Efficiency bounds for moment condition models with mixed identification strength

Prosper Dovonon, Yves F. Atchadéf and Firmin Doko Tchatoka ${ }^{\ddagger}$
Concordia University, Boston University and The University of Adelaide

December 26, 2022

Abstract

Moment condition models with mixed identification strength are models that are point identified but with estimating moment functions that are allowed to drift to 0 uniformly over the parameter space. Even though identification fails in the limit, depending on how slow the moment functions vanish, consistent estimation is possible. Existing estimators such as the generalized method of moment (GMM) estimator exhibit a pattern of nonstandard or even heterogeneous rate of convergence that materializes by some parameter directions being estimated at a slower rate than others. This paper derives asymptotic semiparametric efficiency bounds for regular estimators of parameters of these models. We show that GMM estimators are regular and that the socalled two-step GMM estimator - using the inverse of estimating function's variance as weighting matrix - is semiparametrically efficient as it reaches the minimum variance attainable by regular estimators. This estimator is also asymptotically minimax efficient with respect to a large family of loss functions. Monte Carlo simulations are provided that confirm these results.

Keywords: Generalized method of moments, mixed identification strength, weak identification, estimation, efficiency bounds, semiparametric models.
JEL classification: C01, C14, C36.

[^0]
1 Introduction

Moment equality based inference methods have made possible the investigation of the empirical content of many economic models. The validity of the standard methods popularized by Hansen (1982) in his seminal paper relies upon the property of point identification which means that the moment condition model is solved at a single point. This indeed guarantees consistent estimation by the generalized method of moment (GMM). However, some empirical evidence suggest that point identification can fail leading to poor inference.

Failure of identification occurs when multiple (or a continuum of) elements in the parameter space solve the model. While it is hard in general to decide whether identification fails by screening sample mean functions, it appears in empirical applications failing identification that evidence tends to be more pronounced as the sample size gets larger. This feature has led Staiger and Stock (1997) and Stock and Wright (2000) among others - in their attempt to shed some light on the behaviour of estimators under identification failure - to consider a framework that allows the moment function to drift to zero at the rate $n^{-1 / 2}$ uniformly over the parameter space as the sample size n grows. In this framework, point identification is possible at any fixed sample size but in the limit the moment condition becomes uninformative about the true parameter value. They found out that consistent estimators are not available for weakly identifying models which are those with this identification property.

Hahn and Kuersteiner (2002) (in linear IV setting) and Antoine and Renault (2009, 2012) (in the general GMM context) observe that when moment conditions drift uniformly to zero at a rate $n^{-\delta}: 0 \leq \delta<1 / 2$, consistent estimation is possible and they derive the asymptotic distribution of the GMM estimator in such settings. This configuration includes the standard identification framework when $\delta=0$. We refer to Andrews and Cheng (2012), Caner (2009), Han and McCloskey (2019), among others, for further account of such models. Antoine and Renault (2012) further consider the so-called moment condition model with mixed identification strength in which the components of the estimating moment function are allowed to have specific drifting rates. They establish that the GMM estimator is consistent and, even though the rate of convergence may vary with some directions in the parameter space, by suitable rotation and scaling this estimator is asymptotically normal.

Interestingly, while the rotation and rates of convergence depend on the drifting parameters δ 's, they show that usual inference formula of GMM yield valid inference without the need to know δ 's, the rotation or the convergence rates. This robustness of GMM inference in models with mixed identification strength motivates a growing literature on the subject. Antoine and Renault (2020) recently propose a test for weak identification useful to detect whether a moment condition model permits consistent inference. Dovonon, Doko and Aguessy (2022) propose moment selection methods that are consistent even if the best model is one with mixed identification strength.

This paper is concerned with efficient inference in moment condition models with mixed identification strength. We derive semiparametric efficiency bounds for this class of models. Following a similar approach to Dovonon and Atchadé (2020), we derive the implicit family of density function induced by the moment condition model. This family can be written $f^{2}(\theta, h)$ where $\theta \in \Theta$ is the initial model parameter lying in the Euclidean space \mathbb{R}^{p} and h is an infinite dimension parameter lying in the Hilbert
space $L^{2}\left(P_{n}\right)$, where P_{n} is the probability distribution of the sample. P_{n} is allowed to depend on the sample size to accommodate the possibility of drifting moment functions. We then highlight the local differentiability properties of f that are useful to obtain efficiency bounds.

We follow Begun, Hall, Huang and Wellner (1983) (hereafter, BHHW), and Dovonon and Atchadé (2020) by proposing a convolution theorem for the asymptotic distribution of regular estimators of θ_{0}, the true parameter value of the parametric component θ of the model. Nevertheless, our framework differs from theirs in two main aspects. First, the reference Hilbert space $L^{2}\left(P_{n}\right)$ is sample size dependent. Second, the rate of convergence of the existing estimators is sharp only after rotation of the parameter space and this rate is typically not the same for all components. These key differences require a refinement of some existing results in our process to derive efficiency bounds.

We show that, the fact that the reference space $L^{2}\left(P_{n}\right)$ depends on n alters the essential notion of tangent space of $f\left(\theta_{n}, h_{n}\right)$ at the true model $f\left(\theta_{0}, h_{0}\right)$, where $\left(\theta_{n}, h_{n}\right)$ is a sequence of parameters converging to $\left(\theta_{0}, h_{0}\right)$. With P_{n} fixed, say $P_{n}=P_{0}$, the tangent space is characterized by the set of $\alpha \in L^{2}\left(P_{0}\right)$ such that

$$
\left\|\sqrt{n}\left(f\left(\theta_{n}, h_{n}\right)-f\left(\theta_{0}, h_{0}\right)\right)-\alpha\right\|_{L^{2}\left(P_{0}\right)} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

and this imposes that $\int \alpha f d P_{0}=0$. This property is important in the literature to derive the local asymptotic normality (LAN) property of the log-likelihood ratio (see Lemma 2.1 of BHHW). With $L^{2}\left(P_{n}\right)$ allowed to vary, we have $\int \alpha f d P_{n} \neq 0$ in general but we show that this quantity converges to 0 and establish the LAN property under this weaker condition. The LAN property in turn has been essential to derive our convolution theorem for regular estimators.

The second main difference led us to introduce a notion of regular estimator that involves possibly many rates and a rotation of the parameter space. We argue that efficiency bounds should be associated to directions of estimation in which convergence rates are sharp for existing estimators. We then define local parameters θ_{n} such that $\left\|\Lambda_{n} R^{\prime}\left(\theta_{n}-\theta_{0}\right)-\eta\right\| \rightarrow 0$ as $n \rightarrow \infty$, for some $\eta \in \mathbb{R}^{p}$, where Λ_{n} is a diagonal matrix containing the rates of convergence and R is a suitable rotation matrix. While the notion of regularity formally introduced in the paper is tied to a rotation through these sequences of parameters, we show that any estimator regular for a given rotation is also regular for any other rotation. In addition, an estimator efficient for one rotation is also efficient for any other rotation.

Our main contribution is the semiparametric efficiency bounds for regular estimators of moment condition models with mixed identification strength. These bounds are obtained via a convolution theorem that we establish. We also show that the GMM estimators are regular in the sense mentioned above. Moreover, any GMM estimator with weighting matrix \hat{W} converging in probability to the limit of the inverse variance of the estimating function evaluated at θ_{0} has its asymptotic variance that is equal to the semiparametric efficiency bound. This shows that the standard two-step efficient GMM estimator is also asymptotically efficient in the setting of models with mixed identification strength.

The rest of the paper is organized as follows. Section 2 introduces the moment condition models with mixed identification strength and provides the existing results about estimation and inference. The semiparametric model induced by the moment condition model is introduced in Section 3 which also presents the main results of the paper. Section 4 shows simulation results that illustrate the efficiency of the two-step GMM estimator in models with mixed identification strength and Section 5
concludes. Lengthy proofs are relegated to the Appendix. Throughout the paper, $\|a\|=\sqrt{a^{\prime} a}$ if a is a vector or $\|a\|=\sqrt{\operatorname{trace}\left(a^{\prime} a\right)}$ if a is a matrix, and $\|a\|_{L^{2}(P)}$ refers to the $L^{2}(P)$-norm of $a \in L^{2}(P)$.

2 Moment models with mixed identification strength: existing results

In this section, we introduce the set-up of moment condition models with mixed identification strength along with some existing results on inference about model parameters.

Let $\left\{Y_{n i}: i=1, \ldots, n\right\}$ be a triangular array of independent and identically distributed \mathbb{R}^{d}-valued random variables with common distribution P_{n} and described by the population moment condition

$$
\begin{equation*}
\mathbb{E}_{P_{n}}\left(\phi\left(Y_{n i}, \theta_{0}\right)\right):=\int \phi\left(y, \theta_{0}\right) P_{n}(d y)=0 \tag{1}
\end{equation*}
$$

where $\phi(\cdot, \cdot)$ is a known \mathbb{R}^{k}-valued function, θ_{0} is the parameter value of interest which is unknown but lies in Θ, a subset of $\mathbb{R}^{p}(k \geq p)$.' $\mathbb{E}_{P_{n}}(\cdot)$ ' denotes expectation taken under the distribution P_{n} of $Y_{n i}$.

Consistent estimation and inference about the true parameter value θ_{0} hinge on the properties of the moment function $\rho: \theta \mapsto \rho_{n}(\theta):=\mathbb{E}_{P_{n}}\left[\phi\left(Y_{n i}, \theta\right)\right]$. The moment condition model $\rho_{n}(\theta)=0$ is uninformative about θ_{0} if all of many elements of Θ solve the model. In this case, consistent estimation is problematic. In the case where the moment equation is solved over Θ only by θ_{0}, consistent estimation becomes a possibility. This is the point identification condition which is the backbone of the GMM inference theory. In the context of triangular array that is under consideration in this paper, point identification can be expressed as:

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \inf _{\theta \in \Theta \backslash \mathcal{N}}\left\|\rho_{n}(\theta)\right\|>0, \quad \text { for any open neighborhood } \mathcal{N} \text { of } \theta_{0} . \tag{2}
\end{equation*}
$$

This strong/point identification property can be restrictive in models where the moment function is local to zero over Θ, that is:

$$
\begin{equation*}
\mathbb{E}_{P_{n}}\left[\phi\left(Y_{n i}, \theta\right)\right]:=\frac{\rho(\theta)}{n^{\delta}}, \quad \rho(\theta) \in \mathbb{R}^{k}, \quad \delta>0, \tag{3}
\end{equation*}
$$

with $\rho(\theta)=0$ if and only if $\theta=\theta_{0}$.
In this case, assuming that $\rho(\theta)$ is bounded on Θ, the identification condition (2) fails. Especially,

$$
\sup _{\theta \in \Theta}\left\|\rho_{n}(\theta)\right\|=O\left(n^{-\delta}\right)
$$

so that in the limit as n grows, the moment condition $\rho_{n}(\theta)=0$ becomes uninformative about θ_{0}. This identification framework is labelled as weak or nearly weak by Antoine and Renault (2009).

Although under the local-to-zero property (3) the model (1) is uninformative about θ_{0} in the limit, it is known that consistent estimation is possible. This depends on the possibility to estimate $\mathbb{E}_{P_{n}}\left(\phi\left(Y_{n i}, \theta\right)\right)$ faster than the latter can vanish over the parameter set. In that respect, it is found that when $0 \leq \delta<1 / 2$, consistent estimation is possible while this is ruled out when $\delta \geq 1 / 2$. This connection between δ and the possibility of consistent estimation justifies its consideration as
identification strength of the related moment restriction. The smaller δ is, the stronger is the associated restriction.

While (3) considers that all the restrictions have the same strength, one can consider the case where each moment restriction is allowed to have its own strength leading to the following specification:

$$
\begin{equation*}
\mathbb{E}_{P_{n}}\left(\phi\left(Y_{n i}, \theta\right)\right)=\mathbb{L}_{n}^{-1} \rho(\theta), \tag{4}
\end{equation*}
$$

with $\rho(\theta)=0 \Leftrightarrow \theta=\theta_{0}$, where \mathbb{L}_{n} is a (k, k)-diagonal matrix with j-th diagonal element equal to $n^{\delta_{j}}$, $\delta_{j} \geq 0$, and n the sample size.

The moment condition model in (4) is referred to as a moment condition model with mixed identification strength. The restrictions' strengths δ_{j} 's are typically unknown and this family of models encompasses the standard model when $\delta_{j}=0$ for all j. Although $\delta<1 / 2$ is, in general, essential to claim consistency, not all the δ_{j} 's in (4) need to be smaller than $1 / 2$ for consistency to be granted. For instance, if there is a subset of moment restrictions with related δ_{j} 's smaller than $1 / 2$ and such that the corresponding sub-vector of ρ, say ρ_{\square}, is identifying (e.g., $\rho_{\square}(\theta)=0 \Leftrightarrow \theta=\theta_{0}$), then consistent estimation is possible regardless of the magnitude of the identification strength associated to the other moment restrictions.

Moment condition models with mixed identification strength have been object of study by Antoine and Renault (2009, 2012, 2020), Caner (2009), and more recently Dovonon, Doko and Aguessy (2022). The main purpose of these studies is to propose inference methods in standard moment condition models that are robust to some forms of mixed identification strength.

This paper is concerned with efficiency bounds for the estimation of θ_{0} in models with mixed identification strength. For convenience, we shall focus on a simpler model with \mathbb{L}_{n} including only two possibly different values of δ_{j} so that we have the following partition of the moment function with $0 \leq \delta_{1} \leq \delta_{2}<1 / 2^{1}:$

$$
\begin{equation*}
\phi:=\left(\phi_{1}^{\prime}, \phi_{2}^{\prime}\right)^{\prime} \in \mathbb{R}^{k_{1}} \times \mathbb{R}^{k_{2}}, \rho:=\left(\rho_{1}^{\prime}, \rho_{2}^{\prime}\right)^{\prime} \in \mathbb{R}^{k_{1}} \times \mathbb{R}^{k_{2}}: \quad \mathbb{E}_{P_{n}}\left(\phi_{j}\left(Y_{n i}, \theta\right)\right)=\frac{\rho_{j}(\theta)}{n^{\delta_{j}}}, \quad j=1,2 \tag{5}
\end{equation*}
$$

with $\left[\rho(\theta)=0 \Leftrightarrow \theta=\theta_{0}\right]$.

It is worth clarifying that the moment condition model of interest is given by (1) while (5) presents some auxiliary information about the behaviour of the moment function over the parameter set. Note that the properties in (5) include for $\delta_{1}=\delta_{2}=0$, the standard framework where the model is point identified and the moment function does not drift to 0 uniformly over Θ. In (5), since $\mathbb{E}_{P_{n}}\left(\phi_{1}\left(Y_{n i}, \theta\right)\right)$ vanishes on Θ more slowly than $\mathbb{E}_{P_{n}}\left(\phi_{2}\left(Y_{n i}, \theta\right)\right)$, the former defines the strongest set of moment restrictions if $\delta_{1}<\delta_{2}$.

Examples of moment condition models with mixed identification strength are presented in Dovonon, Doko and Aguessy (2022), Antoine and Renault (2012), and Han and McCloskey (2019). We present

[^1]below the linear IV model with nearly weak instruments which also is object of simulation in Section 4.

Example 1 (Linear IV Model with Nearly Weak Instruments). This example relates to linear regression models with endogenous regressors for which available instrumental variables are possibly weak. Moreover, the set of instruments may be partitioned in two groups, each with a specific magnitude of partial correlation with the endogenous regressor(s). As we can se below, such setting leads to a moment condition model with identification property as in (5).

Specifically, consider the random sample: $\left\{w_{i}:=\left(y_{i}, x_{i}, z_{i}\right) \in \mathbb{R} \times \mathbb{R}^{p} \times \mathbb{R}^{k}: i=1, \ldots, n\right\}$. Assume that:

$$
\begin{align*}
& y_{i}=x_{i}^{\prime} \theta_{0}+u_{i} \tag{6}\\
& x_{i}=\Pi_{1 n} z_{1 i}+\Pi_{2 n} z_{2 i}+v_{i}, \tag{7}\\
\text { with } & : \mathbb{E}\left(z_{i} u_{i}\right)=0, \mathbb{E}\left(z_{i} v_{i}\right)=0, \text { and, for each } n, \operatorname{Rank}\left(\mathbb{E}\left(z_{i} x_{i}^{\prime}\right)\right)=p, \tag{8}
\end{align*}
$$

where, for $j=1,2, \Pi_{j n}=n^{-\delta_{j}} C_{j} ; \quad C_{j} \in \mathbb{R}^{p} \times \mathbb{R}^{k_{j}} ; 0 \leq \delta_{1} \leq \delta_{2} ; z_{i}=\left(z_{1 i}^{\prime}, z_{2 i}^{\prime}\right)^{\prime} ;$ and $k_{1}+k_{2}=k$.
In this representation, δ_{j} captures the strength of the instruments z_{j} through the magnitude of its partial correlation with the endogenous variables. Clearly, θ_{0} solves the moment restriction:

$$
\mathbb{E}\left(z_{i}\left(y_{i}-x_{i}^{\prime} \theta\right)\right)=0 .
$$

Furthermore, assuming - to simplify - that the sets of instruments $z_{1 i}$ and $z_{2 i}$ are orthogonal and letting:

$$
\Delta_{11}:=\mathbb{E}\left(z_{1 i} z_{1 i}^{\prime}\right) ; \quad \Delta_{22}:=\mathbb{E}\left(z_{2 i} z_{2 i}^{\prime}\right) ; \quad \rho_{1}(\theta):=\Delta_{11} C_{1}^{\prime}\left(\theta_{0}-\theta\right) ; \quad \text { and } \quad \rho_{2}(\theta):=\Delta_{22} C_{2}^{\prime}\left(\theta_{0}-\theta\right),
$$

we have:

$$
\mathbb{E}\left(z_{i}\left(y_{i}-x_{i}^{\prime} \theta\right)\right):=\binom{\mathbb{E}\left(z_{1 i}\left(y_{i}-x_{i}^{\prime} \theta\right)\right)}{\mathbb{E}\left(z_{2 i}\left(y_{i}-x_{i}^{\prime} \theta\right)\right)}=\binom{n^{-\delta_{1}} \rho_{1}(\theta)}{n^{-\delta_{2}} \rho_{2}(\theta)} .
$$

This shows that the linear IV model in (6)-(7) yields a moment condition model with mixed identification strength. Thanks to the rank condition in this model specification, we can also verify that

$$
\rho(\theta):=\left(\rho_{1}(\theta)^{\prime}, \rho_{2}(\theta)^{\prime}\right)^{\prime}=0 \Leftrightarrow \theta=\theta_{0} .
$$

We now review the existing results on inference about the model parameter θ_{0}. We emphasize those that are useful to us in the next section on the derivation of efficiency bounds. Let the GMM estimator $\hat{\theta}_{n}$ be defined by

$$
\begin{equation*}
\hat{\theta}_{n}=\arg \min _{\theta \in \Theta} \bar{\phi}_{n}(\theta)^{\prime} W_{n} \bar{\phi}_{n}(\theta), \tag{9}
\end{equation*}
$$

where $\bar{\phi}_{n}(\theta):=n^{-1} \sum_{i=1}^{n} \phi\left(Y_{n i}, \theta\right)$ and W_{n} is a sequence of almost surely symmetric positive definite matrices converging in probability to W, a symmetric positive definite matrix.

Consistency of $\hat{\theta}_{n}$ for θ_{0} is ensured under Assumption A. 1 in Appendix A while Assumptions A.1, A.2, and A. 3 present sufficient conditions for the asymptotic normality of this estimator. The
asymptotic normality of $\hat{\theta}_{n}$ is established by Antoine and Renault (2009, 2012) under the condition that the Jacobian of $\rho(\theta)$ at θ_{0} is full column rank. The rate of convergence of $\hat{\theta}_{n}$ depends on how fast the strongest moment function $\mathbb{E}_{P_{n}}\left(\phi_{1}\left(Y_{n i}, \theta\right)\right)$ vanishes and on the rank s_{1} of the Jacobian matrix of $\rho_{1}(\theta)$ at θ_{0}. If this rank is smaller than p, the dimension of θ_{0}, then the remaining moment restrictions determine the rate of convergence of the $s_{2}:=p-s_{1}$ remaining directions of the parameter. To introduce this asymptotic distribution, we introduce some notation.

We let $s_{1}=\operatorname{Rank}\left(\frac{\partial \rho_{1}}{\partial \theta^{\prime}}\left(\theta_{0}\right)\right)$.

