V arfn(Wn − Zn) = 4V arfn

(∑n
i=1

{
gn(Xni)
fn(Xni)

− 1− 1√
n

(
αn(Xni)
fn(Xni)

− νn

)})
= 4Varfn

(√
n(gn(Xni)−fn(Xni))−αn(Xni)

fn(Xni)

)
= 4Efn

(
[
√
n(gn(Xni)−fn(Xni))−αn(Xni)]

2

fn(Xni)2

)
− 4

[
Efn

(√
n(gn(Xni)−fn(Xni))−αn(Xni)

fn(Xni)

)]2
= 4

∫
[
√
n(gn − fn)− αn]

2dµn − 4

(∫
[
√
n(gn − fn)− αn]fndµn

)2

≤ 4‖
√
n(gn − fn)− αn‖2µn

+ 4 (‖
√
n(gn − fn)− αn‖µn

‖fn‖µn
)
2

= 8‖
√
n(gn − fn)− αn‖2µn

→ 0, as n → ∞.

This establishes (b).

We can therefore apply Le Cam’s second lemma and claim that log Ln − (Wn − σ2

4 ) = oPfn
(1). Therefore,

under f2
n,

logLn
d→ N(−σ2/2, σ2)

and we can claim using Le Cam’s first lemma (see van der Vaart, 1998, p.88) that
{∏n

i=1 g
2
n(xi)

}
and

{∏n
i=1 f

2
n(xi)

}
are contiguous. □

Proof of Proposition 3.3: In this proof, we focus only on the case where (δ1, δ2) ∈ ∆, δ1 < δ2 and 0 < s1 < p.

All the other cases follow along the same lines. The Taylor expansion yields (21) with rn,θ0(·) = ∇θf(θ0, h0, ·)
and An = ∇hf(θ0, h0, ·). From Proposition 3.1, rn,θ0(·) = − 1

2Γ
′
nΣ

−1/2
n φ(·). with Γn = EPn

(
∂
∂θ′ϕ(Y, θ0)

)
. This

Proposition also gives:

∀u ∈ E , ∇hf(θ, h, ·) · u = u− 〈fθ,hu, φ̄θ〉 〈fθ,hφ̄, φ̄θ〉−1
φ̄.

At (θ0, h0), 〈fθ,hu, φ̄θ〉 = 〈u, φ̄〉 = 0, since u ∈ E . Hence, ∇hf(θ0, h0, ·) · u = u. It follows that, since hn, h0 ∈ E ,

∇hf(θ0, h0, ·) · (hn − h0) = hn − h0.

Recall that θn and hn are defined such that: ΛnR
−1(θn − θ0) − η → 0 and

√
n(hn − h0) − β → 0 in L2(Pn)

(see Equations (17) and (19)). For (δ1, δ2) ∈ ∆, according to the discussion leading to the statement of the

proposition, we need to find αn ∈ L2(Pn) such that

‖αn −
√
n[rn,θ0 · (θn − θ0) +An · (hn − h0)]‖L2(Pn) → 0.

It is obvious that ‖
√
nAn · (hn − h0)−An · β‖L2(Pn) = ‖

√
n(hn − h0)− β‖L2(Pn) → 0, as n → ∞.
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Also,

rn,θ0 · (θn − θ0) = −1

2
(θn − θ0)

′Γ′
nΣ

−1/2
n φ

and

Γn(θn − θ0) =

(
n−δ1 ∂ρ1(θ0)

∂θ′

n−δ2 ∂ρ2(θ0)
∂θ′

)
RΛ−1

n ΛnR
−1(θn − θ0) = n−1/2

(
D1R1 0

nδ1−δ2D2R1 D2R2

)
ΛnR

−1(θn − θ0),

with Dj =
∂ρj(θ0)

∂θ′ . (We use the fact that D1R2 = 0.) Hence,

√
nΓn(θn − θ0) = Jη + o(1).

As a result, we can set

αn(·) = −1

2
η′J ′Σ−1/2

n φ(·) +An · β, η ∈ Rp, β ∈ E . □

Proof of Theorem 3.4: This proof follows similar lines to that of Theorem 4.4 in Dovonon and Atchadé

(2020). Let Sn = ΛnR
−1(θ̃n − θn). The characteristic function of Sn under g2n is

Egn [exp(iw′Sn)] = Egn

[
exp(iw′ΛnR

−1(θ̃n − θn))
]

= Egn

[
exp(iw′ΛnR

−1(θ̃n − θ0 − (θn − θ0)))
]

= Egn

[
exp(iw′ΛnR

−1(θ̃n − θ0)) exp(−iw′(η + εn))
]
,

for some η ∈ Rp and εn := ΛnR
−1(θn − θ0)− η which tends to 0 as n → 0. Thus,

Egn [exp(iw′Sn)] = Egn

[
exp(iw′ΛnR

−1(θ̃n − θ0)) exp(−iw′η)
]
+ o(1)

= Efn,0

[
exp(iw′ΛnR

−1(θ̃n − θ0)− iw′η + Ln)
]
+ o(1).

