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Abstract. Energy-based models (EBM) are well-known density estimation mod-

els that are statistically attractive, but computationally difficult to fit. We connect

the short-run MCMC method of Nijkamp et al. (2019) with the algorithm un-

rolling framework to make the case for a new class of density estimation models

that we call generative EBM (GEBM). We show that the short-run MCMC method

of Nijkamp et al. (2019) implicitly fits a GEBM by minimizing a maximum mean

discrepancy (MMD) metric, where the MMD kernel is taken as the neural tangent

kernel of the related deep neural network function. The idea can be applied more

broadly, and as an illustration, we propose a new and fast estimation procedure for

high-dimensional Gaussian graphical models under a ℓ1-norm penalty.

1. Introduction

Energy-based models are generalizations of graphical models that are widely used

in machine learning. These models first appeared in statistical physics with the

seminal work of Ising (1925), and were later studied in various fields under sometimes

different names: Gibbs measures Georgii (1988), Markov random fields Guyon (1995),

graphical models Besag (1974), Boltzmann machine Hinton and Sejnowski (1983).

The term energy-based model originates from the machine learning community and

refers to specifications where the negative log-density is a deep neural network function

(LeCun et al. (2006); Du and Mordatch (2019); Du et al. (2020); Ingraham et al.

(2019)). However, in this work we will use the term energy-based model more broadly.
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On the flip side of their great modeling flexibility is the fact that EBMs are difficult

to fit due to their intractable normalizing constants. Classical maximum likelihood

inference for EBMs leads to a representation of the score function as an integral

with respect to the energy-based distribution. Evaluating these integrals becomes

the computational bottleneck. Most of the literature on this issue has focused on

developing efficient MCMC methods with various heuristics (Hinton (2002); Tieleman

(2008); Du and Mordatch (2019)).

1.1. Main contributions. To address these computational challenges, Nijkamp et al.

(2019) introduced the idea of running short, noise-initialized, and non-persistent

Markov chains to approximate the score function of EBMs. Their approach greatly

simplifies the implementation of EBMs, yet produced remarkably good results. The

authors intuited that their approach amounts to fitting, by moment matching, a mod-

ified version of the EBM. The main contribution of this work is to further analyze

Nijkamp et al. (2019). First, we decouple the modeling framework and the estimation

framework of Nijkamp et al. (2019). On the modeling side, we show that their frame-

work is an application of algorithm unrolling, and this yields a new model that we

call generative EBM. We use the term generative here to connote that it is easy to

generate samples these models. On the estimation side, we show that the short-run

MCMC method of Nijkamp et al. (2019) is a minimum distance estimation of the

generative EBM, using a maximum mean discrepancy (MMD) metric. Furthermore,

the kernel of the MMD metric is precisely the neural tangent kernel of the deep neural

network function.

The key point of this work is that the strategy of replacing an EBM by a generative

EBM can be applied more widely. In particular, we show that the method can be used

to tackle high-dimensional graphical models that are widely used in statistics. As an

illustration, we propose a new and fast estimation procedure for high-dimensional

Gaussian graphical models under a ℓ1-norm penalty that is much faster than the

deterministic proximal gradient algorithm, at the cost of a small loss of accuracy.

The remaining of the paper is organized as follows. We introduce the EBMs in

Section 2. The approximate EBMs of Nijkamp et al. (2019) are defined and analyzed

in Section 3, and an extension to Gaussian graphical models is proposed in Section

4. The numerical illustrations are collected in Section 4 and 5, including illustrations

with Gaussian graphical models and image density estimations. Some technical proofs

are collected in Section 7, and some concluding thoughts are proposed in Section 6.
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2. Density estimation using energy-based models

Let P⋆ be a probability measure of interest on some domain X ⊆ Rp equipped

with its Lebesgue measure that we denote dx or µLeb. Suppose that we have random

samples X1, . . . , Xn
i.i.d.∼ P⋆. Let Pn denote the corresponding empirical measure on

X:

Pn(·)
def
=

1

n

n∑
i=1

δXi(·),

where δx denotes the Dirac measure with mass at x. We consider the problem of

estimating P⋆ using an EBM {pθ, θ ∈ Θ}, where pθ is of the form

pθ(x) =
e−Eθ(x)∫

X e−Eθ(x)dx
, x ∈ X, (1)

for some function Eθ : X → R that we will call the energy function. Throughout

we assume that the parameter space Θ is a subset of Rd with non-empty interior,

and equipped with its Euclidean structure, with inner product ⟨·, ·⟩ and norm ∥ · ∥2.
We assume that

∫
X e−Eθ(x)dx < ∞ for all θ ∈ Θ. We also assume that the function

θ 7→ Eθ(x) is differentiable for each x ∈ X, and the gradient of the function θ 7→
log

∫
X e−Eθ(x)dx is

−
∫
X
∇θEθ(x)pθ(x)dx,

where ∇θEθ(x) denotes the gradient of θ 7→ Eθ(x).
One of the appeal of EBMs in machine learning is that they are universal density

approximators. Indeed, assuming that X is bounded, if p(x) = e−E(x)/Z is a density

on X, then

∥p − pθ∥tv
def
= sup

A⊆X, A meas.