- If $0<s_{1}<p$, define $R=\left(R_{1} \vdots R_{2}\right)$ a (p, p)-matrix such that $R R^{\prime}=I_{p}$ and R_{2} is a $\left(p, p-s_{1}\right)$-matrix with columns spanning the null space of $\frac{\partial \rho_{1}}{\partial \theta^{\prime}}\left(\theta_{0}\right)$ and define:

$$
J=\left(\begin{array}{cc}
\frac{\partial \rho_{1}}{\partial \theta^{\prime}}\left(\theta_{0}\right) R_{1} & 0 \tag{10}\\
0 & \frac{\partial \rho_{2}}{\partial \theta^{\prime}}\left(\theta_{0}\right) R_{2}
\end{array}\right) \quad \text { and } \quad \Lambda_{n}=\left(\begin{array}{cc}
n^{\frac{1}{2}-\delta_{1}} I_{s_{1}} & 0 \\
0 & n^{\frac{1}{2}-\delta_{2}} I_{s_{2}}
\end{array}\right) .
$$

- If $s_{1}=p$, set

$$
J=\left(0: \frac{\partial \rho_{2}^{\prime}}{\partial \theta}\left(\theta_{0}\right)\right)^{\prime}, \quad \Lambda_{n}=n^{\frac{1}{2}-\delta_{1}} I_{p}, \quad \text { and } \quad R=I_{p}
$$

- If $s_{1}=0$, set

$$
J=\left(\frac{\partial \rho_{1}^{\prime}}{\partial \theta}\left(\theta_{0}\right) \vdots 0\right)^{\prime}, \quad \Lambda_{n}=n^{\frac{1}{2}-\delta_{2}} I_{p}, \quad \text { and } \quad R=I_{p}
$$

- Finally, if $\delta_{1}=\delta_{2}=\delta$, set

$$
J=\frac{\partial \rho\left(\theta_{0}\right)}{\partial \theta^{\prime}}, \quad \Lambda_{n}=n^{\frac{1}{2}-\delta} I_{p}, \quad \text { and } \quad R=I_{p} .
$$

Under Assumptions A.1, A. 2 and A. 3 in Appendix A, we can claim, following Antoine and Renault $(2009,2012)$ that, under P_{n},

$$
\begin{equation*}
\Lambda_{n} R^{-1}\left(\hat{\theta}_{n}-\theta_{0}\right) \xrightarrow{d} N(0, \Omega(W)), \quad \text { with } \quad \Omega(W):=\left(J^{\prime} W J\right)^{-1} J^{\prime} W \Sigma W J\left(J^{\prime} W J\right)^{-1}, \tag{11}
\end{equation*}
$$

where Σ is the asymptotic variance of $\sqrt{n} \bar{\phi}_{n}\left(\theta_{0}\right)$, under P_{n}.

As is standard in GMM theory, the asymptotic distribution of the GMM estimator depends on the probability limit W of the weighting matrix. Antoine and Renault (2009) show that the asymptotic variance is minimal for the choice $W=\Sigma^{-1}$. They show (see p.S151) how feasible estimators with asymptotic variance $\Omega\left(\Sigma^{-1}\right)=\left(J^{\prime} \Sigma^{-1} J\right)^{-1}$ can be obtained. Interestingly, the proposed procedure is the same as that of the two-step GMM estimator in standard models. They also show that standard formulas for inference based on the two-step GMM are valid in the context of moment condition models with mixed identification strength. This highlight some robustness of the two-step GMM inference procedure to the identification pattern in (5) under the conditions in Assumptions A.1, A. 2 and A.3. There is no need to know s_{1}, R, nor the rates of convergence in Λ_{n} to build asymptotically valid inference about θ_{0} using the two-step GMM estimator.

In the next section, we derive the asymptotic semiparametric efficiency bound for the estimation of θ_{0} in the moment condition model (1) under the mixed identification strength property in (5). Our results indicate that the minimum variance $\Omega\left(\Sigma^{-1}\right)$ corresponds to the semiparametric efficiency variance-bound for estimators that are regular in a sense that we will make precise.

3 Efficiency bound

This section derives the asymptotic efficiency bound for the estimation of θ_{0} in the moment condition model (1) characterized by the mixed identification strength property in (5). For this purpose, we rely on the technique introduced by Dovonon and Atchadé (2020). Their approach consists in: obtaining the semiparametric family implicitly induced by (1) in the form $\left\{f^{2}(\theta, h, \cdot):(\theta, h) \in \mathcal{V}\right\}$, where $f^{2}(\theta, h, \cdot)$ is the probability density function of Y with respect to a reference measure, and indexed by θ in Θ and h lying in a Hilbert space. This semiparametric model is then used to obtain an efficiency bound in the direction of θ by relying on a similar approach to Begun, Hall, Huang and Wellner (1983).

3.1 (Semi)parametric representation of moment condition models

Consider again the row-wise independent and identically distributed triangular array $\left\{Y_{n 1}, \ldots, Y_{n n}\right\}$ of \mathbb{R}^{d}-valued random vectors and common distribution P_{n}. Let $L^{2}\left(P_{n}\right)$ denote $L^{2}\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right), P_{n}\right)$, a Hilbert space of real-valued functions on \mathbb{R}^{d}. Following Dovonon and Atchadé (2020), we next characterize the semiparametric family induced by the moment condition (1) in the form of density functions with respect to P_{n}. This allows to handle random variables with finite, discrete or continuous support in a unified manner. Our approach contrasts with Chamberlain (1987) who mainly considers random variables with finite support and provides extensions to continuous variables through an approximation theory. The main difference between the current set-up and Dovonon and Atchadé (2020) is that the reference measure P_{n} in the former depends on n to accommodate triangular arrays, while it is fixed in the latter.

We let $\nabla_{\theta}^{(j)} \phi(y, \theta)$ denote the j-th order differential of the map $\theta \mapsto \phi(y, \theta)$ evaluated at θ with the convention that $\nabla_{\theta}^{(0)} \phi(y, \theta)=\phi(y, \theta)$ and we make the following assumption.

Assumption 1

(i) There exists a neighbourhood Θ of θ_{0}, a $L^{2}\left(P_{n}\right)$-neighbourhood \mathcal{N} of $f_{n, 0} \equiv 1$, and a finite constant $C>0$, such that for P_{n}-almost all $y \in \mathbb{R}^{d}$, $\theta \mapsto \phi(y, \theta)$ is r-times continuously differentiable on Θ and, for all $f \in \mathcal{N}$,

$$
\int \sup _{\theta \in \Theta}\left\|\nabla_{\theta}^{(j)} \phi(y, \theta)\right\| f^{2}(y) P_{n}(d y) \leq C
$$

for $j=0, \ldots, r$.
(ii) The matrix $\Sigma_{n}=\int \phi\left(y, \theta_{0}\right) \phi\left(y, \theta_{0}\right)^{\prime} P_{n}(d y)$ is positive definite.

Assumption 1 imposes some uniform dominance condition on $\nabla_{\theta}^{(j)} \phi(y, \theta)$ to ensure that this function is well-behaved. Note also that $f_{n, 0}(y)=1$ is the density with respect to P_{n} of $Y_{n i}$ when the latter is distributed as P_{n}. This assumption imposes, in particular, that the relevant functions are integrable with respect to any density function in a certain neighbourhood of $f_{n, 0}$. The second part of the assumption is quite standard.

Towards the introduction of the implicit model, further notation is needed. We equip $L^{2}\left(P_{n}\right)$ with the inner product $\langle u, v\rangle=\int u(y) v(y) P_{n}(d y):=\mathbb{E}_{P_{n}}(u(Y) v(Y))$. More generally, for $u: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s \times r}$ and $v: \mathbb{R}^{d} \rightarrow \mathbb{R}^{q \times r},\langle u, v\rangle=\mathbb{E}_{P_{n}}\left(u(Y) v(Y)^{\prime}\right)$, where the expectation of any matrix is understood to be component-wise.

Let $\varphi(y)=\left(\varphi_{1}(y), \ldots, \varphi_{k}(y)\right)^{\prime}=\Sigma_{n}^{-1 / 2} \phi\left(y, \theta_{0}\right)$, and $\varphi_{k+1}(y)=1$. For all $\theta \in \Theta$, let $\varphi_{\theta}(y)=$ $\Sigma_{n}^{-1 / 2} \phi(y, \theta)$. Further, let $\bar{\varphi}=\left(1, \varphi^{\prime}\right)^{\prime}=\left(\varphi_{k+1}, \varphi^{\prime}\right)^{\prime}$ and $\bar{\varphi}_{\theta}=\left(1, \varphi_{\theta}^{\prime}\right)^{\prime}=\left(\varphi_{k+1}, \varphi_{\theta}^{\prime}\right)^{\prime}$. Thanks to the moment condition (1), the elements of $\bar{\varphi}$ are orthonormal elements of $L^{2}\left(P_{n}\right)$. By separability of $L^{2}\left(P_{n}\right), \bar{\varphi}$ can be extended to have an orthonormal basis $\left\{\varphi_{j}: j \geq 1\right\}$ of $L^{2}\left(P_{n}\right)$ and let \mathcal{E} denote the closed span of the subspace $L^{2}\left(P_{n}\right)$ generated by $\left\{\varphi_{j}: j \geq k+2\right\}$. Note that the elements of the basis $\left\{\varphi_{j}: j \geq 1\right\}$ ultimately depend on n but we do not stress this in the notation for simplicity.

We introduce the map \mathcal{M} defined on $\Theta \times \mathcal{E} \times L^{2}\left(P_{n}\right)$ taking values in $L^{2}\left(P_{n}\right)$ such that for any $(\theta, h, f) \in \Theta \times \mathcal{E} \times L^{2}\left(P_{n}\right)$,

$$
\begin{equation*}
\mathcal{M}(\theta, h, f):=\frac{1}{2}\left\langle f^{2}, \varphi_{\theta}\right\rangle \varphi+\frac{1}{2}\left(\int f^{2}(y) P_{n}(d y)-1\right) \varphi_{k+1}+\sum_{j=k+2}^{\infty}\left\langle\varphi_{j}, f-h\right\rangle \varphi_{j} . \tag{12}
\end{equation*}
$$

By construction, the set of solutions of the equation $\mathcal{M}(\theta, h, f)=0$ collects all the combinations $(\theta, f) \in \Theta \times L^{2}\left(P_{n}\right)$ consistent with the moment condition model. That is, all (θ, f) such that $\int \phi(y, \theta) f^{2}(y) P_{n}(d y)=0$. To see this, note that, for any $(\theta, h, f), \mathcal{M}(\theta, h, f)=0$ if and only if

$$
\int \phi(y, \theta) f^{2}(y) P_{n}(d y)=0, \quad \int f^{2}(y) P_{n}(d y)=1, \quad \text { and } \quad\left\langle\varphi_{j}, f-h\right\rangle=0, \quad \forall j \geq k+2 .
$$

This means that the triplets (θ, h, f) that set \mathcal{M} to zero are those in which f^{2} is a density function with respect to P_{n} and θ is a solution to the moment condition model with Y having f^{2} as density function with respect to P_{n}. Moreover, h is the projection of f on the remaining directions $\left\{\varphi_{j}: j \geq k+2\right\}$ of the considered basis. Conversely, if $(\theta, f) \in \Theta \times L^{2}\left(P_{n}\right)$ is such that $f^{2}(y)$ is a density function with respect to P_{n} and $\int \phi(y, \theta) f^{2}(y) P_{n}(d y)=0$, then $\mathcal{M}\left(\theta, \operatorname{proj}_{\mathcal{E}}(f), f\right)=0$, where $\operatorname{proj}_{\mathcal{E}}$ is the orthogonal projection operator on the subspace \mathcal{E}.

Letting $h_{0}=0_{\mathcal{E}}$, we have $\mathcal{M}\left(\theta_{0}, h_{0}, f_{n, 0}\right)=0$. Lemma 2.1 of Dovonon and Atchadé (2020) shows that under Assumption 1, \mathcal{M} is r-times continuously differentiable and for any $g \in L^{2}\left(P_{n}\right)$,

$$
\nabla_{f} \mathcal{M}\left(\theta_{0}, h_{0}, f_{n, 0}\right) \cdot g=\langle g, \bar{\varphi}\rangle \bar{\varphi}+\sum_{j \geq q+2}\left\langle\phi_{j}, g\right\rangle \phi_{j}=g .
$$

It follows that $\nabla_{f} \mathcal{M}\left(\theta_{0}, h_{0}, f_{n, 0}\right)$ is an isomorphism of $L^{2}\left(P_{n}\right)$ and the implicit function theorem allows us to claim that there exists a neighbourhood \mathcal{V} of $\left(\theta_{0}, h_{0}\right)$, a neighbourhood \mathcal{U} of $f_{n, 0}$ and a r-times continuously differentiable function $f: \mathcal{V} \rightarrow \mathcal{U}$ such that $f\left(\theta_{0}, h_{0}\right)=f_{n, 0}$ and for all $(\theta, h) \in \mathcal{V}$,

$$
\mathcal{M}(\theta, h, f(\theta, h))=0
$$

The family of functions $\{f(\theta, h, \cdot):(\theta, h) \in \mathcal{V}\}$ defines the semiparametric model induced by the moment condition (1). This family is further characterized by the following proposition which follows readily from Lemma 2.2 of Dovonon and Atchadé (2020).

Proposition 3.1 If θ_{0} satisfies (1), and Assumption 1 holds with $r=2$, then there exists a neighborhood \mathcal{V} of $\left(\theta_{0}, h_{0}\right)$ in $\mathbb{R}^{p} \times \mathcal{E}$, where h_{0} denotes the zero element of \mathcal{E}, a family $\{f(\theta, h, \cdot):(\theta, h) \in \mathcal{V}\}$ of measurable functions on \mathbb{R}^{k}, such that $f\left(\theta_{0}, h_{0}, \cdot\right)=f_{n, 0}:=1$, and for all $(\theta, h) \in \mathcal{V}$,

$$
\int \phi(y, \theta) f^{2}(\theta, h, y) P_{n}(d y)=0, \quad \int f^{2}(\theta, h, y) P_{n}(d y)=1
$$

Furthermore, the map $(\theta, h) \mapsto f(\theta, h, \cdot)$ is differentiable and its first partial derivatives are given by

$$
\forall h_{1} \in \mathcal{E}, \quad \nabla_{h} f(\theta, h, \cdot) \cdot h_{1}=h_{1}-\left\langle f_{\theta, h} h_{1}, \bar{\varphi}_{\theta}\right\rangle\left\langle f_{\theta, h} \bar{\varphi}, \bar{\varphi}_{\theta}\right\rangle^{-1} \bar{\varphi},
$$

and

$$
\begin{aligned}
& \forall w \in \mathbb{R}^{p}, \quad \nabla_{\theta} f(\theta, h, \cdot) \cdot w=-\frac{1}{2} w^{\prime}\left\langle f_{\theta, h}^{2}, \nabla_{\theta} \bar{\varphi}_{\theta}\right\rangle\left\langle f_{\theta, h} \bar{\varphi}, \bar{\varphi}_{\theta}\right\rangle^{-1} \bar{\varphi}, \\
& \text { For } j=1, \ldots, p, \frac{\partial}{\partial \theta_{j}} f(\theta, h, \cdot)=-\frac{1}{2}\left\langle f_{\theta, h}^{2}, \frac{\partial}{\partial \theta_{j}} \bar{\varphi}_{\theta}\right\rangle\left\langle f_{\theta, h} \bar{\varphi}, \bar{\varphi}_{\theta}\right\rangle^{-1} \bar{\varphi} .
\end{aligned}
$$

In particular, $\nabla_{\theta} f(\theta, h, \cdot)$ evaluated at $\left(\theta_{0}, h_{0}\right)$ is $\nabla_{\theta} f\left(\theta_{0}, h_{0}, \cdot\right)=-\frac{1}{2} \Gamma_{n}^{\prime} \Sigma_{n}^{-1 / 2} \varphi$, where

$$
\Gamma_{n} \equiv \mathbb{E}_{P_{n}}\left(\nabla_{\theta} \phi\left(Y, \theta_{0}\right)\right) .
$$

with $f_{\theta, h}(\cdot)$ standing for $f(\theta, h, \cdot)$. Furthermore, for $i, k=1 \ldots, p$,

$$
\begin{align*}
\frac{\partial^{2}}{\partial \theta_{k} \partial \theta_{j}} f(\theta, h, \cdot)= & -\frac{1}{2}\left\langle f_{\theta, h}^{2}, \frac{\partial^{2}}{\partial \theta_{k} \partial \theta_{j}} \bar{\varphi}_{\theta}\right\rangle\left\langle f_{\theta, h} \bar{\varphi}, \bar{\varphi}_{\theta}\right\rangle^{-1} \bar{\varphi} \\
& -\left\langle f_{\theta, h}^{2}, \frac{\partial}{\partial \theta_{k}} \bar{\varphi}_{\theta}\right\rangle\left\langle f_{\theta, h} \bar{\varphi}, \bar{\varphi}_{\theta}\right\rangle^{-1}\left\langle f_{\theta, h} \bar{\varphi}, \frac{\partial}{\partial \theta_{j}} \bar{\varphi}_{\theta}\right\rangle\left\langle f_{\theta, h} \bar{\varphi}, \bar{\varphi}_{\theta}\right\rangle^{-1} \bar{\varphi} \\
+ & \frac{1}{2}\left\langle f_{\theta, h}^{2}, \frac{\partial}{\partial \theta_{j}} \bar{\varphi}_{\theta}\right\rangle\left\langle f_{\theta, h} \bar{\varphi}, \bar{\varphi}_{\theta}\right\rangle^{-1}\left\langle f_{\theta, h} \bar{\varphi}, \frac{\partial}{\partial \theta_{k}} \bar{\varphi}_{\theta}\right\rangle\left\langle f_{\theta, h} \bar{\varphi}, \bar{\varphi}_{\theta}\right\rangle^{-1} \bar{\varphi} \\
& \quad+\frac{1}{2}\left\langle f_{\theta, h}^{2}, \frac{\partial}{\partial \theta_{j}} \bar{\varphi}_{\theta}\right\rangle\left\langle f_{\theta, h} \bar{\varphi}, \bar{\varphi}_{\theta}\right\rangle^{-1}\left\langle\bar{\varphi} \frac{\partial}{\partial \theta_{k}} f_{\theta, h}, \bar{\varphi}_{\theta}\right\rangle\left\langle f_{\theta, h} \bar{\varphi}, \bar{\varphi}_{\theta}\right\rangle^{-1} \bar{\varphi} . \tag{13}
\end{align*}
$$

3.2 Efficiency bounds for the (semi)parametric representation

To obtain semiparametric efficiency bounds for the estimation of θ_{0} in model (1), we focus on the family of semiparametric density functions $\{f(\theta, h, \cdot):(\theta, h) \in \mathcal{V}\}$ induced by the moment condition model as established by Proposition 3.1. Our goal from this point consists in obtaining a bound for the parametric component θ in this induced semiparametric model and then show that this bound is sharp.

Of interest to us is the approach of BHHW (1983) to derive efficiency bounds for parameters of semiparametric models represented by a family of density functions depending on both a finite and an infinite dimension parameters. Their consists in collecting all the elements $\alpha \in L^{2}(\mu)$ - where μ is
a dominating measure with respect to which the family of model densities are expressed - and all the sequences θ_{n}, h_{n} converging to θ_{0} and h_{0} such that:

$$
\left\|\sqrt{n}\left(f\left(\theta_{n}, h_{n}\right)-f_{n, 0}\right)-\alpha\right\|_{L^{2}(\mu)} \longrightarrow 0, \text { as } n \rightarrow \infty .
$$

Such α 's necessarily belong to the tangent set of $f\left(\theta_{n}, h_{n}\right)$ at $\left(\theta_{0}, h_{0}\right)$ so that $\int \alpha f d \mu=0$. This property is used to establish that the log-likelihood ratio of the sample under the distributions $f\left(\theta_{n}, h_{n}\right)$ and $f_{n, 0}$ is asymptotically normal. Then, this local asymptotic normality (LAN) property of the log-likelihood is used to derive efficiency bounds for a class of regular estimators.

Although our semiparametric model of interest fits with that analysed by BHHW, a key difference resides in the fact that our model involves density functions with respect to a dominating measure P_{n} that varies with the sample size. We first re-examine the result of BHHW in light of this difference and we propose a refined version of the LAN property established by their Lemma 2.1 that accommodates our settings.

We propose the extension in a context more general than needed for us. Let $(\mathfrak{X}, \mathscr{C})$ be a measurable space and $\mu_{n}, n \geq 0$ a sequence of sigma-finite measures on $(\mathfrak{X}, \mathscr{C})$. Let $f_{n}^{2}, n \geq 0$ and $g_{n}^{2}, n \geq 0$ be two sequences of density functions on \mathfrak{X} with respect to μ_{n}. Let $L^{2}\left(\mu_{n}\right)$ denote $L^{2}\left(\mathfrak{X}, \mathscr{C}, \mu_{n}\right)$. By definition, $f_{n}, g_{n} \in L^{2}\left(\mu_{n}\right)$ and $\left\|f_{n}\right\|_{\mu_{n}}=1$ and $\left\|g_{n}\right\|_{\mu_{n}}=1$; where $\|h\|_{\mu}^{2}=\int h^{2} d \mu$. Let $\alpha_{n} \in L^{2}\left(\mu_{n}\right)$ such that $a^{2}=\lim _{n \rightarrow \infty}\left\|\alpha_{n}\right\|_{\mu_{n}}^{2}<\infty$.

Let $X_{n 1}, \ldots, X_{n n}$ be a row-wise independent and identically distributed triangular array of \mathfrak{X} valued random variables. Define the likelihood ratio L_{n} by:

$$
\begin{equation*}
L_{n}=\log \left\{\prod_{i=1}^{n} g_{n}^{2}\left(X_{n i}\right) / \prod_{i=1}^{n} f_{n}^{2}\left(X_{n i}\right)\right\} . \tag{14}
\end{equation*}
$$

We have the following result:
Theorem 3.2 (Local asymptotic normality.) If g_{n} and f_{n} defined above are such that, for $\alpha_{n} \in$ $L^{2}\left(\mu_{n}\right)$,

$$
\begin{equation*}
\left\|\sqrt{n}\left(g_{n}-f_{n}\right)-\alpha_{n}\right\|_{\mu_{n}} \rightarrow 0, \quad \text { as } \quad n \rightarrow \infty \tag{15}
\end{equation*}
$$

then:
(i) $\nu_{n}:=\int f_{n} \alpha_{n} d \mu_{n} \rightarrow 0$ as $n \rightarrow \infty$.
(ii) If in addition, $\left\|\alpha_{n}\right\|_{\mu_{n}}^{2} \rightarrow a^{2}<\infty$ as $n \rightarrow \infty$, then, for every $\epsilon>0$,

$$
P_{f_{n}}\left(\left|L_{n}-2 n^{-1 / 2} \sum_{i=1}^{n}\left[\alpha_{n}\left(X_{n i}\right) / f_{n}\left(X_{n i}\right)-\nu_{n}\right]+\sigma^{2} / 2\right|>\epsilon\right) \rightarrow 0
$$

as $n \rightarrow \infty$, where, for any μ-measurable set $A, P_{f}(A)=\int_{A} f^{2} d \mu$, and $\sigma^{2}=4 a^{2}$. Furthermore, under $P_{f_{n}}$,

$$
L_{n} \xrightarrow{d} N\left(-\sigma^{2} / 2, \sigma^{2}\right)
$$

as $n \rightarrow \infty$ and the sequences $\left\{\prod_{i=1}^{n} g_{n}^{2}\left(x_{i}\right)\right\}$ and $\left\{\prod_{i=1}^{n} f_{n}^{2}\left(x_{i}\right)\right\}$ are contiguous.