This holds for any sequence {g2n(·)} associated to any αn = − 1
2η

′J ′Σ
−1/2
n φ − An · b, with b = (β1, . . . , βp) ∈

B(h0)
p (where “associated” is meant in the sense described by Equation (16)). In particular, this holds for:

αn = η′
(
−1

2
J ′Σ−1/2

n φ−An · b∗
n

)
.

Thanks to Theorem 3.2, under f2
n,0,

(
ΛnR

−1(θ̃n − θ0),
2√
n

∑n
i=1

(
αn(Yni)
fn(Yni)

− νn

))
converges in distribution

coordinate-wise to (S, η′Z0), with: νn = Efn,0(αn(Yni)/fn,0(Yni)), Z0 ∼ N(0, I∗), and

I∗ = 4 lim
n→∞

〈
−1

2
J ′Σ−1/2

n φ−An · b∗
n,−

1

2
J ′Σ−1/2

n φ−An · b∗
n

〉
.

Therefore, by the Prohorov’s theorem, there is a subsequence of
(
ΛnR

−1(θ̃n − θ0), Ln

)
that converges weakly

under f2
n,0 to

(
S, η′Z0 − 1

2η
′I∗η

)
. Along that subsequence, we can claim that:

Efn,0 exp
(
iw′ΛnR

−1(θ̃n − θ0)− iw′η + Ln

)
→ E exp

(
iw′S − iw′η + η′Z0 − 1

2η
′I∗η

)
= E exp

[
iw′S + η′Z0] exp[−iw′η − 1

2η
′I∗η

]
.

(B.3)

Also, θ̃n being a Λn-regular estimator ensures that

Egn exp
[
iw′ΛnR

−1(θ̃n − θn)
]
→ E exp(iw′S). (B.4)
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Letting Φ(w, v) = E exp(iw′S + iv′Z0), we have

Φ(w, 0) = E [exp(iw′S + η′Z0)] exp

[
−iw′η − 1

2
η′I∗η

]
.

The right-hand-side of this equality is analytic in η and constant on Rp. As a result, it is constant for η ∈ Cp.

Now, choosing η = −iI−1
∗ w, we have:

Φ(w, 0) = E exp
[
iw′(S − I−1

∗ Z0)
]
exp

[
−1

2
w′I−1

∗ w

]
. (B.5)

One can recognize in (B.5), the product of the characteristic functions of U = S − Z and Z with Z = I−1
∗ Z0 ∼

N(0, I−1
∗ ) independent of U . This concludes the proof. □

Proof of Corollary 3.5: Under the conditions of the Corollary, the conditions of Proposition 3.3 and Theorem

3.4 are satisfied. As a result, (27) holds. It remains to show that I∗ = J ′Σ−1J. From Theorem 3.4, I∗ =

4〈− 1
2J

′Σ
−1/2
n φ − An · b∗

n,− 1
2J

′Σ
−1/2
n φ − An · b∗

n〉, with An · b∗ with b∗
n ∈ B(h0)

p the orthogonal projection

of − 1
2J

′φ onto {An · b : b ∈ B(h0)
p}. Recall that B(h0) ⊂ E . Hence from Proposition 3.1, along with simple

derivations, we have that, for any β ∈ B(h0),

An · β := ∇hf(θ0, h0, ·) · β = β =
∑

j≥k+2

ajφj ,

where for j ≥ k+2, aj = 〈β, φj〉 =
∫
βφjdPn. The last equality follows from the fact that β ∈ E . Hence, An · β

is orthogonal to φ for any β ∈ B(h0). Thus b
∗ = 0 and

I∗ = 4 lim
n→∞

〈
1

2
J ′Σ−1/2

n φ,
1

2
J ′Σ−1/2

n φ

〉
= lim

n→∞
J ′Σ−1/2

n

∫
φφ′dPnΣ

−1/2
n J = lim

n→∞
J ′Σ−1

n J = J ′Σ−1J. □

Proof of Proposition 3.7: Note that since, from (11) θ̂n−θ0 = OP (n
−1/2+δ2) under Pn, this also holds under

g2n. By the definition, we also have θn − θ0 = O(n−1/2+δ2) so that θ̂n − θn = OP (n
−1/2+δ2) under g2n.