Proof: See Appendix.

This result shows that in our context, if $\alpha_{n} \in L^{2}\left(P_{n}\right)$ is such that

$$
\begin{equation*}
\left\|\sqrt{n}\left(f\left(\theta_{n}, h_{n}\right)-f_{n, 0}\right)-\alpha_{n}\right\|_{L^{2}\left(P_{n}\right)} \rightarrow 0 \tag{16}
\end{equation*}
$$

we do not necessarily have $\int \alpha_{n} f_{n, 0} d P_{n}=0$ but instead

$$
\lim _{n \rightarrow \infty} \int \alpha_{n} f_{n, 0} d P_{n} \rightarrow 0
$$

and the LAN property of in Part (ii) can be obtained from this asymptotic form of tangent space. We shall rely on this refinement to establish the main results in this paper.

Perhaps, at this point, it is worth addressing the fact that, for the same sequence $\left(f\left(\theta_{n}, h_{n}\right), f_{n, 0}\right)$, many sequences α_{n} of elements of $L^{2}\left(P_{n}\right)$ may satisfy (16). We observe, thanks to the triangle inequality, that any pair of sequences $\alpha_{1, n}$ and $\alpha_{2, n}$ that satisfy (16) are such that

$$
\begin{aligned}
\mid\left\|\alpha_{1, n}\right\|_{L^{2}\left(P_{n}\right)}- & \left\|\alpha_{2, n}\right\|_{L^{2}\left(P_{n}\right)} \mid \leq\left\|\alpha_{1, n}-\alpha_{2, n}\right\|_{L^{2}\left(P_{n}\right)} \\
& \leq\left\|\sqrt{n}\left(f\left(\theta_{n}, h_{n}\right)-f_{n, 0}\right)-\alpha_{1, n}\right\|_{L^{2}\left(P_{n}\right)}+\left\|\sqrt{n}\left(f\left(\theta_{n}, h_{n}\right)-f_{n, 0}\right)-\alpha_{2, n}\right\|_{L^{2}\left(P_{n}\right)} \rightarrow 0 .
\end{aligned}
$$

As a result, $\left\|\alpha_{1, n}\right\|_{L^{2}\left(P_{n}\right)}$ and $\left\|\alpha_{2, n}\right\|_{L^{2}\left(P_{n}\right)}$ have the same limit inferior and the same limit superior. This property is of particular interest since α_{n} is related to the local asymptotic normal distribution in Theorem 3.2 only through the limit of its $L^{2}\left(P_{n}\right)$-norm if such a limit exists. Clearly, the existence of the limit for one solution of (16) implies that any other solution has the same limit. The practical consequence of this is that we can focus on any solution of (16) to develop our asymptotic efficiency theory.

Characterization of the asymptotic tangent space. Let us now give a more specific sense to $g_{n}(\cdot):=f\left(\theta_{n}, h_{n}, \cdot\right)$ by determining the set of all sequences of $\left\{\left(\theta_{n}, h_{n}\right)\right\}_{n}$ of interest and the associated α_{n} that guarantee (16). For this, we need to make a choice about the rate of convergence of (θ_{n}, h_{n}) to $\left(\theta_{0}, h_{0}\right)$. If all the components of θ_{0} were estimable at the same rate, r_{n}, the standard approach consists in using that rate to characterize the local parameters $\left(\theta_{n}, h_{n}\right)$. This is the case in the theory of BHHW where $r_{n}=\sqrt{n}$. However, the asymptotic distribution in (11) shows that, except for the extreme cases of $s_{1}=0$ and $s_{1}=p$, standard estimators of θ_{0} do not converge at the same rate in all directions.

If we were to determine the local sequences θ_{n} based directly on the rate of convergence of the GMM estimator, it appears that information related to the directions estimable at a faster rate would be lost and, thereby compromising efficiency. The results in Section 2 on GMM estimation provide an intuition about this claim. The rate of convergence of this estimator is $n^{1 / 2-\delta_{2}}$ which is related to the directions estimable at the slowest rate. From (11), we can claim that, under P_{n},

$$
n^{1 / 2-\delta_{2}}\left(\hat{\theta}_{n}-\theta_{0}\right) \xrightarrow{d} N\left(0, R_{2} \Omega(W)_{22} R_{2}^{\prime}\right),
$$

where $\Omega(W)_{22}$ is the lower-right $\left(s_{2}, s_{2}\right)$-sub-matrix of $\Omega(W)$. This is a degenerated Gaussian limit that accounts only for a subset of estimation directions by omitting the faster ones.

Because of this, it makes more sense to focus on the rotation of the parameter that disentangle the estimation directions with sharp rates. As established by (11), the first s_{1} components of $\nu_{0}=R^{-1} \theta_{0}$ are estimable at rate $n^{\frac{1}{2}-\delta_{1}}$ while the remaining s_{2} are at rate $n^{\frac{1}{2}-\delta_{2}}$ and those rates are sharp. We shall consider this fact and explore sequences $\left(\theta_{n}\right)$ such that:

$$
\begin{equation*}
\Lambda_{n} R^{-1}\left(\theta_{n}-\theta_{0}\right)-\eta \rightarrow 0 \tag{17}
\end{equation*}
$$

as $n \rightarrow \infty$ for some $\eta \in \mathbb{R}^{p}$, and R a rotation matrix satisfying the definition in (10).
Effectively, efficient bounds for θ_{0} are explored in the case $0<s_{1}<p$ through its linear transformation $\nu_{0}=R^{-1} \theta_{0}$. We will say that an estimator $\tilde{\theta}$ of θ_{0} is asymptotically efficient if there is a rotation R as defined in (10) such that $R^{-1} \tilde{\theta}$ is an asymptotically efficient estimator of $\nu_{0, R}:=R^{-1} \theta_{0}$. We shall see that if $\tilde{\theta}$ is asymptotically efficient for a specific rotation, it is also asymptotically efficient for any other rotation consistent with that definition.

Remark 1 It is worth mentioning that the set of sequences $\left(\theta_{n}\right)$ determined by (17) is the same regardless of the choice of rotation matrix R. To see this, note that if \mathbf{R} is another rotation matrix consistent with the definition (10) (i.e., $\mathbf{R}=\left(\mathbf{R}_{1} \mid \mathbf{R}_{2}\right)$ such that $\mathbf{R} \mathbf{R}^{\prime}=I_{p}$ and \mathbf{R}_{2} 's columns span the null space of $\left.\partial \rho_{1}\left(\theta_{0}\right) / \partial \theta^{\prime}\right)$, we have:

$$
\mathbf{R}=R A, \quad A=\left(\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right), \quad A_{j} \text { is }\left(s_{j}, s_{j}\right) \text {-matrix such that } A_{j}^{\prime} A_{j}=I_{s_{j}}, \quad(j=1,2)
$$

Hence, it is not hard to establish that, if $\left(\theta_{n}\right)$ satisfies (17) with the rotation matrix R, it also satisfies (17) with the rotation matrix \mathbf{R} and η replaced by $A^{\prime} \eta$.

This remark shows that the choice of rotation matrix is immaterial in the collection of local sequences $\left(\theta_{n}\right)$ given by (17). We reiterate that the discussion on rotation is relevant only in models where $0<s_{1}<p$. Note that the relevant sequences $\left(\theta_{n}\right)$ are such that for some $\eta \in \mathbb{R}^{p}$,

$$
\begin{align*}
\text { if } s_{1}=p, \Lambda_{n} R^{-1}\left(\theta_{n}-\theta_{0}\right)-\eta= & n^{1 / 2-\delta_{1}}\left(\theta_{n}-\theta_{0}\right)-\eta \rightarrow 0, \text { and } \\
& \text { if } s_{1}=0, \Lambda_{n} R^{-1}\left(\theta_{n}-\theta_{0}\right)-\eta=n^{1 / 2-\delta_{2}}\left(\theta_{n}-\theta_{0}\right)-\eta \rightarrow 0 \tag{18}
\end{align*}
$$

so that no rotation is explicitly involved. Our aim is to derive an efficiency bound for the estimation of θ_{0} that is valid whether $s_{1}=0, p$ or $0<s_{1}<p$. For this reason, we will consider sequences defined by (17) with the understanding that this definition collapses to (18) in the extreme cases.

Regarding the non-parametric component of the model, we consider $\left(h_{n}\right)$ such that

$$
\begin{equation*}
\left\|\sqrt{n}\left(h_{n}-h_{0}\right)-\beta\right\|_{L^{2}\left(P_{n}\right)} \rightarrow 0 \tag{19}
\end{equation*}
$$

as $n \rightarrow \infty$, for some $\beta \in L^{2}\left(P_{n}\right)$. The parametric rate in the definition of $\left(h_{n}\right)$ may seem arbitrary but the consequence of this choice is that the set of sequences $\left(h_{n}\right)$ thus defined is small and may lead to irrelevant bounds. We shall see later that this set is actually the right one as the resulting bound
will be proved sharp.

Following similar lines to BHHW, we collect all these sequences in specific sets by letting $\Theta\left(\theta_{0}, \eta\right)$ denote the set of all sequences $\left(\theta_{n}\right)$ satisfying (17) and $\Theta\left(\theta_{0}\right)=\bigcup_{\eta \in \mathbb{R}^{p}} \Theta\left(\theta_{0}, \eta\right)$. Similarly, $\mathcal{C}\left(h_{0}, \beta\right)$ denotes the collection of all sequences $\left(h_{n}\right)$ such that (19) holds and $\mathcal{C}\left(h_{0}\right)=\bigcup_{\beta \in \mathcal{B}\left(h_{0}\right)} \mathcal{C}\left(h_{0}, \beta\right)$, where

$$
\mathcal{B}\left(h_{0}\right)=\left\{\beta \in \mathcal{E} \text { such that (19) holds for some sequence }\left(h_{n}\right) \text { of elements of } \mathcal{E}\right\} .
$$

The sequences of experiments that we shall consider are:

$$
\begin{equation*}
g_{n}^{2}(\cdot):=f^{2}\left(\theta_{n}, h_{n}, \cdot\right), \quad \text { with } \quad\left\{\left(\theta_{n}\right),\left(h_{n}\right)\right\} \in \Theta\left(\theta_{0}\right) \times \mathcal{C}\left(h_{0}\right) . \tag{20}
\end{equation*}
$$

From Proposition 3.1, $(\theta, h) \mapsto f(\theta, h)$ is twice continuously Fréchet differentiable and this is sufficient to claim that it is Hellinger differentiable at $\left(\theta_{0}, h_{0}\right)$. Actually, by the Taylor's formula, there exists a function $r_{n, \theta_{0}} \in L^{2}\left(P_{n}\right)$ and a bounded linear operator $A_{n}: L^{2}\left(P_{n}\right) \rightarrow L^{2}\left(P_{n}\right)$ such that:

$$
\begin{equation*}
\left\|g_{n}-f_{n, 0}-r_{n, \theta_{0}} \cdot\left(\theta_{n}-\theta_{0}\right)-A_{n} \cdot\left(h_{n}-h_{0}\right)\right\|_{L^{2}\left(P_{n}\right)}=\left\|R_{2}\left(\theta_{n}, h_{n}, \cdot\right)\right\|_{L^{2}\left(P_{n}\right)}, \tag{21}
\end{equation*}
$$

where the norm of the Lagrange remainder $R_{2}\left(\theta_{n}, h_{n}, \cdot\right)$ satisfies:

$$
\begin{aligned}
&\left\|R_{2}\left(\theta_{n}, h_{n}, \cdot\right)\right\|_{L^{2}\left(P_{n}\right)} \leq \| \frac{1}{2} \sum_{j, k=1}^{p} \frac{\partial^{2}}{\partial \theta_{j} \partial \theta_{k}} f(\bar{\theta}, \bar{h}, \cdot)\left(\theta_{n, j}-\theta_{0, j}\right)\left(\theta_{n, k}-\theta_{0, k}\right) \\
&+O\left(\left\|\theta_{n}-\theta_{0}\right\|\left\|h_{n}-h_{0}\right\|_{L^{2}\left(P_{n}\right)}\right)+O\left(\left\|h_{n}-h_{0}\right\|_{L^{2}\left(P_{n}\right)}^{2}\right) \|_{L^{2}\left(P_{n}\right)}
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\sqrt{n}\left\|R_{2}\left(\theta_{n}, h_{n}, \cdot\right)\right\|_{L^{2}\left(P_{n}\right)} \leq \frac{\sqrt{n}}{2} \sum_{j, k=1}^{p}\left\|\frac{\partial^{2}}{\partial \theta_{j} \partial \theta_{k}} f(\bar{\theta}, \bar{h}, \cdot)\right\|_{L^{2}\left(P_{n}\right)} \cdot\left\|\theta_{n}-\theta_{0}\right\|^{2}+o(1), \tag{22}
\end{equation*}
$$

with $\bar{\theta}=t \theta_{n}+(1-t) \theta_{0}$ and $\bar{h}=t h_{n}+(1-t) h_{0} ; t \in(0,1)$.
Recall that $\left\|h_{n}-h_{0}\right\|_{L^{2}\left(P_{n}\right)}=O\left(n^{-1 / 2}\right)$ and $\left\|\theta_{n}-\theta_{0}\right\|=O\left(n^{-1 / 2+\delta_{2}}\right)$ and, although the identification properties allow for small order of magnitude, the second-order differentiability assumption ensures that: $\left\|\partial^{2} f(\bar{\theta}, \bar{h}, \cdot) / \partial \theta_{j} \partial \theta_{k}\right\|_{L^{2}\left(P_{n}\right)}=O(1)$.

Hence, if $\delta_{2}<1 / 4$,

$$
\begin{equation*}
\sqrt{n}\left\|R_{2}\left(\theta_{n}, h_{n}, \cdot\right)\right\|_{L^{2}\left(P_{n}\right)}=o(1) . \tag{23}
\end{equation*}
$$

The magnitude of this remainder is obtained in the case $\delta_{2} \geq 1 / 4$ by relying on Lemma B. 1 in Appendix B which shows under some regularity conditions that

$$
\begin{equation*}
\left\|\frac{\partial^{2}}{\partial \theta_{j} \partial \theta_{k}} f(\bar{\theta}, \bar{h}, \cdot)\right\|_{L^{2}\left(P_{n}\right)}=O\left(n^{-\delta_{1}} \vee n^{-1+2 \delta_{2}}\right) \tag{24}
\end{equation*}
$$

The set on which (23) holds is given by (δ_{1}, δ_{2}) satisfying

$$
\left[-\delta_{1} \leq-1+2 \delta_{2} ; \delta_{2}<3 / 8 ; \delta_{2} \geq 1 / 4 ; \delta_{2} \geq \delta_{1}\right] \bigcup\left[-\delta_{1}>-1+2 \delta_{2} ; \delta_{2}<1 / 4+\delta_{1} / 2 ; \delta_{2} \geq 1 / 4 ; \delta_{2} \geq \delta_{1}\right]
$$

This amounts to (δ_{1}, δ_{2}) satisfying:

$$
C:=\left[\delta_{1} \leq \delta_{2}<\frac{1}{4}+\frac{\delta_{1}}{2} \quad \text { and } \quad \frac{1}{4} \leq \delta_{2}<\frac{3}{8}\right] .
$$

Let the set Δ be defined by:

$$
\begin{equation*}
\Delta:=\left\{(\delta _ { 1 } , \delta _ { 2 }) \in \left[0,1 / 2\left[\times\left[0,1 / 2\left[\text { such that }\left(\delta_{1} \leq \delta_{2}<1 / 4\right) \vee C\right\} .\right.\right.\right.\right. \tag{25}
\end{equation*}
$$

For any $\left(\delta_{1}, \delta_{2}\right) \in \Delta$, the discussion above implies that

$$
\begin{equation*}
\left\|\sqrt{n}\left(g_{n}-f_{n}\right)-\sqrt{n}\left(r_{n, \theta_{0}} \cdot\left(\theta_{n}-\theta_{0}\right)+A_{n} \cdot\left(h_{n}-h_{0}\right)\right)\right\|_{L^{2}\left(P_{n}\right)} \rightarrow 0, \quad \text { as } \quad n \rightarrow \infty . \tag{26}
\end{equation*}
$$

Therefore, we can define α_{n} satisfying (16) as any element of $L^{2}\left(P_{n}\right)$ such that:

$$
\left\|\alpha_{n}-\sqrt{n}\left(r_{n, \theta_{0}} \cdot\left(\theta_{n}-\theta_{0}\right)+A_{n} \cdot\left(h_{n}-h_{0}\right)\right)\right\|_{L^{2}\left(P_{n}\right)} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

For the rest of our analysis, more relevant than the sequence $\left\{\left(\theta_{n}\right),\left(h_{n}\right)\right\} \in \Theta\left(\theta_{0}\right) \times \mathcal{C}\left(h_{0}\right)$ itself is its scaled limit which is some $(\eta, \beta) \in \mathbb{R}^{p} \times \mathcal{B}\left(h_{0}\right)$. The following proposition characterizes α_{n} in terms of η and β.

Proposition 3.3 Let R, J, and Λ_{n} be defined as in (10) with $\left(\delta_{1}, \delta_{2}\right) \in \Delta$. Assume that: θ_{0} satisfies (1); the estimating function $\phi(\cdot, \cdot)$ satisfies (5); $\partial \rho\left(\theta_{0}\right) / \partial \theta^{\prime}$ is full column rank; Assumptions 1 and B. 1 hold with $r=2$. Then, with $\left\{\left(\theta_{n}\right),\left(h_{n}\right)\right\} \in \Theta\left(\theta_{0}\right) \times \mathcal{C}\left(\theta_{0}\right)$, the set \mathcal{H}_{0} of α_{n} 's such that (16) holds is essentially given by

$$
\mathcal{H}_{0}=\left\{\alpha_{n} \in L^{2}\left(P_{n}\right): \alpha_{n}=-\frac{1}{2} \eta^{\prime} J^{\prime} \Sigma_{n}^{-1 / 2} \varphi+A_{n} \cdot \beta, \quad \eta \in \mathbb{R}^{p}, \beta \in \mathcal{B}\left(h_{0}\right)\right\}
$$

where $\varphi(\cdot)=\Sigma_{n}^{-1 / 2} \phi\left(\cdot, \theta_{0}\right)$ and $A_{n}=\nabla_{h} f\left(\theta_{0}, h_{0}, \cdot\right)$ is given by Proposition 3.1.
In the statement of Proposition 3.3, by "essentially," we mean that any other solution ($\alpha_{1, n}$) of (16) satisfies $\left\|\alpha_{n}-\alpha_{1, n}\right\|_{L^{2}\left(P_{n}\right)}=o(1)$ for some $\alpha_{n} \in \mathcal{H}_{0}$. See comment following Theorem 3.2.

Proof: See Appendix.
Remark 2 As it is commonly done, thanks to Proposition 3.3, we can index the sequence $g_{n}^{2}=$ $f^{2}\left(\theta_{n}, h_{n}\right)$ by its associated $\alpha_{n} \in \mathcal{H}_{0}$, i.e. $\alpha_{n} \in \mathcal{H}_{0}$ such that (16) holds or even by the parameter $(\eta, \beta) \in \mathbb{R}^{p} \times \mathcal{B}\left(h_{0}\right)$.

The efficiency bounds that we derive in the next section apply to $\left(\delta_{1}, \delta_{2}\right) \in \Delta$. Note that asymptotic normality of GMM estimators has been established under the condition that $0 \leq \delta_{1} \leq \delta_{2} \leq 1 / 4+\delta_{1} / 2<$ $1 / 2$ which is a bit larger than Δ. This result is obtained by exploiting the local properties of the moment condition model at $\left(\theta_{0}, P_{n}\right)$ - including the null space and the range of parts of the Jacobian matrix which are encapsulated in the definition of the rotation matrix R. Our results would hold for the extra combination of identification strengths if the range and null space of interest are fixed for all $\left(\theta, \tilde{P}_{n}\right)$ consistent with the model in a neighbourhood of $\left(\theta_{0}, P_{n}\right)$. We do not see an obvious reason
making such an assumption realistic in general. Nevertheless, simulations in Section 4 show that the bounds derived are valid even for combination of $\left(\delta_{1}, \delta_{2}\right)$ outside Δ.