The first order optimality condition for GMM is given by:

∂ϕ̄n(θ̂n)
′

∂θ
Ŵ ϕ̄n(θ̂n) = 0.

By the mean-value expansion, we write

∂ϕ̄n(θ̂n)
′

∂θ
Ŵ ϕ̄n(θn) +

∂ϕ̄n(θ̂n)
′

∂θ
Ŵ

∂ϕ̄n(θ̄n)

∂θ′
(θ̂n − θn) = 0, (B.6)

where θ̄n ∈ (θ̂n, θn) and may differ from row to row.

From Lemma A.5 of Antoine and Renault (2009), we can claim that:

√
n
∂ϕ̄n(θ̂n)

∂θ′
RΛ−1

n
P−→ J and

√
n
∂ϕ̄n(θ̄n)

∂θ′
RΛ−1

n
P−→ J, (B.7)

both under Pn and g2n. Also, Ŵ −W
P−→ 0, under g2n. It follows that (recall that R

′ = R−1):

nΛ−1
n R−1 ∂ϕ̄n(θ̂n)

′

∂θ
Ŵ

∂ϕ̄n(θ̄n)

∂θ′
RΛ−1

n
P−→ J ′WJ, under g2n. (B.8)

Next, we show that
√
nϕ̄n(θn) =

1√
n

∑n
i=1 ϕ(Yni, θn) converges in distribution to N(0,Σ) under g2n.

By construction, M(θn, hn, gn) = 0. Hence, using (12), we get 〈g2n, φθn〉 = 0. That is∫
g2n(y)ϕ(y, θn)

′Σ−1/2
n dPn(y) = 0,
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which implies that
∫
g2n(y)ϕ(y, θn)dPn(y) = 0, that is

Egn (ϕ(Yni, θn)) = 0.

Also,

V argn(ϕ(Yni, θn)) = Egn (ϕ(Yni, θn)ϕ(Yni, θn)
′)

=

∫
ϕ(y, θn)ϕ(y, θn)

′(g2n(y)− 1)dPn(y) +

∫
ϕ(y, θn)ϕ(y, θn)

′dPn(y).

By Assumption 2(b),
∫
ϕ(y, θn)ϕ(y, θn)

′dPn(y) = Σ + o(1). Note that:∥∥∥∥∫ ϕ(y, θn)ϕ(y, θn)
′(g2n(y)− 1)dPn(y)

∥∥∥∥ ≤
∫

‖ϕ(y, θn)ϕ(y, θn)′‖ |g2n(y)− 1|dPn(y)

≤
(∫

(gn − 1)2dPn

∫
‖ϕ(y, θn)‖4(gn(y) + 1)2dPn(y)

)1/2

≤ ‖gn − 1‖L2(Pn) ·
(
2

∫
‖ϕ(y, θn)‖4g2n(y)dPn(y) + 2

∫
‖ϕ(y, θn)‖4dPn(y)

)1/2

≤ 2
√
C‖gn − 1‖L2(Pn) := 2

√
C‖gn − fn,0‖L2(Pn) = o(1),

where the second inequality follows from the Cauchy-Schwarz inequality and the last one follows from Assumption

2(a). Thus, V argn(ϕ(Yni, θn)) → Σ, as n → ∞. The central limit theorem for row-wise independent and

identically distributed triangular arrays ensures that:

√
nϕ̄n(θn)

d−→ N(0,Σ), under g2n. (B.9)

We write (B.6) as:

√
nΛ−1

n R−1 ∂ϕ̄n(θ̂n)
′

∂θ
Ŵ

√
nϕ̄n(θn) +

√
nΛ−1

n R−1 ∂ϕ̄n(θ̂n)
′

∂θ
Ŵ

∂ϕ̄n(θ̄n)

∂θ′
RΛ−1

n

√
n
[
ΛnR

−1(θ̂n − θn)
]
= 0.

Using (B.7) and (B.8), this yields:

J ′W
√
nϕ̄n(θn) + J ′WJ

[
ΛnR

−1(θ̂n − θn)
]
= oP (1),

that is:

ΛnR
−1(θ̂n − θn) = −(J ′WJ)−1J ′W

√
nϕ̄n(θn) + oP (1),

where the oP (1) is under g
2
n. Using (B.9), we conclude that

ΛnR
−1(θ̂n − θn)

d−→ N(0,Ω(W )),

under g2n and we claim that θ̂n is Λn-regular. □
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