Convolution results. Under the sequence of experiments g_{n}^{2} as defined in (20) and the reference distribution $f_{n, 0}^{2}$, the log-likelihood ratio L_{n} has the expression given in (14) with $X_{n i}$ replaced by $Y_{n i}$ and f_{n} by $f_{n, 0}$. The LAN property of g_{n}^{2} at $\left(\theta_{0}, h_{0}\right)$ follows from Theorem 3.2. Specifically, for any $\alpha_{n} \in \mathcal{H}_{0}$,

$$
L_{n} \xrightarrow{d} N\left(-\sigma^{2} / 2, \sigma^{2}\right),
$$

under $f_{n, 0}^{2}$ as $n \rightarrow \infty$, where $\sigma^{2}=4 \lim _{n \rightarrow \infty}\left\|\alpha_{n}^{2}\right\|_{L^{2}\left(P_{n}\right)}$ if this limit exists.
This LAN property is key to the convolution result that we introduce next. We rule out cases of super-efficient estimators, by restricting ourselves to regular estimators of θ_{0}. The definition of regular estimator that we rely on is different from the standard one. A meaningful definition shall reflect the heterogeneity of convergence rates of standard estimators as obtained in (11). Our definition below accounts for the directions in which information about θ_{0} has the potential to be maximum.

Definition 1 (Λ_{n}-Regularity) An estimator $\tilde{\theta}_{n}$ of θ_{0} is Λ_{n}-regular at $f_{n, 0}^{2}$ if, for every sequence $g_{n}(\cdot):=f\left(\theta_{n}, h_{n}, \cdot\right)$ with $\left\{\left(\theta_{n}\right),\left(h_{n}\right)\right\} \in \Theta\left(\theta_{0}\right) \times \mathcal{C}\left(h_{0}\right), \Lambda_{n} R^{-1}\left(\tilde{\theta}_{n}-\theta_{n}\right)$ converges in distribution under g_{n}^{2} and $f_{n, 0}^{2}=f^{2}\left(\theta_{0}, h_{0}\right)$ to the same limit S.

Remark 3 Note that S in this definition may depend on R. However, the Λ_{n}-regularity property of a sequence of estimators $\tilde{\theta}_{n}$ is not associated to a particular rotation as the definition may suggest. Indeed, we can show that if Definition 1 holds for $\tilde{\theta}_{n}$, it continue to hold if R is replaced by a different rotation matrix, say $\mathbf{R}=R A$ (see Remark 1). In this case, the limiting distribution is $A^{\prime} S$ instead of S.

To introduce our main result, we observe that, since $h_{0}=0, \mathcal{B}\left(h_{0}\right)$ is a closed subspace of $L^{2}\left(P_{n}\right)$ hence, α_{n} 's in Proposition 3.3 can also be written

$$
\eta^{\prime}\left(J^{\prime} \Sigma_{n}^{-1 / 2} \varphi-A_{n} \cdot \mathbf{b}\right)
$$

with $\eta \in \mathbb{R}^{p}, \mathbf{b}=\left(\beta_{1}, \ldots, \beta_{p}\right) \in \mathcal{B}\left(h_{0}\right)^{p}$ and $A_{n} \cdot \mathbf{b}:=\left(A_{n} \cdot \beta_{1}, \ldots, A_{n} \cdot \beta_{p}\right)^{\prime}$.

Let $A_{n} \cdot \mathbf{b}_{n}^{*}$, with $\mathbf{b}_{n}^{*} \in \mathcal{B}\left(h_{0}\right)^{p}$, be the orthogonal projection of $-\frac{1}{2} J^{\prime} \Sigma_{n}^{-1 / 2} \varphi$ onto $\left\{A_{n} \cdot \mathbf{b}: \mathbf{b} \in \mathcal{B}\left(h_{0}\right)^{p}\right\}$ and define

$$
s_{n}=-\frac{1}{2} J^{\prime} \Sigma_{n}^{-1 / 2} \varphi-A_{n} \cdot \mathbf{b}_{n}^{*} \quad \text { and } \quad I_{*}=4 \lim _{n \rightarrow \infty}\left\langle s_{n}, s_{n}\right\rangle
$$

if this limit exists; s_{n} is the efficient score in the direction of θ. We have the following result.
Theorem 3.4 Let $\tilde{\theta}_{n}$ be an estimator of θ_{0}, Λ_{n}-regular at $f_{n, 0}^{2}$ with limit distribution S. If the conclusion of Proposition 3.3 holds and I_{*} exists and is nonsingular, then:

$$
S \stackrel{d}{=} Z+U
$$

where $Z \sim N\left(0, I_{*}^{-1}\right)$ and is independent of the random vector U.

Proof: See Appendix.

Theorem 3.4 states that any regular estimator of θ_{0} has an asymptotic variance that is at least as large as I_{*}^{-1}. The next corollary gives a more explicit expression of this bound in terms of moments of the estimating function $\phi(Y, \theta)$.

Corollary 3.5 Let R, J, and Λ_{n} be defined as in (10) with $\left(\delta_{1}, \delta_{2}\right) \in \Delta$. Assume that: θ_{0} satisfies (1); the estimating function $\phi(\cdot, \cdot)$ satisfies (5); $\partial \rho\left(\theta_{0}\right) / \partial \theta^{\prime}$ is full column rank; Assumptions 1 and B. 1 hold with $r=2$; and, as $n \rightarrow \infty, \Sigma_{n}:=\mathbb{E}_{P_{n}}\left[\phi\left(Y, \theta_{0}\right) \phi\left(Y, \theta_{0}\right)^{\prime}\right] \rightarrow \Sigma$ a symmetric positive definite matrix.

If $\tilde{\theta}_{n}$ is Λ_{n}-regular estimator of θ_{0} with limit distribution S, then

$$
\begin{equation*}
S \stackrel{d}{=} Z+U, \tag{27}
\end{equation*}
$$

where $Z \sim N\left(0, I_{*}^{-1}\right)$, with $\quad I_{*}=J^{\prime} \Sigma^{-1} J$ and Z independent of U.
Proof: See Appendix.

This result sets $L_{b}:=I_{*}^{-1}=\left(J^{\prime} \Sigma^{-1} J\right)^{-1}$ as the lowest asymptotic variance reachable by any regular estimator of θ_{0}. Note that this result holds regardless of the value of $s_{1}=\operatorname{Rank}\left(\partial \rho_{1}\left(\theta_{0}\right) / \partial \theta^{\prime}\right)$. If $s_{1}=0$ or p, then

$$
J=\frac{\partial \rho\left(\theta_{0}\right)}{\partial \theta^{\prime}} \quad \text { and } \quad L_{b}=\left(\frac{\partial \rho\left(\theta_{0}\right)^{\prime}}{\partial \theta} \Sigma^{-1} \frac{\partial \rho\left(\theta_{0}\right)}{\partial \theta^{\prime}}\right)^{-1} .
$$

In the case where $0<s_{1}<p, J$ is given by (10) and the bound L is as given above. This is effectively the efficiency bound for the estimation of $\nu_{0}=R^{-1} \theta_{0}$. However, this result seems to channel more information than that. From the previous discussion, any estimator $\tilde{\theta}$ of θ_{0} that is Λ_{n}-regular for one choice of rotation stays so for any other rotation defined by (10). In addition, the convolution result above shows that being efficient in terms of one rotation implies efficiency in any other rotation. This provides some rational to the notion that, when $0<s_{1}<p$, a regular and efficient estimator $\tilde{\theta}$ is one that is Λ_{n}-regular for one choice of rotation and reaches the asymptotic semiparametric efficiency bound for that rotation.

One additional point that is worth mentioning is that Dovonon, Doko Tchatoka and Aguessy (2022) have established that $\operatorname{det}\left[\left(J^{\prime} \Sigma^{-1} J\right)^{-1}\right]$ is rotation invariant. Also, the asymptotic variance of a regular estimator $\tilde{\theta}$ is given by

$$
I_{*}^{-1}+V, \quad \text { with } \quad V=\operatorname{Var}(U) .
$$

We know that $\operatorname{det}\left(I_{*}^{-1}+V\right) \geq \operatorname{det}\left(I_{*}^{-1}\right)$, with equality if and only if $V=0 .{ }^{2}$ We can therefore relate efficiency of any regular estimator $\tilde{\theta}$ to the fact that the determinant of its asymptotic variance is equal to $\operatorname{det}\left(I_{*}^{-1}\right)$ which is rotation invariant. We recall that the determinant of the variancecovariance matrix, also known as generalized variance is introduced by Wilks (1932) as the scalar measure of dispersion in a multivariate statistical population.

[^2]Finally, in relation to GMM estimation, recall that, from Equation (11), the GMM estimator $\hat{\theta}_{n, \Sigma^{-1}}$ using the weighting matrix W_{n} with the inverse of $\Sigma=\lim _{n \rightarrow \infty} \operatorname{Var}_{P_{n}}\left(\phi\left(Y_{n i}, \theta_{0}\right)\right)$ as limit, is asymptotically distributed $N\left(0,\left(J^{\prime} \Sigma^{-1} J\right)^{-1}\right)$. This implies that the bound derived by Corollary 3.5 is sharp and $\hat{\theta}_{n, \Sigma^{-1}}$ is asymptotically efficient. Note that this choice of weighting matrix is known to be efficient in the standard GMM estimation setting (see Chamberlain, 1987) and also in singularity settings of first-order local identification failure (see Dovonon and Atchadé, 2020).

Antoine and Renault (2012) have shown that $\hat{\theta}_{n, \Sigma^{-1}}$ has the smallest asymptotic variance in the family of GMM estimators. As a result, no other choice of weighting matrix can lead to an estimator that improves over this bound. We will show in the next section that GMM estimators are regular and this would provide further confirmation of their finding.

Along with the convolution result in Corollary 3.5, we also derive an asymptotic minimax optimality result for a general class of loss functions. Let $\ell: \mathbb{R}^{p} \rightarrow \mathbb{R}_{+}$be a loss function that is subconvex, i.e., $\{x: \ell(x) \leq a\}$ is closed, convex and symmetric for every $a \geq 0$. We have the following.

Theorem 3.6 Under the same conditions as in Corollary 3.5, if ℓ is subconvex and $\tilde{\theta}_{n}$ is a measurable sequence of estimator of θ_{0}, then

$$
\sup _{I \subset \mathcal{H}_{0}} \liminf _{n \rightarrow \infty} \sup _{\alpha_{n} \in I} \mathbb{E}_{g_{n, \alpha_{n}}} \ell\left(\Lambda_{n} R^{-1}\left(\tilde{\theta}_{n}-\theta_{n}\right)\right) \geq \mathbb{E} \ell(Z)
$$

where Z is defined as in Corollary 3.5 and $g_{n, \alpha_{n}}^{2}$ is a sequence $f^{2}\left(\theta_{n}, h_{n}, \cdot\right)$ such that (16) holds. The first supremum is taken over all finite subset I of \mathcal{H}_{0}.

Using Corollary 3.5, the proof of this result follows readily by the application of Theorem 3.11.5 of van der Vaart and Wellner (1996), page 417.

Regularity of the GMM estimator. We now establish that the GMM estimator is Λ_{n}-regular at $f_{n, 0}$. Consider the GMM estimator, $\hat{\theta}_{n}$, defined by (9) with a sequence of weighting matrix W_{n} converging in probability under P_{n} to W, a symmetric positive definite matrix. Equation (11) gives the asymptotic distribution of $\hat{\theta}_{n}$, under P_{n} :

$$
\Lambda_{n} R^{-1}\left(\hat{\theta}_{n}-\theta_{0}\right) \xrightarrow{d} N(0, \Omega(W))
$$

which is valid under (1), (5) and Assumptions A.1-A.3. To claim regularity for $\hat{\theta}_{n}$, we will establish that

$$
\Lambda_{n} R^{-1}\left(\hat{\theta}_{n}-\theta_{n}\right) \xrightarrow{d} N(0, \Omega(W)), \quad \text { under } g_{n}^{2}:=f^{2}\left(\theta_{n}, h_{n}\right),
$$

with $\Lambda_{n} R^{-1}\left(\theta_{n}-\theta_{0}\right)-\eta \longrightarrow 0$ and $\sqrt{n}\left(h_{n}-h_{0}\right)-\beta \longrightarrow 0$ in $L^{2}\left(P_{n}\right)$ for some $\eta \in \mathbb{R}^{p}$ and $\beta \in \mathcal{E}$.
We will use the fact that the measures $\left\{\prod_{i=1}^{n} g_{n}^{2}\left(y_{i}\right)\right\}$ and $\left\{\prod_{i=1}^{n} f_{n, 0}^{2}\left(y_{i}\right)\right\}$ are contiguous, see Theorem 3.2. That is, for each sequence of sets F_{n} measurable on the probability space $\left(\mathbb{R}^{d} \times \cdots \times\right.$ $\left.\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d} \times \cdots \times \mathbb{R}^{d}\right), \mathbb{P}_{n}:=P_{n} \otimes \cdots \otimes P_{n}\right), \mathbb{P}_{n}\left(F_{n}\right) \rightarrow 0$, as $n \rightarrow \infty$ implies that $\mathbb{Q}_{n}\left(F_{n}\right) \rightarrow 0$, where \mathbb{Q}_{n} has density $\prod_{i=1}^{n} g_{n}^{2}\left(y_{i}\right)$ with respect to \mathbb{P}_{n}. (The products in the definition are n-fold.) The consequence of contiguity is that any sequence of random variable of order $o_{P}(1)$ (respectively $O_{P}(1)$) under P_{n} are also $o_{P}(1)$ (respectively $\left.O_{P}(1)\right)$ under g_{n}^{2}. We establish regularity of GMM by strengthening Assumptions A.1-A. 3 by the following assumption:

Assumption 2 (a) There exists a neighbourhood \mathcal{N} of θ_{0} and a constant $C>0$ such that, for all g in a $L^{2}\left(P_{n}\right)$-neighbourhood of $f_{n, 0}$,

$$
\sup _{\theta \in \mathcal{N}} \int\|\phi(y, \theta)\|^{4} g^{2}(y) d P_{n}(y) \leq C
$$

(b) For any non-random sequence $\left(\theta_{n}\right)$ such that $\theta_{n} \rightarrow \theta_{0}$, as $n \rightarrow \infty, \int \phi\left(y, \theta_{n}\right) \phi\left(y, \theta_{n}\right)^{\prime} d P_{n} \rightarrow \Sigma$, with $\Sigma:=\lim _{n \rightarrow \infty} \operatorname{Var}_{P_{n}}\left(\phi\left(Y_{n i}, \theta_{0}\right)\right)$.

This assumption is useful to establish that $\sqrt{n} \bar{\phi}_{n}\left(\theta_{n}\right)$ converges in distribution to $N(0, \Sigma)$, under g_{n}^{2}. Part (a) requires fourth moments for the estimating function $\phi(y, \theta)$ under distributions near the reference distribution P_{n}. We can interpret Part (b) as a continuity assumption. If P_{n} were fixed in n, it would follow from the continuity of $\theta \mapsto \phi(y, \theta)$ for P_{n}-almost all y and some dominance condition.

Proposition 3.7 Assume θ_{0} satisfies (1) and the estimating function $\phi(\cdot, \cdot)$ satisfies (5). If Assumptions A.1-A. 3 and 2 hold, then the GMM estimator $\hat{\theta}_{n}$ is Λ_{n}-regular.

Proof: See Appendix.

This proposition establishes the regularity of the GMM estimator. Its asymptotic normality and the conclusion of 3.5 imply that the asymptotic distribution of $\hat{\theta}_{n}$ is a convolution of independent random variables Z and U with $Z \sim N\left(0,\left(J^{\prime} \Sigma^{-1} J\right)^{-1}\right)$ and $U \sim N\left(0, \Omega(W)-\left(J^{\prime} \Sigma^{-1} J\right)^{-1}\right)$. The choice $W=\Sigma^{-1}$ yields $U \equiv 0$ making the GMM estimator $\hat{\theta}_{n \Sigma^{-1}}$ semiparametrically efficient. The regularity of GMM estimators also ensures that their asymptotic variance cannot be smaller than $\left(J^{\prime} \Sigma^{-1} J\right)^{-1}$, which, as as already mentioned is further confirmation of Antoine and Renault (2009,2012) who claim that this is the smallest variance for GMM estimators.

4 Simulations

We analyze the finite sample performance of the two-step GMM estimator of θ_{0} in the moment condition model (1) in the presence of moment restrictions with nonstandard or mixed identification strength. We focus on the following linear IV model with conditional heteroskedasticity and two endogenous variables, as it offers a suitable framework for this exercise:

$$
\left\{\begin{array}{l}
y_{i}=x_{1 i} \theta_{1}+x_{2 i} \theta_{2}+u_{i}, \quad i=1, \ldots, n \tag{28}\\
x_{1 i}=z_{1 i} \pi_{1 n}+v_{1 i}, \quad x_{2 i}=z_{2 i} \pi_{2 n}+z_{3} \pi_{3 n}+v_{2 i} \\
u_{i}=\sigma_{\varepsilon}^{-1}\left(x_{1 i}^{2} \varepsilon_{i}-\mu_{x \varepsilon}\right), \quad \varepsilon_{i}=\rho v_{1 i}+\rho v_{2 i}+\eta_{i} \\
\sigma_{\varepsilon}^{2}=\operatorname{Var}\left(x_{1 i}^{2} \varepsilon_{i}\right)-\mu_{x \varepsilon}^{2}, \quad \mu_{x \varepsilon}:=\mathbb{E}\left(x_{1 i}^{2} \varepsilon_{i}\right)=2 \rho \sqrt{2}
\end{array}\right.
$$

where $\pi_{1 n}=1.48 n^{-\delta_{1}}, \pi_{2 n}=\pi_{3 n}=1.48 n^{-\delta_{2}} ; y_{i} \in \mathbb{R}$ is the i th observation on the dependent variable; $x_{1 i} \in \mathbb{R}$ and $x_{2 i} \in \mathbb{R}$ are observations on two possibly endogenous regressors; θ_{1} and θ_{2} are unknown scalar structural parameters; $z_{1 i}, z_{2 i}, z_{3 i}$ are instrumental variables, whose strengths
are δ_{1}, δ_{2} and δ_{2} respectively [see Dovonon, Doko Tchatoka and Aguessy (2022)]; u_{i} is a structural disturbance and $\left(v_{1 i}, v_{2 i}\right)$ are reduced-form disturbances. The variance of ε_{i} is explicitly given by $\sigma_{\varepsilon}^{2}=3 \pi_{1 n}^{4}+6 \pi_{1 n}^{2}+84 \pi_{1 n}^{2} \rho^{2}+732 \rho^{2}+15$. The expression of the structural errors u_{i} in (28) clearly illustrates the presence of conditional heteroskedasticity in this IV model. The true values of θ_{1} and θ_{2} are set at $\theta_{01}=\theta_{02}=0.1$, and $\left(v_{1}, v_{2}, \eta, z_{1}, z_{2}, z_{3}\right)^{\prime} \sim N(0, \mathbb{V})$, where

$$
\mathbb{V}=\left(\begin{array}{ccc}
V & 0 & 0 \\
0 & I_{2} & 0 \\
0 & 0 & V_{z}
\end{array}\right), \quad V=\left(\begin{array}{cc}
1 & \rho \\
\rho & 1
\end{array}\right), \quad V_{z}=\left(\begin{array}{cc}
1 & \rho_{z} \\
\rho_{z} & 1
\end{array}\right)
$$

In (28) ρ measures the correlation between ε_{i} and $v_{j i}, j=1,2$, and is kept fixed across observations. Note from the above parametrization that ρ also determines the degree of endogeneity in the model (i.e., the correlation between the structural error u_{i} and the reduced-form errors $v_{1 j}, j=1,2$) when the sample n goes to infinity. We set ρ to 0.5 and 0.0925 . For $\rho=0.5, \operatorname{corr}\left(u_{i}, v_{j i}\right)$ tends to 0.533 as n grows, while for $\rho=0.0925, \operatorname{corr}\left(u_{i}, v_{j i}\right)$ tends to 0.301 , for both $j=1$ and 2 . Therefore, $\rho=0.5$ corresponds to relatively high endogeneity in the model, while $\rho=0.0925$ implies moderate endogeneity in the model. Throughout the experiments, following Dovonon, Doko Tchatoka and Aguessy (2022), we consider cases where z_{1}, z_{2} and z_{3} have equal strength $-\delta_{1}=\delta_{2} \in\{0,0.1,0.2,0.3,0.4,0.45,0.5\}-$ and cases where they have mixed strength $-\left(\delta_{1}, \delta_{2}\right) \in\{(0,0.2),(0,0.3),(0,0.4),(0.1,0.2)(0.1,0.3),(0.3,0.4)\}$. We set the sample size n to $100,500,1000,5000,8000$, and 10000 .

The baseline GMM estimator considered is the two-step GMM in (9) with optimal weighting matrix $\hat{W}_{n}^{\text {opt }}=\left(\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}^{2} z_{i} z_{i}^{\prime}\right)^{-1}$, where \hat{u}_{i} are the 2SLS residuals and $z_{i}=\left(z_{1 i}, z_{2 i}, z_{3 i}\right)^{\prime}$. We assess its performance against the following two non-optimal GMM estimators of θ : (1) the 2SLS estimator obtained by setting $W_{n}=\left(\frac{1}{n} \sum_{i=1}^{n} z_{i} z_{i}^{\prime}\right)^{-1}$ in (9); (2) and the naive GMM estimator obtained with $W_{n}=I_{k}$ in (9). The performance measures used to compare these estimators are the mean squared error (MSE), the mean absolute deviation (MAD), and the generalized variance (gVAR) captured by the determinant of the MSE matrix.

Tables 1-2 show for each identification strength, the performance ratios (naive estimator to optimal GMM and 2SLS estimator to optimal GMM) for the considered sample sizes. Table 1 corresponds to relatively high endogeneity ($\rho=0.5$), while endogeneity is moderate ($\rho=0.0925$) in Table 2. The results indicate clearly that, for all performance measures (MSE, MAD, gVAR), all level of endogeneity ($\rho \in\{0.0925,0.5\}$), and all sample sizes, the benchmark optimal two-step GMM outperform both the 2SLS estimator and the naive GMM estimator with $W_{n}=I_{k}$. This result holds irrespective of the patterns of instrument strengths. In particular, the dominance of the optimal two-step GMM is remarkable when the sample is small but tends to stabilize as the sample size increases. In essence, these experiments support of our theoretical findings. It is worth mentioning that even in the case $\delta_{1}=\delta_{2}=0.5$ not covered by our theory and where none of the estimators considered is consistent, the two-step GMM estimator is favoured by the displayed ratios.

5 Concluding remarks

This paper is concerned with efficient estimation in moment condition models with mixed identification strength. These models are point identifying at any given sample size but their moment function drifts to zero uniformly over the parameter space as the sample size grows. This feature makes identification somewhat weak since the moment function becomes uninformative in the limit. When the moment function does not drift to zero too fast, consistent estimation is possible and GMM estimators are shown to be asymptotically normally distributed.

The purpose of this paper is to derive semiparametric efficiency bounds for parameter estimation in these models. We rely on the approach of Dovonon and Atchadé (2020) that we refine to account for the fact that the sampling process follows a drifting distribution P_{n} that depends on the sample size, n, instead of a fixed distribution as commonly considered in the literature.

We show that the asymptotic minimum variance bound for the estimation by regular estimators is given by $\left(J^{\prime} \Sigma^{-1} J\right)^{-1}$, where J is given (10) in Section 2. This bound corresponds to the asymptotic variance of the GMM estimator using a weighting matrix W_{n} converging to Σ^{-1}, where Σ is the limit variance under P_{n} of the estimating function evaluated at θ_{0}. This is the the well-known two-step GMM estimator. We establish that this estimator is regular and also asymptotically minimax efficient with respect to a large class of loss functions. Our result extends that of Chamberlain (1987) to the class of moment condition models with mixed identification strength.

One possible extension that we plan for future work is to consider models describing weakly dependent data. Hallin, van den Akker, and Werker (2015) have developed a framework useful to study such models in the parametric framework. An extension of their approach to semiparametric models can be an interesting contribution. The main challenge that we foresee for moment condition models with dependent data is related to the formulation of the dynamics in the data generating process that will be general enough to accommodate a relevant class of models while being explicit enough to fit with the framework of Hallin, van den Akker, and Werker (2015).

Table 1: Relative performance of the Optimal Two-Step GMM: $\rho=0.5$

	IV strength \downarrow	$n \rightarrow$	Ratio Naive to Optimal GMM						Ratio 2SLS to Optimal GMM					
			100	500	1000	5000	8000	10000	100	500	1000	5000	8000	10000
MSE-ratio ($\hat{\theta}_{1}$)	$\delta_{1}<\delta_{2}$													
	0	0.2	1.374	1.161	1.104	1.029	1.020	1.017	1.387	1.164	1.106	1.029	1.020	1.017
	0	0.3	1.381	1.159	1.105	1.030	1.021	1.018	1.389	1.161	1.107	1.030	1.021	1.018
	0	0.4	1.383	1.157	1.100	1.029	1.020	1.017	1.391	1.159	1.102	1.029	1.020	1.017
	0.1	0.2	1.513	1.205	1.130	1.038	1.023	1.022	1.529	1.213	1.134	1.040	1.024	1.023
	0.1	0.3	1.433	1.245	1.136	1.037	1.025	1.020	1.455	1.252	1.140	1.039	1.026	1.021
MSE-ratio ($\hat{\theta}_{2}$)	0.3	0.4	1.356	1.314	1.249	1.085	1.056	1.057	1.338	1.317	1.248	1.095	1.065	1.067
	0	0.2	1.617	1.298	1.211	1.083	1.064	1.059	1.604	1.294	1.211	1.081	1.064	1.057
	0	0.3	1.502	1.284	1.264	1.100	1.075	1.062	1.486	1.276	1.255	1.097	1.072	1.061
	0	0.4	1.428	1.329	1.210	1.088	1.072	1.071	1.405	1.302	1.198	1.079	1.063	1.063
	0.1	0.2	1.710	1.393	1.296	1.111	1.074	1.073	1.691	1.386	1.291	1.109	1.072	1.070
	0.1	0.3	1.636	1.374	1.282	1.115	1.094	1.080	1.624	1.369	1.277	1.113	1.091	1.078
	0.3	0.4	1.534	1.397	1.293	1.115	1.086	1.085	1.473	1.362	1.274	1.104	1.079	1.079
$\text { MAD-ratio }\left(\hat{\theta}_{1}\right)$	0	0.2	1.287	1.144	1.093	1.028	1.019	1.016	1.298	1.147	1.095	1.028	1.020	1.017
	0	0.3	1.299	1.142	1.095	1.029	1.020	1.017	1.310	1.145	1.097	1.029	1.021	1.018
	0	0.4	1.287	1.138	1.088	1.028	1.020	1.016	1.297	1.141	1.090	1.028	1.020	1.016
	0.1	0.2	1.373	1.169	1.105	1.032	1.019	1.019	1.391	1.178	1.111	1.033	1.020	1.020
	0.1	0.3	1.363	1.175	1.109	1.030	1.022	1.017	1.384	1.184	1.114	1.032	1.023	1.018
	0.3	0.4	1.403	1.265	1.197	1.072	1.051	1.043	1.425	1.280	1.207	1.084	1.063	1.055
MAD-ratio ($\hat{\theta}_{2}$)	0	0.2	1.428	1.256	1.175	1.082	1.065	1.057	1.418	1.253	1.174	1.080	1.065	1.054
	0	0.3	1.404	1.240	1.199	1.089	1.069	1.056	1.389	1.234	1.194	1.086	1.066	1.054
	0	0.4	1.387	1.253	1.166	1.083	1.068	1.063	1.359	1.234	1.156	1.074	1.061	1.055
	0.1	0.2	1.530	1.328	1.250	1.102	1.071	1.067	1.516	1.323	1.248	1.102	1.070	1.064
	0.1	0.3	1.503	1.315	1.243	1.103	1.086	1.072	1.487	1.308	1.239	1.102	1.082	1.070
	0.3	0.4	1.521	1.337	1.249	1.108	1.082	1.074	1.466	1.310	1.232	1.097	1.074	1.070
gVAR-ratio	0	0.2	4.930	2.271	1.787	1.240	1.178	1.159	4.937	2.270	1.792	1.237	1.177	1.156
	0	0.3	4.303	2.214	1.949	1.283	1.205	1.169	4.259	2.195	1.929	1.277	1.198	1.166
	0	0.4	3.898	2.364	1.773	1.252	1.195	1.185	3.816	2.279	1.743	1.232	1.178	1.168
	0.1	0.2	6.650	2.818	2.144	1.329	1.206	1.203	6.636	2.826	2.146	1.330	1.204	1.196
	0.1	0.3	5.503	2.922	2.118	1.338	1.258	1.213	5.588	2.937	2.119	1.337	1.253	1.211
	0.3	0.4	4.379	3.374	2.606	1.464	1.317	1.315	3.923	3.215	2.528	1.460	1.319	1.325
MSE-ratio ($\hat{\theta}_{1}$)	$\delta_{1}=\delta_{2}$													
	0	0	1.376	1.156	1.106	1.029	1.020	1.018	1.385	1.159	1.107	1.029	1.020	1.018
	0.1	0.1	1.544	1.231	1.134	1.036	1.026	1.020	1.540	1.239	1.139	1.037	1.027	1.021
	0.2	0.2	1.596	1.303	1.186	1.050	1.033	1.027	1.610	1.316	1.195	1.056	1.037	1.031
	0.3	0.3	1.382	1.338	1.278	1.090	1.057	1.048	1.347	1.338	1.291	1.098	1.067	1.057
	0.4	0.4	1.324	1.236	1.209	1.147	1.079	1.071	1.282	1.129	1.169	1.086	1.060	1.058
	0.45	0.45	1.223	1.233	1.206	1.077	1.244	1.141	1.096	1.147	1.068	1.024	1.030	1.022
	0.5	0.5	1.243	1.128	1.167	1.108	1.085	1.078	1.127	1.081	1.064	1.024	1.016	1.009
$\text { MSE-ratio }\left(\hat{\theta}_{2}\right)$	0	0	1.600	1.297	1.238	1.083	1.064	1.067	1.597	1.294	1.237	1.081	1.064	1.064
	0.1	0.1	1.790	1.334	1.275	1.124	1.097	1.074	1.767	1.329	1.271	1.122	1.095	1.072
	0.2	0.2	1.730	1.438	1.246	1.111	1.094	1.087	1.686	1.431	1.243	1.108	1.093	1.084
	0.3	0.3	1.509	1.367	1.277	1.113	1.082	1.088	1.442	1.352	1.263	1.109	1.077	1.084
	0.4	0.4	1.421	1.286	1.243	1.135	1.097	1.093	1.341	1.237	1.211	1.109	1.077	1.076
	0.45	0.45	1.289	1.259	1.283	1.117	1.107	1.079	1.227	1.202	1.174	1.048	1.019	1.041
	0.5	0.5	1.125	1.124	1.193	1.069	1.060	1.086	1.070	1.090	1.090	1.021	1.021	1.021
MAD-ratio ($\hat{\theta}_{1}$)	0	0	1.303	1.144	1.093	1.028	1.019	1.017	1.313	1.148	1.095	1.028	1.020	1.018
	0.1	0.1	1.378	1.175	1.107	1.029	1.022	1.018	1.394	1.184	1.113	1.030	1.023	1.019
	0.2	0.2	1.458	1.234	1.154	1.037	1.023	1.020	1.482	1.251	1.165	1.044	1.029	1.025
	0.3	0.3	1.436	1.276	1.211	1.074	1.048	1.038	1.450	1.292	1.227	1.086	1.061	1.049
	0.4	0.4	1.323	1.223	1.184	1.090	1.062	1.058	1.326	1.215	1.187	1.091	1.063	1.064
	0.45	0.45	1.251	1.186	1.146	1.070	1.069	1.059	1.225	1.174	1.132	1.066	1.043	1.042
	0.5	0.5	1.175	1.124	1.098	1.060	1.048	1.045	1.157	1.108	1.081	1.040	1.033	1.024
MAD-ratio ($\hat{\theta}_{2}$)	0	0	1.466	1.244	1.188	1.081	1.065	1.058	1.462	1.241	1.187	1.081	1.065	1.055
	0.1	0.1	1.583	1.304	1.238	1.108	1.090	1.069	1.572	1.300	1.235	1.106	1.089	1.067
	0.2	0.2	1.615	1.372	1.241	1.102	1.086	1.078	1.594	1.365	1.238	1.100	1.085	1.075
	0.3	0.3	1.548	1.337	1.245	1.105	1.076	1.085	1.503	1.322	1.234	1.101	1.072	1.079
	0.4	0.4	1.438	1.300	1.229	1.117	1.091	1.088	1.370	1.262	1.201	1.099	1.075	1.072
	0.45	0.45	1.398	1.267	1.213	1.117	1.095	1.090	1.313	1.223	1.168	1.080	1.058	1.054
	0.5	0.5	1.269	1.188	1.158	1.091	1.072	1.077	1.209	1.148	1.113	1.055	1.041	1.038
gVAR-ratio	0	0	4.844	2.249	1.874	1.241	1.178	1.180	4.892	2.252	1.877	1.238	1.177	1.174
	0.1	0.1	7.603	2.695	2.091	1.355	1.267	1.200	7.383	2.708	2.094	1.353	1.264	1.198
	0.2	0.2	7.690	3.510	2.183	1.362	1.277	1.247	7.417	3.550	2.207	1.370	1.285	1.251
	0.3	0.3	4.348	3.348	2.662	1.473	1.306	1.300	3.775	3.274	2.658	1.481	1.321	1.312
	0.4	0.4	3.694	2.539	2.264	1.689	1.400	1.372	3.088	1.967	2.019	1.453	1.305	1.296
	0.45	0.45	2.481	2.418	2.385	1.435	1.784	1.526	1.801	1.911	1.566	1.172	1.152	1.134
	0.5	0.5	1.974	1.607	1.798	1.432	1.315	1.362	1.487	1.391	1.342	1.102	1.077	1.063

Table 2: Relative performance of the Optimal Two-Step GMM: $\rho=0.0925$

	IV strength \downarrow	$n \rightarrow$	Ratio Naive to Optimal GMM						Ratio 2SLS to Optimal GMM					
			100	500	1000	5000	8000	10000	100	500	1000	5000	8000	10000
$\delta_{1}<\delta_{2}$														
MSE-ratio ($\hat{\theta}_{1}$)	0	0.2	1.128	1.066	1.056	1.024	1.017	1.015	1.131	1.067	1.057	1.024	1.018	1.015
	-	0.3	1.140	1.068	1.053	1.025	1.017	1.016	1.142	1.069	1.054	1.025	1.017	1.017
	0	0.4	1.150	1.075	1.058	1.024	1.018	1.015	1.152	1.075	1.059	1.024	1.018	1.016
	0.1	0.2	1.259	1.138	1.121	1.044	1.028	1.024	1.262	1.141	1.123	1.045	1.029	1.025
	0.1	0.3	1.217	1.162	1.107	1.043	1.031	1.025	1.223	1.165	1.109	1.045	1.032	1.026
	0.3	0.4	1.549	1.228	1.182	1.059	1.044	1.035	1.524	1.225	1.174	1.063	1.046	1.039
MSE-ratio ($\hat{\theta}_{2}$)	0	0.2	1.180	1.096	1.060	1.027	1.017	1.021	1.175	1.094	1.058	1.026	1.017	1.020
	0	0.3	1.216	1.093	1.073	1.027	1.024	1.016	1.205	1.088	1.068	1.024	1.021	1.012
	0	0.4	1.186	1.109	1.065	1.024	1.023	1.026	1.162	1.089	1.057	1.018	1.015	1.019
	0.1	0.2	1.371	1.210	1.153	1.061	1.044	1.044	1.360	1.205	1.150	1.059	1.043	1.042
	0.1	0.3	1.320	1.193	1.151	1.063	1.050	1.048	1.309	1.187	1.146	1.060	1.048	1.045
	0.3	0.4	1.524	1.279	1.188	1.078	1.052	1.053	1.462	1.243	1.171	1.069	1.046	1.046
MAD-ratio ($\hat{\theta}_{1}$)	0	0.2	1.109	1.060	1.058	1.025	1.019	1.016	1.110	1.061	1.058	1.025	1.019	1.016
	0	0.3	1.108	1.065	1.052	1.026	1.019	1.018	1.109	1.066	1.053	1.026	1.019	1.018
	0	0.4	1.120	1.066	1.054	1.025	1.019	1.016	1.122	1.067	1.055	1.026	1.019	1.016
	0.1	0.2	1.196	1.125	1.108	1.041	1.026	1.022	1.200	1.128	1.110	1.042	1.027	1.023
	0.1	0.3	1.171	1.129	1.100	1.041	1.031	1.023	1.174	1.132	1.103	1.042	1.032	1.024
	0.3	0.4	1.273	1.197	1.150	1.053	1.042	1.035	1.274	1.197	1.149	1.057	1.045	1.039
MAD-ratio ($\hat{\theta}_{2}$)	0	0.2	1.151	1.083	1.056	1.024	1.018	1.017	1.147	1.080	1.054	1.024	1.018	1.016
	0	0.3	1.165	1.079	1.062	1.026	1.022	1.019	1.156	1.075	1.058	1.023	1.020	1.014
	0	0.4	1.160	1.088	1.055	1.024	1.020	1.025	1.139	1.073	1.045	1.018	1.013	1.018
	0.1	0.2	1.272	1.168	1.133	1.055	1.043	1.039	1.264	1.165	1.131	1.052	1.042	1.038
	0.1	0.3	1.254	1.159	1.122	1.062	1.046	1.045	1.243	1.152	1.118	1.060	1.044	1.042
	0.3	0.4	1.342	1.219	1.159	1.070	1.050	1.050	1.305	1.196	1.146	1.060	1.044	1.042
gVAR-ratio	0	0.2	1.772	1.365	1.254	1.107	1.070	1.074	1.766	1.364	1.250	1.105	1.070	1.071
	0	0.3	1.922	1.364	1.276	1.109	1.085	1.067	1.893	1.354	1.266	1.102	1.080	1.059
	0	0.4	1.860	1.421	1.270	1.098	1.085	1.086	1.791	1.372	1.251	1.087	1.068	1.072
	0.1	0.2	2.978	1.894	1.669	1.225	1.152	1.143	2.947	1.891	1.667	1.223	1.150	1.140
	0.1	0.3	2.579	1.923	1.624	1.229	1.172	1.155	2.561	1.912	1.616	1.227	1.169	1.149
	0.3	0.4	5.070	2.467	1.973	1.304	1.205	1.187	4.504	2.320	1.889	1.290	1.197	1.179
$\delta_{1}=\delta_{2}$														
MSE-ratio ($\hat{\theta}_{1}$)	0	0	1.128	1.072	1.057	1.023	1.017	1.015	1.131	1.073	1.057	1.023	1.018	1.015
	0.1	0.1	1.222	1.143	1.116	1.042	1.030	1.026	1.227	1.146	1.118	1.044	1.031	1.026
	0.2	0.2	1.350	1.226	1.150	1.052	1.038	1.030	1.334	1.230	1.154	1.055	1.040	1.032
	0.3	0.3	1.766	1.223	1.193	1.063	1.053	1.039	1.463	1.226	1.186	1.065	1.055	1.042
	0.4	0.4	1.280	1.059	1.215	1.074	1.046	1.050	1.222	1.098	1.132	1.048	1.036	1.040
	0.45	0.45	1.712	1.148	1.371	1.027	1.014	1.144	1.437	1.099	1.037	1.019	1.012	1.025
	0.5	0.5	1.043	1.111	1.107	1.382	1.014	1.058	1.039	1.069	1.050	1.017	1.011	1.052
MSE-ratio ($\hat{\theta}_{2}$)	0	0	1.186	1.101	1.066	1.020	1.020	1.014	1.184	1.100	1.063	1.017	1.018	1.012
	0.1	0.1	1.303	1.197	1.146	1.063	1.054	1.035	1.297	1.193	1.143	1.062	1.052	1.033
	0.2	0.2	1.363	1.244	1.187	1.078	1.052	1.044	1.352	1.241	1.184	1.075	1.050	1.042
	0.3	0.3	1.490	1.251	1.192	1.082	1.055	1.050	1.399	1.235	1.185	1.079	1.052	1.046
	0.4	0.4	1.470	1.145	1.170	1.088	1.054	1.057	1.366	1.154	1.144	1.069	1.043	1.046
	0.45	0.45	1.483	1.185	1.187	1.059	1.035	1.061	1.337	1.156	1.104	1.036	1.022	1.032
	0.5	0.5	1.023	1.122	1.130	1.124	1.070	1.032	1.017	1.078	1.057	1.014	1.020	1.046
MAD-ratio ($\hat{\theta}_{1}$)	0	0	1.107	1.067	1.054	1.025	1.019	1.016	1.109	1.068	1.055	1.026	1.019	1.016
	0.1	0.1	1.182	1.125	1.106	1.041	1.029	1.024	1.185	1.128	1.109	1.042	1.030	1.025
	0.2	0.2	1.264	1.181	1.131	1.049	1.034	1.028	1.267	1.185	1.135	1.052	1.037	1.031
	0.3	0.3	1.304	1.196	1.158	1.059	1.048	1.035	1.295	1.199	1.157	1.062	1.051	1.039
	0.4	0.4	1.239	1.157	1.136	1.055	1.041	1.041	1.225	1.147	1.121	1.051	1.036	1.036
	0.45	0.45	1.218	1.128	1.118	1.040	1.033	1.043	1.200	1.113	1.082	1.030	1.024	1.028
	0.5	0.5	1.138	1.098	1.070	1.061	1.027	1.030	1.129	1.073	1.052	1.021	1.016	1.016
MAD-ratio ($\hat{\theta}_{2}$)	0	0	1.159	1.082	1.060	1.022	1.019	1.014	1.157	1.080	1.057	1.018	1.017	1.012
	0.1	0.1	1.253	1.167	1.125	1.057	1.050	1.034	1.246	1.163	1.123	1.056	1.047	1.034
	0.2	0.2	1.371	1.209	1.153	1.071	1.051	1.041	1.362	1.206	1.151	1.069	1.049	1.039
	0.3	0.3	1.380	1.212	1.157	1.078	1.055	1.048	1.350	1.202	1.153	1.076	1.053	1.044
	0.4	0.4	1.313	1.200	1.146	1.071	1.055	1.051	1.275	1.183	1.126	1.058	1.044	1.041
	0.45	0.45	1.303	1.177	1.138	1.060	1.051	1.056	1.255	1.146	1.106	1.042	1.033	1.033
	0.5	0.5	1.214	1.137	1.106	1.073	1.055	1.049	1.167	1.100	1.075	1.028	1.025	1.024
gVAR-ratio	0	0	1.789	1.394	1.269	1.088	1.076	1.058	1.793	1.393	1.264	1.083	1.074	1.055
	0.1	0.1	2.534	1.872	1.635	1.229	1.179	1.125	2.531	1.868	1.631	1.228	1.177	1.124
	0.2	0.2	3.390	2.327	1.862	1.285	1.193	1.157	3.254	2.329	1.865	1.287	1.193	1.157
	0.3	0.3	6.748	2.344	2.019	1.323	1.233	1.189	4.156	2.291	1.975	1.320	1.232	1.186
	0.4	0.4	3.370	1.543	2.020	1.363	1.215	1.234	2.678	1.635	1.677	1.256	1.168	1.184
	0.45	0.45	5.510	1.850	2.523	1.177	1.104	1.475	3.418	1.614	1.313	1.113	1.073	1.118
	0.5	0.5	1.253	1.553	1.565	2.134	1.177	1.100	1.184	1.327	1.232	1.065	1.064	1.162

A Assumptions

Assumption A. 1 (i) $\rho:=\left(\rho_{1}^{\prime}, \rho_{2}^{\prime}\right)^{\prime} \in \mathbb{R}^{k_{1}} \times \mathbb{R}^{k_{2}}$ is continuous on the compact parameter set $\Theta \subset \mathbb{R}^{p}$ such that, $\forall \theta \in \Theta, \rho(\theta)=0 \Leftrightarrow \theta=\theta_{0}$.
(ii) $\sup _{\theta \in \Theta} \sqrt{n}\left\|\bar{\phi}_{n}(\theta)-\mathbb{E}_{P_{n}}\left(\phi\left(Y_{i n}, \theta\right)\right)\right\|=O_{P_{n}}(1)$, with $\quad \bar{\phi}_{n}(\theta)=n^{-1} \sum_{i=1}^{n} \phi\left(Y_{i n}, \theta\right)$.

Assumption A. 2 (i) θ_{0} is interior to Θ and $\phi(y, \theta)$ is continuously differentiable on Θ for P_{n}-almost all y.
(ii) $\sqrt{n} \bar{\phi}_{n}\left(\theta_{0}\right) \xrightarrow{d} N(0, \Sigma)$, under P_{n}.
(iii) $\frac{\partial \rho\left(\theta_{0}\right)}{\partial \theta^{\prime}}=\left(\frac{\partial \rho_{1}^{\prime}\left(\theta_{0}\right)}{\partial \theta}: \frac{\partial \rho_{2}^{\prime}\left(\theta_{0}\right)}{\partial \theta}\right)^{\prime}$ is full column rank and, for $j=1,2$,

$$
\mathbb{E}_{P_{n}}\left(\frac{\partial \phi_{j}\left(Y_{i n}, \theta_{0}\right)}{\partial \theta^{\prime}}\right)=n^{-\delta_{j}} \frac{\partial \rho_{j}\left(\theta_{0}\right)}{\partial \theta^{\prime}}, \quad \text { and } \quad \sqrt{n} \sup _{\theta \in \mathcal{N}_{\theta_{0}}}\left\|\frac{\partial \bar{\phi}_{n, j}(\theta)}{\partial \theta^{\prime}}-\mathbb{E}_{P_{n}}\left(\frac{\partial \phi_{j}\left(Y_{i n}, \theta\right)}{\partial \theta^{\prime}}\right)\right\|=O_{P_{n}}(1)
$$

where $\mathcal{N}_{\theta_{0}}$ is a neighbourhood of θ_{0}.
Assumption A. 3 (i) $\phi_{1}(y, \theta)$ is linear in θ or $\delta_{2}<\frac{1}{4}+\frac{\delta_{1}}{2}$.
(ii) $\theta \mapsto \phi\left(Y_{i n}, \theta\right)$ is twice continuously differentiable P_{n}-almost everywhere in a neighbourhood $\mathcal{N}_{\theta_{0}}$ of θ_{0} and, with $j=1,2$,

$$
\forall s: 1 \leq s \leq k_{j}, \quad n^{\delta_{j}} \frac{\partial^{2} \bar{\phi}_{n, j s}}{\partial \theta \partial \theta^{\prime}}(\theta) \xrightarrow{P_{n}} H_{j s}(\theta)
$$

uniformly over $\mathcal{N}_{\theta_{0}}$, where $H_{j s}(\theta)$'s are (p, p)-matrix functions of θ and $\bar{\phi}_{n, j s}$ is the s-th entry of $\bar{\phi}_{n, j}$.

B Proofs

Assumption B. 1 There exists a neighbourhood $\mathcal{N}_{\theta_{0}}$ of θ_{0} and a $L^{2}\left(P_{n}\right)$-neighbourhood \mathcal{N}_{1} of $f_{n, 0}:=1$ such that, with $j, k=1, \ldots, p$, and $\mathbb{L}_{n}=\left(\begin{array}{cc}n^{\delta_{1}} I_{k_{1}} & 0 \\ 0 & n^{\delta_{2}} I_{k_{2}}\end{array}\right)$,

$$
\begin{gathered}
\mathbb{E}_{P_{n}}\left(\frac{\partial \phi(Y, \theta)}{\partial \theta_{j}}\right)=\mathbb{L}_{n}^{-1} \frac{\partial \rho(\theta)}{\partial \theta_{j}}, \quad \mathbb{E}_{P_{n}}\left(\frac{\partial^{2} \phi(Y, \theta)}{\partial \theta_{j} \partial \theta_{k}}\right)=\mathbb{L}_{n}^{-1} \frac{\partial^{2} \rho(\theta)}{\partial \theta_{j} \partial \theta_{k}}, \forall \theta \in \mathcal{N}_{\theta_{0}}, \\
\sup _{\theta \in \mathcal{N}_{\theta_{0}}} \mathbb{E}_{P_{n}}\left(\|\phi(Y, \theta)\|^{4}\right)=O(1), \quad \sup _{\theta \in \mathcal{N}_{\theta_{0}}} \mathbb{E}_{P_{n}}\left(\left\|\partial \phi(Y, \theta) / \partial \theta_{j}\right\|^{4}\right)=O(1), \\
\sup _{\theta \in \mathcal{N}_{\theta_{0}}, f \in \mathcal{N}_{1}} \int\left\|\frac{\partial \phi(y, \theta)}{\partial \theta_{j}}\right\|^{2} f^{2}(y) d P_{n}(y)=O(1), \quad \sup _{\theta \in \mathcal{N}_{\theta_{0}}, f \in \mathcal{N}_{1}} \int\left\|\frac{\partial^{2} \phi(y, \theta)}{\partial \theta_{j} \partial \theta_{k}}\right\|^{2} f^{2}(y) d P_{n}(y)=O(1) .
\end{gathered}
$$

Lemma B. 1 Let $\left\{\left(\theta_{n}\right),\left(h_{n}\right)\right\} \in \Theta\left(\theta_{0}\right) \times \mathcal{C}\left(h_{0}\right)$ and $(\bar{\theta}, \bar{h})$ such that:

$$
\bar{\theta}=t_{n} \theta_{n}+\left(1-t_{n}\right) \theta_{0}, \quad \bar{h}=t_{n} h_{n}+\left(1-t_{n}\right) h_{0}, \quad t_{n} \in(0,1)
$$

Assume θ_{0} satisfies (1) and $1 / 4 \leq \delta_{2}<1 / 2$. If Assumptions 1 and B. 1 hold with $r=2$, then: $\forall j, k=1, \ldots, p$,

$$
\begin{equation*}
\left\|\frac{\partial^{2}}{\partial \theta_{j} \partial \theta_{k}} f(\bar{\theta}, \bar{h}, \cdot)\right\|_{L^{2}\left(P_{n}\right)}=O\left(n^{-\delta_{1}} \vee n^{-1+2 \delta_{2}}\right) \tag{B.1}
\end{equation*}
$$

where $f(\theta, h, \cdot)$ is as defined by Proposition 3.1.

Proof of Lemma B.1: $\partial^{2} f(\theta, h, \cdot) / \partial \theta_{j} \partial \theta_{k}$ is given by (13). We next derive the limits or bounds for each of the inner products involved in this expression. But first, we claim that:

$$
\begin{equation*}
\left\|n^{1-2 \delta_{2}}\left(f_{\bar{\theta}, \bar{h}}-f_{n, 0}\right)\right\|_{L^{2}\left(P_{n}\right)}=O(1) \tag{B.2}
\end{equation*}
$$

where $f_{\theta, h}(\cdot) \equiv f(\theta, h, \cdot)$.
To see this, we observe that (21) holds with θ_{n}, h_{n} replaced by $\bar{\theta}, \bar{h}$ and with the Lagrange remainder similarly bounded with second derivative evaluated at an intermediate point lying between $\left(\theta_{0}, h_{0}\right)$ and $(\bar{\theta}, \bar{h})$. Thus:

$$
\left\|n^{1-2 \delta_{2}}\left(f_{\bar{\theta}, \bar{h}}-f_{n, 0}\right)\right\|_{L^{2}\left(P_{n}\right)} \leq\left\|n^{1-2 \delta_{2}}\left(r_{n, \theta_{0}} \cdot\left(\bar{\theta}-\theta_{0}\right)-A_{n} \cdot\left(\bar{h}-h_{0}\right)\right)\right\|_{L^{2}\left(P_{n}\right)}+\left\|n^{1-2 \delta_{2}} R_{2}(\bar{\theta}, \bar{h}, \cdot)\right\|_{L^{2}\left(P_{n}\right)}
$$

From the proof of Proposition 3.3, $\left\|\sqrt{n}\left(r_{n, \theta_{0}} \cdot\left(\bar{\theta}-\theta_{0}\right)-A_{n} \cdot\left(\bar{h}-h_{0}\right)\right)\right\|_{L^{2}\left(P_{n}\right)}=O(1)$ and it follows that, for $1 / 4 \leq \delta_{2}<1 / 2$,

$$
\left\|n^{1-2 \delta_{2}}\left(r_{n, \theta_{0}} \cdot\left(\bar{\theta}-\theta_{0}\right)-A_{n} \cdot\left(\bar{h}-h_{0}\right)\right)\right\|_{L^{2}\left(P_{n}\right)}=O(1)
$$

Also, since $\Lambda_{n} R^{-1}\left(\bar{\theta}-\theta_{0}\right)=t_{n} \Lambda_{n} R^{-1}\left(\theta_{n}-\theta_{0}\right)$, we have $\left\|\bar{\theta}-\theta_{0}\right\|=O\left(n^{-1 / 2+\delta_{2}}\right)$. It results using an analogue bound to (22) that: $\left\|n^{1-2 \delta_{2}} R_{2}(\bar{\theta}, \bar{h}, \cdot)\right\|_{L^{2}\left(P_{n}\right)}=O(1)$ and this completes the proof of (B.2).
(a) Consider: $\left\langle f_{\bar{\theta}, \bar{h}} \bar{\varphi}, \bar{\varphi}_{\bar{\theta}}\right\rangle$. Note that

$$
\bar{\varphi}(y)=\binom{1}{\Sigma_{n}^{-1 / 2} \phi\left(y, \theta_{0}\right)}, \quad \bar{\varphi}_{\theta}(y)=\binom{1}{\Sigma_{n}^{-1 / 2} \phi(y, \theta)}
$$

Hence,

$$
\left\langle f_{\bar{\theta}, \bar{h}} \bar{\varphi}, \bar{\varphi}_{\bar{\theta}}\right\rangle=\int f_{\bar{\theta}, \bar{h}}(y)\left(\begin{array}{cc}
1 & \phi(y, \bar{\theta})^{\prime} \Sigma_{n}^{-1 / 2} \\
\Sigma_{n}^{-1 / 2} \phi\left(y, \theta_{0}\right) & \Sigma_{n}^{-1 / 2} \phi\left(y, \theta_{0}\right) \phi(y, \bar{\theta})^{\prime} \Sigma_{n}^{-1 / 2}
\end{array}\right) d P_{n}(y) .
$$

We have: (a.1)

$$
\int f_{\bar{\theta}, \bar{h}} d P_{n}=1+\int\left(f_{\bar{\theta}, \bar{h}}-1\right) d P_{n}
$$

But, from (B.2),

$$
\left|\int\left(f_{\bar{\theta}, \bar{h}}-1\right) d P_{n}\right| \leq\left(\int\left(f_{\bar{\theta}, \bar{h}}-1\right)^{2} d P_{n}\right)^{1 / 2}=O\left(n^{-1+2 \delta_{2}}\right)
$$

Thus:

$$
\begin{equation*}
\int f_{\bar{\theta}, \bar{h}} d P_{n}=1+O\left(n^{-1+2 \delta_{2}}\right) \tag{a.2}
\end{equation*}
$$

$$
\int f_{\bar{\theta}, \bar{h}}(y) \phi\left(y, \theta_{0}\right) d P_{n}(y)=\int \phi\left(y, \theta_{0}\right) d P_{n}(y)+\int\left(f_{\bar{\theta}, \bar{h}}(y)-1\right) \phi\left(y, \theta_{0}\right) d P_{n}(y)=\int\left(f_{\bar{\theta}, \bar{h}}(y)-1\right) \phi\left(y, \theta_{0}\right) d P_{n}(y)
$$

Note that

$$
\left|\int\left(f_{\bar{\theta}, \bar{h}}(y)-1\right) \phi\left(y, \theta_{0}\right) d P_{n}(y)\right| \leq\left(\int\left(f_{\bar{\theta}, \bar{h}}-1\right)^{2} d P_{n}\right)^{1 / 2}\left(\int\left\|\phi\left(y, \theta_{0}\right)\right\|^{2} d P_{n}(y)\right)^{1 / 2}
$$

Thus,

$$
\int f_{\bar{\theta}, \bar{h}}(y) \phi\left(y, \theta_{0}\right) d P_{n}(y)=O\left(n^{-1+2 \delta_{2}}\right)
$$

$$
\begin{align*}
& \int f_{\bar{\theta}, \bar{h}}(y) \phi(y, \bar{\theta}) d P_{n}(y)=\int \phi(y, \bar{\theta}) d P_{n}(y)+\int\left(f_{\bar{\theta}, \bar{h}}(y)-1\right) \phi(y, \bar{\theta}) d P_{n}(y) \tag{a.3}\\
&=O\left(n^{-\delta_{1}}\right)+\int\left(f_{\bar{\theta}, \bar{h}}(y)-1\right) \phi(y, \bar{\theta}) d P_{n}(y)=O\left(n^{-\delta_{1}}\right)+O\left(n^{-1+2 \delta_{2}}\right) .
\end{align*}
$$

(a.4)

$$
\int f_{\bar{\theta}, \bar{h}}(y) \phi\left(y, \theta_{0}\right) \phi(y, \bar{\theta})^{\prime} d P_{n}(y)=\int \phi\left(y, \theta_{0}\right) \phi(y, \bar{\theta})^{\prime} d P_{n}(y)+\int\left(f_{\overline{\bar{\theta}}, \bar{h}}(y)-1\right) \phi\left(y, \theta_{0}\right) \phi(y, \bar{\theta})^{\prime} d P_{n}(y) .
$$

Under the conditions of the lemma, $\bar{\theta} \mapsto \int \phi\left(y, \theta_{0}\right) \phi(y, \bar{\theta})^{\prime} d P_{n}(y)$ is continuously differentiable in a neighbourhood of θ_{0} and we write

$$
\int \phi\left(y, \theta_{0}\right) \phi(y, \bar{\theta})^{\prime} d P_{n}(y)=\Sigma_{n}+O\left(\left\|\bar{\theta}-\theta_{0}\right\|\right)=\Sigma_{n}+O\left(n^{-1 / 2+\delta_{2}}\right) .
$$

By the Cauchy-Schwarz inequality,

$$
\begin{aligned}
& \left|\int\left(f_{\bar{\theta}, \bar{h}}(y)-1\right) \phi\left(y, \theta_{0}\right) \phi(y, \bar{\theta})^{\prime} d P_{n}(y)\right| \\
& \qquad\left(\int\left(f_{\bar{\theta}, \bar{h}}-1\right)^{2} d P_{n}\right)^{1 / 2}\left(\int\left\|\phi\left(y, \theta_{0}\right)\right\|^{4} d P_{n}\right)^{1 / 4}\left(\int\|\phi(y, \bar{\theta})\|^{4} d P_{n}\right)^{1 / 4}=O\left(n^{-1+2 \delta_{2}}\right)
\end{aligned}
$$

As a result,

$$
\left\langle f_{\bar{\theta}, \bar{h}} \bar{\varphi}, \bar{\varphi}_{\bar{\theta}}\right\rangle=I_{k+1}+o(1)
$$

and we can also claim that

$$
\left\langle f_{\bar{\theta}, \bar{h}}, \bar{\varphi}_{\bar{\theta}}\right\rangle^{-1}=I_{k+1}+o(1)
$$

(b) Consider: $\left\langle f_{\bar{\theta}, \bar{h}}^{2}, \frac{\partial^{2}}{\partial \theta_{k} \partial \theta_{j}} \bar{\varphi}_{\bar{\theta}}\right\rangle$

$$
\left\langle f_{\bar{\theta}, \bar{h}}^{2}, \frac{\partial^{2}}{\partial \theta_{k} \partial \theta_{j}} \bar{\varphi}_{\bar{\theta}}\right\rangle=\int f_{\bar{\theta}, \bar{h}}^{2}(y)\left(\begin{array}{ll}
0 & \frac{\partial^{2}}{\partial \theta_{k} \partial \theta_{j}} \phi(y, \bar{\theta})^{\prime} \Sigma_{n}^{-1 / 2}
\end{array}\right) d P_{n}(y) .
$$

We can write:

$$
\int f_{\bar{\theta}, \bar{h}}^{2}(y) \frac{\partial^{2}}{\partial \theta_{k} \partial \theta_{j}} \phi(y, \bar{\theta}) d P_{n}(y)=\int \frac{\partial^{2}}{\partial \theta_{k} \partial \theta_{j}} \phi(y, \bar{\theta}) d P_{n}(y)+\int\left(f_{\bar{\theta}, \bar{h}}^{2}(y)-1\right) \frac{\partial^{2}}{\partial \theta_{k} \partial \theta_{j}} \phi(y, \bar{\theta}) d P_{n}(y)=(1)+(2) .
$$

By assumption, (1) $=\mathbb{L}_{n}^{-1} \frac{\partial^{2} \rho(\bar{\theta})}{\partial \theta_{k} \partial \theta_{j}}$. It follows that $(1)=O\left(n^{-\delta_{1}}\right)$. It is not hard to see that

$$
\|(2)\| \leq\left(\int\left(f_{\bar{\theta}, \bar{h}}-1\right)^{2} d P_{n}\right)^{1 / 2}\left(2 \sup _{\theta \in \mathcal{N}_{\theta}, f \in \mathcal{N}_{1}} \int f^{2}(y)\left\|\partial^{2} \phi(y, \theta) / \partial \theta_{k} \partial \theta_{j}\right\|^{2} d P_{n}(y)\right)^{1 / 2}=O\left(n^{-1+2 \delta_{2}}\right) .
$$

Thus:

$$
\left\|\left\langle f_{\bar{\theta}, \bar{h}}^{2}, \frac{\partial^{2}}{\partial \theta_{k} \partial \theta_{j}} \bar{\varphi}_{\bar{\theta}}\right\rangle\right\|=O\left(n^{-\delta_{1}}\right)+O\left(n^{-1+2 \delta_{2}}\right)=O\left(n^{-\delta_{1}} \vee n^{-1+2 \delta_{2}}\right) .
$$

(c) Consider: $\left\langle f_{\bar{\theta}, \bar{h}}^{2}, \frac{\partial}{\partial \theta_{j}} \bar{\varphi}_{\bar{\theta}}\right\rangle$

$$
\left\langle f_{\bar{\theta}, \bar{h}}^{2}, \frac{\partial}{\partial \theta_{j}} \bar{\varphi}_{\bar{\theta}}\right\rangle=\int f_{\bar{\theta}, \bar{h}}^{2}(y)\left(\begin{array}{cc}
0 & \frac{\partial}{\partial \theta_{j}} \phi(y, \bar{\theta})^{\prime} \Sigma_{n}^{-1 / 2}
\end{array}\right) d P_{n}(y)
$$

and we establish as in (b) that the norm of this quantity is of order $O\left(n^{-\delta_{1}} \vee n^{-1+2 \delta_{2}}\right)$.
(d) Consider: $\left\langle f_{\bar{\theta}, \bar{h}} \bar{\varphi}, \frac{\partial}{\partial \theta_{j}} \bar{\varphi}_{\bar{\theta}}\right\rangle$.

$$
\left\langle f_{\bar{\theta}, \bar{h}} \bar{\varphi}, \frac{\partial}{\partial \theta_{j}} \bar{\varphi}_{\bar{\theta}}\right\rangle=\int f_{\bar{\theta}, \bar{h}}(y)\left(\begin{array}{cc}
0 & \frac{\partial \phi(y, \bar{\theta})^{\prime}}{\partial \theta_{j}} \Sigma_{n}^{-1 / 2} \\
0 & \Sigma_{n}^{-1 / 2} \phi\left(y, \theta_{0}\right) \frac{\partial \phi(y, \bar{\theta})^{\prime}}{\partial \theta_{j}} \Sigma_{n}^{-1 / 2}
\end{array}\right) d P_{n}(y)
$$

We have:

$$
\begin{aligned}
& \left\|\int f_{\bar{\theta}, \bar{h}}(y) \frac{\partial \phi(y, \bar{\theta})^{\prime}}{\partial \theta_{j}} d P_{n}(y)\right\| \leq\left\|\int \frac{\partial \phi(y, \bar{\theta})^{\prime}}{\partial \theta_{j}} d P_{n}(y)\right\|+\left\|\int\left(f_{\bar{\theta}, \bar{h}}(y)-1\right) \frac{\partial \phi(y, \bar{\theta})^{\prime}}{\partial \theta_{j}} d P_{n}(y)\right\| \\
& \quad \leq \int\left\|\frac{\partial \phi(y, \bar{\theta})^{\prime}}{\partial \theta_{j}}\right\| d P_{n}(y)+\left(\int\left(f_{\bar{\theta}, \bar{h}}-1\right)^{2} d P_{n}\right)^{1 / 2}\left(\int\left\|\frac{\partial \phi(y, \bar{\theta})^{\prime}}{\partial \theta_{j}}\right\|^{2} d P_{n}(y)\right)^{1 / 2}=O(1)+O\left(n^{-1+2 \delta_{2}}\right) \\
& \left\|\int f_{\bar{\theta}, \bar{h}}(y) \phi\left(y, \theta_{0}\right) \frac{\partial \phi(y, \bar{\theta})^{\prime}}{\partial \theta_{j}} d P_{n}(y)\right\| \leq\left\|\int \phi\left(y, \theta_{0}\right) \frac{\partial \phi(y, \bar{\theta})^{\prime}}{\partial \theta_{j}} d P_{n}(y)\right\|+\left\|\int\left(f_{\bar{\theta}, \bar{h}}(y)-1\right) \phi\left(y, \theta_{0}\right) \frac{\partial \phi(y, \bar{\theta})^{\prime}}{\partial \theta_{j}} d P_{n}(y)\right\| \\
& \quad \leq \int\left\|\phi\left(y, \theta_{0}\right)\right\|\left\|\frac{\partial \phi(y, \bar{\theta})^{\prime}}{\partial \theta_{j}}\right\| d P_{n}(y)+\left(\int\left(f_{\bar{\theta}, \bar{h}}-1\right)^{2} d P_{n}\right)^{1 / 2}\left(\int\left\|\phi\left(y, \theta_{0}\right)\right\|^{2}\left\|\frac{\partial \phi(y, \bar{\theta})^{\prime}}{\partial \theta_{j}}\right\|^{2} d P_{n}(y)\right)^{1 / 2} \\
& =O(1)+O\left(n^{-1+2 \delta_{2}}\right)
\end{aligned}
$$

It follows that $\left\langle f_{\bar{\theta}, \bar{h}} \bar{\varphi}, \frac{\partial}{\partial \theta_{j}} \bar{\varphi}_{\bar{\theta}}\right\rangle=O(1)$.
(e) Consider: $\left\langle\bar{\varphi} \frac{\partial}{\partial \theta_{j}} f_{\bar{\theta}, \bar{h}}, \bar{\varphi}_{\bar{\theta}}\right\rangle$.

We know from Proposition 3.1,

$$
\frac{\partial}{\partial \theta_{j}} f_{\bar{\theta}, \bar{h}}=-\frac{1}{2}\left\langle f_{\bar{\theta}, \bar{h}}^{2}, \frac{\partial \bar{\varphi}_{\bar{\theta}}}{\partial \theta_{j}}\right\rangle\left\langle f_{\bar{\theta}, \bar{h}} \bar{\varphi}, \bar{\varphi}_{\bar{\theta}}\right\rangle^{-1} \bar{\varphi}:=a^{\prime} \bar{\varphi}
$$

Hence,

$$
\left\langle\bar{\varphi} \frac{\partial}{\partial \theta_{j}} f_{\bar{\theta}, \bar{h}}, \bar{\varphi}_{\bar{\theta}}\right\rangle=\left\langle a^{\prime} \bar{\varphi} \cdot \bar{\varphi}, \bar{\varphi}_{\bar{\theta}}\right\rangle=\int\left(\begin{array}{cc}
a^{\prime} \bar{\varphi} & a^{\prime} \bar{\varphi} \cdot \phi(y, \bar{\theta}) \Sigma_{n}^{-1 / 2} \\
\Sigma_{n}^{-1 / 2} a^{\prime} \bar{\varphi} \cdot \phi\left(y, \theta_{0}\right) & \Sigma_{n}^{-1 / 2} a^{\prime} \bar{\varphi} \cdot \phi\left(y, \theta_{0}\right) \phi(y, \bar{\theta})^{\prime} \Sigma_{n}^{-1 / 2}
\end{array}\right) d P_{n}(y) .
$$

We have:

$$
\left|\int a^{\prime} \bar{\varphi} d P_{n}\right| \leq\|a\| \int\left(1+\left\|\phi\left(y, \theta_{0}\right)\right\|\right) d P_{n}(y)=O\left(n^{-\delta_{1}} \vee n^{-1+2 \delta_{2}}\right)
$$

where we use (c) and (a).

$$
\begin{gathered}
\left\|\int a^{\prime} \bar{\varphi} \cdot \phi\left(y, \theta_{0}\right) d P_{n}(y)\right\| \leq\|a\| \int\left(1+\left\|\phi\left(y, \theta_{0}\right)\right\|\right)\left\|\phi\left(y, \theta_{0}\right)\right\| d P_{n}(y)=O\left(n^{-\delta_{1}} \vee n^{-1+2 \delta_{2}}\right) \\
\left\|\int a^{\prime} \bar{\varphi} \cdot \phi(y, \bar{\theta}) d P_{n}(y)\right\| \leq\|a\| \int\left(1+\left\|\phi\left(y, \theta_{0}\right)\right\|\right)\|\phi(y, \bar{\theta})\| d P_{n}(y) \\
\leq\|a\|\left(\int\left(1+\left\|\phi\left(y, \theta_{0}\right)\right\|\right)^{2} d P_{n}(y)\right)^{1 / 2}\left(\int\|\phi(y, \bar{\theta})\|^{2} d P_{n}(y)\right)^{1 / 2}=O\left(n^{-\delta_{1}} \vee n^{-1+2 \delta_{2}}\right) \\
\left\|\int a^{\prime} \bar{\varphi} \cdot \phi\left(y, \theta_{0}\right) \phi(y, \bar{\theta})^{\prime} d P_{n}(y)\right\| \leq\|a\| \int\left(1+\left\|\phi\left(y, \theta_{0}\right)\right\|\right)\left\|\phi\left(y, \theta_{0}\right)\right\|\|\phi(y, \bar{\theta})\| d P_{n}(y) \\
\leq\|a\|\left(\int\left(1+\left\|\phi\left(y, \theta_{0}\right)\right\|\right)^{2}\left\|\phi\left(y, \theta_{0}\right)\right\|^{2} d P_{n}(y)\right)^{1 / 2}\left(\int\|\phi(y, \bar{\theta})\|^{2} d P_{n}(y)\right)^{1 / 2}=O\left(n^{-\delta_{1}} \vee n^{-1+2 \delta_{2}}\right)
\end{gathered}
$$

Since the eigenvalues of Σ_{n} are bounded from above and away from 0 , we can claim that $\left\|\left\langle\bar{\varphi} \frac{\partial}{\partial \theta_{j}} f_{\bar{\theta}, \bar{h}}, \bar{\varphi}_{\bar{\theta}}\right\rangle\right\|=$ $O\left(n^{-\delta_{1}} \vee n^{-1+2 \delta_{2}}\right)$.

We obtain (B.1) by applying the triangle inequality and then the Cauchy-Schwarz inequality to the terms in (13) that gives $\partial^{2} f(\bar{\theta}, \bar{h}, \cdot) / \partial \theta_{j} \partial \theta_{k}$. Then, the order of magnitude follows from (a), (b), (c), (d), and (e) above.

Proof of Theorem 3.2:

(i) Writing $\varepsilon_{n}=\sqrt{n}\left(g_{n}-f_{n}\right)-\alpha_{n}$, we have $g_{n}=f_{n}+\alpha_{n} / \sqrt{n}+\varepsilon_{n} / \sqrt{n}$. Thus:

$$
g_{n}^{2}=f_{n}^{2}+\frac{\alpha_{n}^{2}}{n}+\frac{\varepsilon_{n}^{2}}{n}+2 \frac{\alpha_{n} f_{n}}{\sqrt{n}}+2 \frac{\varepsilon_{n} f_{n}}{\sqrt{n}}+2 \frac{\alpha_{n} \varepsilon_{n}}{n} .
$$

Integrating each side with respect to μ_{n} yields:

$$
2 \int \alpha_{n} f_{n} d \mu_{n}=-\frac{1}{\sqrt{n}} \int \alpha_{n}^{2} d \mu_{n}-\frac{1}{\sqrt{n}} \int \varepsilon_{n}^{2} d \mu_{n}-2 \int \varepsilon_{n} f_{n} d \mu_{n}-\frac{2}{\sqrt{n}} \int \alpha_{n} \varepsilon_{n} d \mu_{n}
$$

and the result follows by the Cauchy-Schwarz inequality and the fact that $\int \alpha_{n}^{2} d \mu_{n}$ is bounded, $\int \varepsilon_{n}^{2} d \mu_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $\int f_{n}^{2} d \mu_{n}=1$.
(ii) We establish this result by relying on Le Cam's second lemma (see Bickel, Klassen, Ritov and Wellner, 1998, Lemma 2, p.500). To obtain the first and second conclusion in (ii), it suffices to show that:
(a) For all $\epsilon>0$ and as $n \rightarrow \infty$,

$$
\max _{1 \leq i \leq n} P_{f_{n}}\left(\left|\frac{g_{n}^{2}\left(X_{n i}\right)}{f_{n}^{2}\left(X_{n i}\right)}-1\right|>\epsilon\right) \rightarrow 0
$$

and (b) Under f_{n}^{2},

$$
W_{n}:=2 \sum_{i=1}^{n}\left(\frac{g_{n}\left(X_{n i}\right)}{f_{n}\left(X_{n i}\right)}-1\right) \xrightarrow{d} N\left(-\sigma^{2} / 4, \sigma^{2}\right) .
$$

By the triangle inequality, (15) implies that $\left\|\sqrt{n}\left(g_{n}-f_{n}\right)\right\|_{\mu_{n}}-\left\|\alpha_{n}\right\|_{\mu_{n}} \rightarrow 0$ as $n \rightarrow \infty$ and as a result, $n\left\|g_{n}-f_{n}\right\|_{\mu_{n}}^{2} \rightarrow a^{2} \equiv \lim _{n \rightarrow \infty}\left\|\alpha_{n}\right\|_{\mu_{n}}^{2}$ and $\left\|g_{n}-f_{n}\right\|_{\mu_{n}} \rightarrow 0$.

To establish (a), pick $\epsilon>0$; we have:

$$
\begin{aligned}
\epsilon P_{f_{n}}\left(\left|\frac{g_{n}^{2}\left(X_{n i}\right)}{f_{n}^{2}\left(X_{n i}\right)}-1\right|>\epsilon\right) & \leq \mathbb{E}_{f_{n}}\left(\left|\frac{g_{n}^{2}\left(X_{n i}\right)}{f_{n}^{2}\left(X_{n i}\right)}-1\right|\right)=\int\left|g_{n}^{2}-f_{n}^{2}\right| d \mu_{n}=\int\left|g_{n}-f_{n}\right|\left|g_{n}+f_{n}\right| d \mu_{n} \\
& \leq\left(\int\left(g_{n}-f_{n}\right)^{2} d \mu_{n}\right)^{1 / 2}\left(\int\left(g_{n}+f_{n}\right)^{2} d \mu_{n}\right)^{1 / 2}
\end{aligned}
$$

and the expected result follows since $\int\left(g_{n}+f_{n}\right)^{2} d \mu_{n} \leq 4$.

To establish (b), let

$$
Z_{n}=\frac{2}{\sqrt{n}} \sum_{i=1}^{n}\left(\frac{\alpha_{n}\left(X_{n i}\right)}{f_{n}\left(X_{n i}\right)}-\nu_{n}\right)
$$

with $\nu_{n} \equiv \mathbb{E}_{f_{n}}\left(\alpha_{n}\left(X_{n i}\right) / f_{n}\left(X_{n i}\right)\right)=\int \alpha_{n} f_{n} d \mu_{n}$. We obtain (b) by showing that under f_{n}^{2}, Z_{n} converges in distribution to $N\left(0,4 a^{2}\right)$ and that $\mathbb{E}_{f_{n}}\left(W_{n}-Z_{n}+a^{2}\right)^{2}=o(1)$.

Under $f_{n}^{2}, \mathbb{E}_{f_{n}}\left(\alpha_{n}\left(X_{n i}\right) / f_{n}\left(X_{n i}\right)-\nu_{n}\right)=0$ and $\operatorname{Var}_{f_{n}}\left(\alpha_{n}\left(X_{n i}\right) / f_{n}\left(X_{n i}\right)-\nu_{n}\right)=\int \alpha_{n}^{2} d \mu_{n}-\nu_{n}^{2} \rightarrow a^{2}$ as $n \rightarrow \infty$. Therefore, the central limit theorem for row-wise independent and identically distributed triangular arrays ensures that under f_{n}^{2},

$$
Z_{n} \xrightarrow{d} N\left(0, \sigma^{2}\right) .
$$

Next, we observe that $\mathbb{E}_{f_{n}}\left(W_{n}-Z_{n}+a^{2}\right)^{2}=\operatorname{Var}_{f_{n}}\left(W_{n}-Z_{n}+a^{2}\right)+\left[\mathbb{E}_{f_{n}}\left(W_{n}-Z_{n}+a^{2}\right)\right]^{2}$. We have:

$$
\mathbb{E}_{f_{n}}\left(W_{n}-Z_{n}+a^{2}\right)=\mathbb{E}_{f_{n}}\left(W_{n}\right)+a^{2}=2 n\left(\int g_{n} f_{n} d \mu_{n}-1\right)+a^{2}=-n \int\left(g_{n}-f_{n}\right)^{2} d \mu_{n}+a^{2} \rightarrow 0
$$

as $n \rightarrow \infty$.

$$
\begin{aligned}
\operatorname{Var}_{f_{n}}\left(W_{n}-Z_{n}+a^{2}\right) & =\operatorname{Var}_{f_{n}}\left(W_{n}-Z_{n}\right)=4 \operatorname{Var}_{f_{n}}\left(\sum_{i=1}^{n}\left\{\frac{g_{n}\left(X_{n i}\right)}{f_{n}\left(X_{n i}\right)}-1-\frac{1}{\sqrt{n}}\left(\frac{\alpha_{n}\left(X_{n i}\right)}{f_{n}\left(X_{n i}\right)}-\nu_{n}\right)\right\}\right) \\
& =4 \operatorname{Var}_{f_{n}}\left(\frac{\sqrt{n}\left(g_{n}\left(X_{n i}\right)-f_{n}\left(X_{n i}\right)\right)-\alpha_{n}\left(X_{n i}\right)}{f_{n}\left(X_{n i}\right)}\right) \\
& =4 \mathbb{E}_{f_{n}}\left(\frac{\left[\sqrt{n}\left(g_{n}\left(X_{n i}\right)-f_{n}\left(X_{n i}\right)\right)-\alpha_{n}\left(X_{n i}\right)\right]^{2}}{f_{n}\left(X_{n i}\right)^{2}}\right)-4\left[\mathbb{E}_{f_{n}}\left(\frac{\sqrt{n}\left(g_{n}\left(X_{n i}\right)-f_{n}\left(X_{n i}\right)\right)-\alpha_{n}\left(X_{n i}\right)}{f_{n}\left(X_{n i}\right)}\right)\right]^{2} \\
& =4 \int\left[\sqrt{n}\left(g_{n}-f_{n}\right)-\alpha_{n}\right]^{2} d \mu_{n}-4\left(\int\left[\sqrt{n}\left(g_{n}-f_{n}\right)-\alpha_{n}\right] f_{n} d \mu_{n}\right)^{2} \\
& \leq 4\left\|\sqrt{n}\left(g_{n}-f_{n}\right)-\alpha_{n}\right\|_{\mu_{n}}^{2}+4\left(\left\|\sqrt{n}\left(g_{n}-f_{n}\right)-\alpha_{n}\right\|_{\mu_{n}}\left\|f_{n}\right\|_{\mu_{n}}\right)^{2} \\
& =8\left\|\sqrt{n}\left(g_{n}-f_{n}\right)-\alpha_{n}\right\|_{\mu_{n}}^{2} \rightarrow 0, \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

This establishes (b).
We can therefore apply Le Cam's second lemma and claim that $\log L_{n}-\left(W_{n}-\frac{\sigma^{2}}{4}\right)=o_{P_{f_{n}}}(1)$. Therefore, under f_{n}^{2},

$$
\log L_{n} \xrightarrow{d} N\left(-\sigma^{2} / 2, \sigma^{2}\right)
$$

and we can claim using Le Cam's first lemma (see van der Vaart, 1998, p.88) that $\left\{\prod_{i=1}^{n} g_{n}^{2}\left(x_{i}\right)\right\}$ and $\left\{\prod_{i=1}^{n} f_{n}^{2}\left(x_{i}\right)\right\}$ are contiguous.

Proof of Proposition 3.3: In this proof, we focus only on the case where $\left(\delta_{1}, \delta_{2}\right) \in \Delta, \delta_{1}<\delta_{2}$ and $0<s_{1}<p$. All the other cases follow along the same lines. The Taylor expansion yields (21) with $r_{n, \theta_{0}}(\cdot)=\nabla_{\theta} f\left(\theta_{0}, h_{0}, \cdot\right)$ and $A_{n}=\nabla_{h} f\left(\theta_{0}, h_{0}, \cdot\right)$. From Proposition 3.1, $r_{n, \theta_{0}}(\cdot)=-\frac{1}{2} \Gamma_{n}^{\prime} \Sigma_{n}^{-1 / 2} \varphi(\cdot)$. with $\Gamma_{n}=\mathbb{E}_{P_{n}}\left(\frac{\partial}{\partial \theta^{\prime}} \phi\left(Y, \theta_{0}\right)\right)$. This Proposition also gives:

$$
\forall u \in \mathcal{E}, \quad \nabla_{h} f(\theta, h, \cdot) \cdot u=u-\left\langle f_{\theta, h} u, \bar{\varphi}_{\theta}\right\rangle\left\langle f_{\theta, h} \bar{\varphi}, \bar{\varphi}_{\theta}\right\rangle^{-1} \bar{\varphi} .
$$

At $\left(\theta_{0}, h_{0}\right),\left\langle f_{\theta, h} u, \bar{\varphi}_{\theta}\right\rangle=\langle u, \bar{\varphi}\rangle=0$, since $u \in \mathcal{E}$. Hence, $\nabla_{h} f\left(\theta_{0}, h_{0}, \cdot\right) \cdot u=u$. It follows that, since $h_{n}, h_{0} \in \mathcal{E}$,

$$
\nabla_{h} f\left(\theta_{0}, h_{0}, \cdot\right) \cdot\left(h_{n}-h_{0}\right)=h_{n}-h_{0}
$$

Recall that θ_{n} and h_{n} are defined such that: $\Lambda_{n} R^{-1}\left(\theta_{n}-\theta_{0}\right)-\eta \rightarrow 0$ and $\sqrt{n}\left(h_{n}-h_{0}\right)-\beta \rightarrow 0$ in $L^{2}\left(P_{n}\right)$ (see Equations (17) and (19)). For $\left(\delta_{1}, \delta_{2}\right) \in \Delta$, according to the discussion leading to the statement of the proposition, we need to find $\alpha_{n} \in L^{2}\left(P_{n}\right)$ such that

$$
\left\|\alpha_{n}-\sqrt{n}\left[r_{n, \theta_{0}} \cdot\left(\theta_{n}-\theta_{0}\right)+A_{n} \cdot\left(h_{n}-h_{0}\right)\right]\right\|_{L^{2}\left(P_{n}\right)} \rightarrow 0
$$

It is obvious that $\left\|\sqrt{n} A_{n} \cdot\left(h_{n}-h_{0}\right)-A_{n} \cdot \beta\right\|_{L^{2}\left(P_{n}\right)}=\left\|\sqrt{n}\left(h_{n}-h_{0}\right)-\beta\right\|_{L^{2}\left(P_{n}\right)} \rightarrow 0$, as $n \rightarrow \infty$.

Also,

$$
r_{n, \theta_{0}} \cdot\left(\theta_{n}-\theta_{0}\right)=-\frac{1}{2}\left(\theta_{n}-\theta_{0}\right)^{\prime} \Gamma_{n}^{\prime} \Sigma_{n}^{-1 / 2} \varphi
$$

and

$$
\Gamma_{n}\left(\theta_{n}-\theta_{0}\right)=\binom{n^{-\delta_{1}} \frac{\partial \rho_{1}\left(\theta_{0}\right)}{\partial \theta^{\prime}}}{n^{-\delta_{2}} \frac{\partial \rho_{2}\left(\theta_{0}\right)}{\partial \theta^{\prime}}} R \Lambda_{n}^{-1} \Lambda_{n} R^{-1}\left(\theta_{n}-\theta_{0}\right)=n^{-1 / 2}\left(\begin{array}{cc}
D_{1} R_{1} & 0 \\
n^{\delta_{1}-\delta_{2}} D_{2} R_{1} & D_{2} R_{2}
\end{array}\right) \Lambda_{n} R^{-1}\left(\theta_{n}-\theta_{0}\right),
$$

with $D_{j}=\frac{\partial \rho_{j}\left(\theta_{0}\right)}{\partial \theta^{\prime}}$. (We use the fact that $D_{1} R_{2}=0$.) Hence,

$$
\sqrt{n} \Gamma_{n}\left(\theta_{n}-\theta_{0}\right)=J \eta+o(1)
$$

As a result, we can set

$$
\alpha_{n}(\cdot)=-\frac{1}{2} \eta^{\prime} J^{\prime} \Sigma_{n}^{-1 / 2} \varphi(\cdot)+A_{n} \cdot \beta, \quad \eta \in \mathbb{R}^{p}, \beta \in \mathcal{E}
$$

Proof of Theorem 3.4: This proof follows similar lines to that of Theorem 4.4 in Dovonon and Atchadé (2020). Let $S_{n}=\Lambda_{n} R^{-1}\left(\tilde{\theta}_{n}-\theta_{n}\right)$. The characteristic function of S_{n} under g_{n}^{2} is

$$
\begin{aligned}
\mathbb{E}_{g_{n}}\left[\exp \left(i w^{\prime} S_{n}\right)\right] & =\mathbb{E}_{g_{n}}\left[\exp \left(i w^{\prime} \Lambda_{n} R^{-1}\left(\tilde{\theta}_{n}-\theta_{n}\right)\right)\right] \\
& =\mathbb{E}_{g_{n}}\left[\exp \left(i w^{\prime} \Lambda_{n} R^{-1}\left(\tilde{\theta}_{n}-\theta_{0}-\left(\theta_{n}-\theta_{0}\right)\right)\right)\right] \\
& =\mathbb{E}_{g_{n}}\left[\exp \left(i w^{\prime} \Lambda_{n} R^{-1}\left(\tilde{\theta}_{n}-\theta_{0}\right)\right) \exp \left(-i w^{\prime}\left(\eta+\varepsilon_{n}\right)\right)\right]
\end{aligned}
$$

for some $\eta \in \mathbb{R}^{p}$ and $\varepsilon_{n}:=\Lambda_{n} R^{-1}\left(\theta_{n}-\theta_{0}\right)-\eta$ which tends to 0 as $n \rightarrow 0$. Thus,

$$
\begin{aligned}
\mathbb{E}_{g_{n}}\left[\exp \left(i w^{\prime} S_{n}\right)\right] & =\mathbb{E}_{g_{n}}\left[\exp \left(i w^{\prime} \Lambda_{n} R^{-1}\left(\tilde{\theta}_{n}-\theta_{0}\right)\right) \exp \left(-i w^{\prime} \eta\right)\right]+o(1) \\
& =\mathbb{E}_{f_{n, 0}}\left[\exp \left(i w^{\prime} \Lambda_{n} R^{-1}\left(\tilde{\theta}_{n}-\theta_{0}\right)-i w^{\prime} \eta+L_{n}\right)\right]+o(1)
\end{aligned}
$$

This holds for any sequence $\left\{g_{n}^{2}(\cdot)\right\}$ associated to any $\alpha_{n}=-\frac{1}{2} \eta^{\prime} J^{\prime} \Sigma_{n}^{-1 / 2} \varphi-A_{n} \cdot \mathbf{b}$, with $\mathbf{b}=\left(\beta_{1}, \ldots, \beta_{p}\right) \in$ $\mathcal{B}\left(h_{0}\right)^{p}$ (where "associated" is meant in the sense described by Equation (16)). In particular, this holds for:

$$
\alpha_{n}=\eta^{\prime}\left(-\frac{1}{2} J^{\prime} \Sigma_{n}^{-1 / 2} \varphi-A_{n} \cdot \mathbf{b}_{n}^{*}\right)
$$

Thanks to Theorem 3.2, under $f_{n, 0}^{2},\left(\Lambda_{n} R^{-1}\left(\tilde{\theta}_{n}-\theta_{0}\right), \frac{2}{\sqrt{n}} \sum_{i=1}^{n}\left(\frac{\alpha_{n}\left(Y_{n i}\right)}{f_{n}\left(Y_{n i}\right)}-\nu_{n}\right)\right)$ converges in distribution coordinate-wise to $\left(S, \eta^{\prime} Z_{0}\right)$, with: $\nu_{n}=\mathbb{E}_{f_{n, 0}}\left(\alpha_{n}\left(Y_{n i}\right) / f_{n, 0}\left(Y_{n i}\right)\right), Z_{0} \sim N\left(0, I_{*}\right)$, and

$$
I_{*}=4 \lim _{n \rightarrow \infty}\left\langle-\frac{1}{2} J^{\prime} \Sigma_{n}^{-1 / 2} \varphi-A_{n} \cdot \mathbf{b}_{n}^{*},-\frac{1}{2} J^{\prime} \Sigma_{n}^{-1 / 2} \varphi-A_{n} \cdot \mathbf{b}_{n}^{*}\right\rangle
$$

Therefore, by the Prohorov's theorem, there is a subsequence of $\left(\Lambda_{n} R^{-1}\left(\tilde{\theta}_{n}-\theta_{0}\right), L_{n}\right)$ that converges weakly under $f_{n, 0}^{2}$ to $\left(S, \eta^{\prime} Z_{0}-\frac{1}{2} \eta^{\prime} I_{*} \eta\right)$. Along that subsequence, we can claim that:

$$
\begin{align*}
& \mathbb{E}_{f_{n, 0}} \exp \left(i w^{\prime} \Lambda_{n} R^{-1}\left(\tilde{\theta}_{n}-\theta_{0}\right)-i w^{\prime} \eta+L_{n}\right) \tag{B.3}\\
\rightarrow & \mathbb{E} \exp \left(i w^{\prime} S-i w^{\prime} \eta+\eta^{\prime} Z_{0}-\frac{1}{2} \eta^{\prime} I_{*} \eta\right)=\mathbb{E} \exp \left[i w^{\prime} S+\eta^{\prime} Z_{0}\right] \exp \left[-i w^{\prime} \eta-\frac{1}{2} \eta^{\prime} I_{*} \eta\right] .
\end{align*}
$$

Also, $\tilde{\theta}_{n}$ being a Λ_{n}-regular estimator ensures that

$$
\begin{equation*}
\mathbb{E}_{g_{n}} \exp \left[i w^{\prime} \Lambda_{n} R^{-1}\left(\tilde{\theta}_{n}-\theta_{n}\right)\right] \rightarrow \mathbb{E} \exp \left(i w^{\prime} S\right) \tag{B.4}
\end{equation*}
$$

Letting $\Phi(w, v)=\mathbb{E} \exp \left(i w^{\prime} S+i v^{\prime} Z_{0}\right)$, we have

$$
\Phi(w, 0)=\mathbb{E}\left[\exp \left(i w^{\prime} S+\eta^{\prime} Z_{0}\right)\right] \exp \left[-i w^{\prime} \eta-\frac{1}{2} \eta^{\prime} I_{*} \eta\right]
$$

The right-hand-side of this equality is analytic in η and constant on \mathbb{R}^{p}. As a result, it is constant for $\eta \in \mathbb{C}^{p}$. Now, choosing $\eta=-i I_{*}^{-1} w$, we have:

$$
\begin{equation*}
\Phi(w, 0)=\mathbb{E} \exp \left[i w^{\prime}\left(S-I_{*}^{-1} Z_{0}\right)\right] \exp \left[-\frac{1}{2} w^{\prime} I_{*}^{-1} w\right] \tag{B.5}
\end{equation*}
$$

One can recognize in (B.5), the product of the characteristic functions of $U=S-Z$ and Z with $Z=I_{*}^{-1} Z_{0} \sim$ $N\left(0, I_{*}^{-1}\right)$ independent of U. This concludes the proof.

Proof of Corollary 3.5: Under the conditions of the Corollary, the conditions of Proposition 3.3 and Theorem 3.4 are satisfied. As a result, (27) holds. It remains to show that $I_{*}=J^{\prime} \Sigma^{-1} J$. From Theorem 3.4, $I_{*}=$ $4\left\langle-\frac{1}{2} J^{\prime} \Sigma_{n}^{-1 / 2} \varphi-A_{n} \cdot \mathbf{b}_{n}^{*},-\frac{1}{2} J^{\prime} \Sigma_{n}^{-1 / 2} \varphi-A_{n} \cdot \mathbf{b}_{n}^{*}\right\rangle$, with $A_{n} \cdot \mathbf{b}^{*}$ with $\mathbf{b}_{n}^{*} \in \mathcal{B}\left(h_{0}\right)^{p}$ the orthogonal projection of $-\frac{1}{2} J^{\prime} \varphi$ onto $\left\{A_{n} \cdot \mathbf{b}: \mathbf{b} \in \mathcal{B}\left(h_{0}\right)^{p}\right\}$. Recall that $\mathcal{B}\left(h_{0}\right) \subset \mathcal{E}$. Hence from Proposition 3.1, along with simple derivations, we have that, for any $\beta \in \mathcal{B}\left(h_{0}\right)$,

$$
A_{n} \cdot \beta:=\nabla_{h} f\left(\theta_{0}, h_{0}, \cdot\right) \cdot \beta=\beta=\sum_{j \geq k+2} a_{j} \varphi_{j}
$$

where for $j \geq k+2, a_{j}=\left\langle\beta, \varphi_{j}\right\rangle=\int \beta \varphi_{j} d P_{n}$. The last equality follows from the fact that $\beta \in \mathcal{E}$. Hence, $A_{n} \cdot \beta$ is orthogonal to φ for any $\beta \in \mathcal{B}\left(h_{0}\right)$. Thus $\mathbf{b}^{*}=0$ and

$$
I_{*}=4 \lim _{n \rightarrow \infty}\left\langle\frac{1}{2} J^{\prime} \Sigma_{n}^{-1 / 2} \varphi, \frac{1}{2} J^{\prime} \Sigma_{n}^{-1 / 2} \varphi\right\rangle=\lim _{n \rightarrow \infty} J^{\prime} \Sigma_{n}^{-1 / 2} \int \varphi \varphi^{\prime} d P_{n} \Sigma_{n}^{-1 / 2} J=\lim _{n \rightarrow \infty} J^{\prime} \Sigma_{n}^{-1} J=J^{\prime} \Sigma^{-1} J
$$

Proof of Proposition 3.7: Note that since, from (11) $\hat{\theta}_{n}-\theta_{0}=O_{P}\left(n^{-1 / 2+\delta_{2}}\right)$ under P_{n}, this also holds under g_{n}^{2}. By the definition, we also have $\theta_{n}-\theta_{0}=O\left(n^{-1 / 2+\delta_{2}}\right)$ so that $\hat{\theta}_{n}-\theta_{n}=O_{P}\left(n^{-1 / 2+\delta_{2}}\right)$ under g_{n}^{2}.

The first order optimality condition for GMM is given by:

$$
\frac{\partial \bar{\phi}_{n}\left(\hat{\theta}_{n}\right)^{\prime}}{\partial \theta} \hat{W} \bar{\phi}_{n}\left(\hat{\theta}_{n}\right)=0
$$

By the mean-value expansion, we write

$$
\begin{equation*}
\frac{\partial \bar{\phi}_{n}\left(\hat{\theta}_{n}\right)^{\prime}}{\partial \theta} \hat{W} \bar{\phi}_{n}\left(\theta_{n}\right)+\frac{\partial \bar{\phi}_{n}\left(\hat{\theta}_{n}\right)^{\prime}}{\partial \theta} \hat{W} \frac{\partial \bar{\phi}_{n}\left(\bar{\theta}_{n}\right)}{\partial \theta^{\prime}}\left(\hat{\theta}_{n}-\theta_{n}\right)=0 \tag{B.6}
\end{equation*}
$$

where $\bar{\theta}_{n} \in\left(\hat{\theta}_{n}, \theta_{n}\right)$ and may differ from row to row.
From Lemma A. 5 of Antoine and Renault (2009), we can claim that:

$$
\begin{equation*}
\sqrt{n} \frac{\partial \bar{\phi}_{n}\left(\hat{\theta}_{n}\right)}{\partial \theta^{\prime}} R \Lambda_{n}^{-1} \xrightarrow{P} J \quad \text { and } \quad \sqrt{n} \frac{\partial \bar{\phi}_{n}\left(\bar{\theta}_{n}\right)}{\partial \theta^{\prime}} R \Lambda_{n}^{-1} \xrightarrow{P} J \tag{B.7}
\end{equation*}
$$

both under P_{n} and g_{n}^{2}. Also, $\hat{W}-W \xrightarrow{P} 0$, under g_{n}^{2}. It follows that (recall that $R^{\prime}=R^{-1}$):

$$
\begin{equation*}
n \Lambda_{n}^{-1} R^{-1} \frac{\partial \bar{\phi}_{n}\left(\hat{\theta}_{n}\right)^{\prime}}{\partial \theta} \hat{W} \frac{\partial \bar{\phi}_{n}\left(\bar{\theta}_{n}\right)}{\partial \theta^{\prime}} R \Lambda_{n}^{-1} \xrightarrow{P} J^{\prime} W J, \quad \text { under } g_{n}^{2} \tag{B.8}
\end{equation*}
$$

Next, we show that $\sqrt{n} \bar{\phi}_{n}\left(\theta_{n}\right)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \phi\left(Y_{n i}, \theta_{n}\right)$ converges in distribution to $N(0, \Sigma)$ under g_{n}^{2}.
By construction, $\mathcal{M}\left(\theta_{n}, h_{n}, g_{n}\right)=0$. Hence, using (12), we get $\left\langle g_{n}^{2}, \varphi_{\theta_{n}}\right\rangle=0$. That is

$$
\int g_{n}^{2}(y) \phi\left(y, \theta_{n}\right)^{\prime} \Sigma_{n}^{-1 / 2} d P_{n}(y)=0
$$

which implies that $\int g_{n}^{2}(y) \phi\left(y, \theta_{n}\right) d P_{n}(y)=0$, that is

$$
\mathbb{E}_{g_{n}}\left(\phi\left(Y_{n i}, \theta_{n}\right)\right)=0
$$

Also,

$$
\begin{aligned}
& \operatorname{Var}_{g_{n}}\left(\phi\left(Y_{n i}, \theta_{n}\right)\right)=\mathbb{E}_{g_{n}}\left(\phi\left(Y_{n i}, \theta_{n}\right) \phi\left(Y_{n i}, \theta_{n}\right)^{\prime}\right) \\
& \quad=\int \phi\left(y, \theta_{n}\right) \phi\left(y, \theta_{n}\right)^{\prime}\left(g_{n}^{2}(y)-1\right) d P_{n}(y)+\int \phi\left(y, \theta_{n}\right) \phi\left(y, \theta_{n}\right)^{\prime} d P_{n}(y)
\end{aligned}
$$

By Assumption 2(b), $\int \phi\left(y, \theta_{n}\right) \phi\left(y, \theta_{n}\right)^{\prime} d P_{n}(y)=\Sigma+o(1)$. Note that:

$$
\begin{aligned}
& \left\|\int \phi\left(y, \theta_{n}\right) \phi\left(y, \theta_{n}\right)^{\prime}\left(g_{n}^{2}(y)-1\right) d P_{n}(y)\right\| \leq \int\left\|\phi\left(y, \theta_{n}\right) \phi\left(y, \theta_{n}\right)^{\prime}\right\|\left|g_{n}^{2}(y)-1\right| d P_{n}(y) \\
& \leq\left(\int\left(g_{n}-1\right)^{2} d P_{n} \int\left\|\phi\left(y, \theta_{n}\right)\right\|^{4}\left(g_{n}(y)+1\right)^{2} d P_{n}(y)\right)^{1 / 2} \\
& \leq\left\|g_{n}-1\right\|_{L^{2}\left(P_{n}\right)} \cdot\left(2 \int\left\|\phi\left(y, \theta_{n}\right)\right\|^{4} g_{n}^{2}(y) d P_{n}(y)+2 \int\left\|\phi\left(y, \theta_{n}\right)\right\|^{4} d P_{n}(y)\right)^{1 / 2} \\
& \leq 2 \sqrt{C}\left\|g_{n}-1\right\|_{L^{2}\left(P_{n}\right)}:=2 \sqrt{C}\left\|g_{n}-f_{n, 0}\right\|_{L^{2}\left(P_{n}\right)}=o(1)
\end{aligned}
$$

where the second inequality follows from the Cauchy-Schwarz inequality and the last one follows from Assumption 2(a). Thus, $\operatorname{Var}_{g_{n}}\left(\phi\left(Y_{n i}, \theta_{n}\right)\right) \rightarrow \Sigma$, as $n \rightarrow \infty$. The central limit theorem for row-wise independent and identically distributed triangular arrays ensures that:

$$
\begin{equation*}
\sqrt{n} \bar{\phi}_{n}\left(\theta_{n}\right) \xrightarrow{d} N(0, \Sigma), \quad \text { under } g_{n}^{2} \tag{B.9}
\end{equation*}
$$

We write (B.6) as:

$$
\sqrt{n} \Lambda_{n}^{-1} R^{-1} \frac{\partial \bar{\phi}_{n}\left(\hat{\theta}_{n}\right)^{\prime}}{\partial \theta} \hat{W} \sqrt{n} \bar{\phi}_{n}\left(\theta_{n}\right)+\sqrt{n} \Lambda_{n}^{-1} R^{-1} \frac{\partial \bar{\phi}_{n}\left(\hat{\theta}_{n}\right)^{\prime}}{\partial \theta} \hat{W} \frac{\partial \bar{\phi}_{n}\left(\bar{\theta}_{n}\right)}{\partial \theta^{\prime}} R \Lambda_{n}^{-1} \sqrt{n}\left[\Lambda_{n} R^{-1}\left(\hat{\theta}_{n}-\theta_{n}\right)\right]=0
$$

Using (B.7) and (B.8), this yields:

$$
J^{\prime} W \sqrt{n} \bar{\phi}_{n}\left(\theta_{n}\right)+J^{\prime} W J\left[\Lambda_{n} R^{-1}\left(\hat{\theta}_{n}-\theta_{n}\right)\right]=o_{P}(1)
$$

that is:

$$
\Lambda_{n} R^{-1}\left(\hat{\theta}_{n}-\theta_{n}\right)=-\left(J^{\prime} W J\right)^{-1} J^{\prime} W \sqrt{n} \bar{\phi}_{n}\left(\theta_{n}\right)+o_{P}(1)
$$

where the $o_{P}(1)$ is under g_{n}^{2}. Using (B.9), we conclude that

$$
\Lambda_{n} R^{-1}\left(\hat{\theta}_{n}-\theta_{n}\right) \xrightarrow{d} N(0, \Omega(W)),
$$

under g_{n}^{2} and we claim that $\hat{\theta}_{n}$ is Λ_{n}-regular.

References

[1] Andrews, D. W. K., \& X. Cheng (2012). Estimation and inference with weak, semi-strong, and strong identification. Econometrica, 80(5), 2153-2211.
[2] Antoine, B., \& E. Renault (2009). Efficient GMM with nearly-weak instruments. Econometrics Journal, 12, S135-S171.
[3] Antoine, B., \& E. Renault (2012). Efficient minimum distance estimation with multiple rates of convergence. Journal of Econometrics, 170(2), 350-367.
[4] Begun, J. M., W. J. Hall, W.-M. Huang \& J. Wellner, (1983). Information and asymptotic efficiency in parametric-nonparametric models, Annals of Statistics, 11, 432-452.
[5] Bickel, P.J., C.A.J. Klaassen, Y. Ritov, \& J.A. Wellner (1998). Efficient and adaptive estimation for semiparametric models. Springer-Verlag, New-York.
[6] Caner, M. (2009). Testing, estimation in GMM and CUE with nearly-weak identification. Econometric Reviews, 29(3), 330-363.
[7] Chamberlain, G. (1987). Asymptotic efficiency in estimation with conditional moment restrictions. Journal of Econometrics 34, 305-334.
[8] Dovonon, P. \& F.Y. Atchadé (2020). Efficiency bounds for semiparametric models with singular score functions. Econometric Reviews 39 (6), 612-648.
[9] Dovonon, P., F. Doko Tchatoka \& M. Aguessy (2022). Relevant moment selection under mixed identification strength. Econometric Theory, forthcoming.
[10] Hahn, J. \& G. Kuersteiner (2002). Discontinuities of weak instrument limiting distributions. Economics Letters 75 (3), 325-331.
[11] Hall, A. R., A. Inoue, K. Jana \& C. Shin (2007). Information in generalized method of moments estimation and entropy-based moment selection. Journal of Econometrics 138 (2), 488-512.
[12] Hallin, M., R. van den Akker \& B.J.M. Werker (2015). On quadratic expansions of log-likelihoods and a general asymptotic linearity result. In: Hallin, M., Mason, D., Pfeifer, D., Steinebach, J. (eds) Mathematical Statistics and Limit Theorems. Springer, Cham.
[13] Han, S. \& A. McCloskey (2019). Estimation and inference with a (nearly) singular jacobian. Quantitative Economics 10 (3), 1019-1068.
[14] Hansen, L.P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50 (4), 1029-1054.
[15] Magnus, J. R. \& H. Neudecker (2002). Matrix differential calculus with applications in statistics and econometrics. Wiley.
[16] Staiger, D. \& J.H. Stock (1997). Instrumental variables regression with weak instruments. Econometrica 65 (3), 557-586.
[17] Stock, J.H. \& J.H. Wright (2000). GMM with weak identification. Econometrica 68 (5), 1055-1096.
[18] van der Vaart, A. W. (1998). Asymptotic statistics. Cambridge University Press.
[19] van der Vaart, A.W. \& J.A. Wellner (1996). Weak convergence and empirical processes with applications to statistics. Springer, New-York.
[20] Wilks, S.S. (1932). Certain generalizations in the analysis of variance. Biometrika 26, 471-494.

[^0]: *Economics Department, Concordia University, 1455 de Maisonneuve Blvd. West, H 1155, Montreal, Quebec, Canada, H3G 1M8. Email: prosper.dovonon@concordia.ca (Corresponding author).
 ${ }^{\dagger}$ Department of Mathematics and Statistics, Boston University, 111 Cummington Mall, Boston, USA, MA 02215. Email: atchade@bu.edu.
 ${ }^{\ddagger}$ School of Economics and Public Policy, The University of Adelaide, 10 Pulteney Street, Adelaide, Australia, SA 5005. Email: firmin.dokotchatoka@adelaide.edu.au.

[^1]: ${ }^{1}$ The main results derived in this paper stay valid in the more general cases where \mathbb{L}_{n} features more than 2 identification strengths. They are also valid in cases where the model includes weak and/or uninformative restrictions $\left(\delta_{j} \geq 1 / 2\right)$, so long as enough strong and/or semi-strong restrictions are included to ensure consistent and asymptotically normal estimation.

[^2]: ${ }^{2}$ See Magnus and Neudecker (2002, Th. 22, p.21).