∣∣∣∣∫
A
p(x)dx−

∫
A
pθ(x)dx

∣∣∣∣ ≤ µLeb(X)

2
∥E − Eθ∥∞, (2)

where ∥f∥∞
def
= supx∈X |f(x)|. The proof of the inequality in the last display can be

found for instance in (Georgii (1988) Section 8.1). From this result, approximation

properties of the energy function class {Eθ, θ ∈ Θ} transfer to the EBM. For in-

stance, if Eθ is a deep feed-forward model, then recent results (see e.g. DeVore et al.

(2021) and the references therein) imply that the resulting EBM is a universal density

approximator.

To fit the EBM (1), the negative log-likelihood function of the dataset (X1, . . . , Xn)

is n× ℓn(θ), where

ℓn(θ)
def
=

∫
X
Eθ(x)Pn(dx) + log

∫
X
e−Eθ(x)dx. (3)
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With Gθ(x)
def
= ∇θEθ(x), it follows that

∇ℓn(θ) =

∫
X
Gθ(x)Pn(dx)−

∫
X
Gθ(x)pθ(x)dx.

To improve estimation it is often useful to fit the model using a regularization term.

Let R : Rd → (−∞,+∞] be a regularization function that we will assume convex

with a non-empty domain, but not necessarily smooth. Let ProxRγ denote its proximal

operator. Specifically, given γ > 0,

ProxRγ (θ) = Argmin
u∈Rd

[
R(u) +

1

2γ
∥u− θ∥22

]
.

A penalized maximum likelihood estimation of θ is then obtained by minimizing the

function

fn(θ)
def
= ℓn(θ) +R(θ). (4)

For instance, the initial constraint that θ belongs to the chosen parameter space Θ

can be built into the regularization function by taking R(θ) = R1(θ)+ιΘ(θ), for some

regularization function R1, and ιΘ(u) = 0 if u ∈ Θ, ιΘ(u) = +∞ otherwise. In that

case, provided that Θ is compact, and R1 is continuous, The minimization problem

(4) is often solved by finding the solutions of the fixed point equation

θ = ProxRγ (θ − γ∇ℓn(θ)) , (5)

for appropriate γ > 0 (see e.g. Combettes and Wajs (2005) Theorem 3.4. and

Proposition 3.1.(iii)).

Starting from (5), the maximum penalized likelihood estimator can then be ap-

proximated using a well-known stochastic proximal gradient descent algorithm (Ack-

ley et al. (1985); Younes (1988); Nitanda (2014); Atchadé et al. (2017)). A concise

description is given in Algorithm 1. This entails drawing random samples from pθ

(typically using MCMC) to approximate the second integral in ∇ℓn(θ). However,

because the mixing of the MCMC sampling of pθ is typically poorly understood and

can vary widely with θ, the algorithm often fails, particularly in high-dimensional

problems. Various tricks, such as the contrastive divergence (CD) scheme of Hinton

(2002), or the persistent contrastive divergence of Tieleman (2008) are often employed

to stabilize and accelerate the convergence of the MCMC sampling. However these

methods are of limited use in overparametrized EBM.

For instance, CD corresponds to taking p̂θ = PnK
L
θ in Algorithm 1, where Kθ is

a Markov kernel with invariant distribution pθ, and KL
θ is the kernel Kθ iterated L

times1. To see why this is a sensible choice, suppose that the true data distribution

1In other words, p̂θ is the distribution obtained by drawing a data point from the empirical measure

Pn, and using that data point as initial value for a Markov chain with kernel Kθ run for L iterations.
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is P⋆ = Pθ⋆ for some θ⋆ ∈ Θ, and suppose for the sake of the argument that X is

bounded, and Kθ is a contraction on the space of probability measures on X equipped

with the BL-metric:

∥p− q∥BL
def
= sup

f : ∥f∥BL≤1

∣∣∣∣∫
X
f(x)p(dx)−

∫
X
f(x)q(dx)

∣∣∣∣ ,
where ∥f∥BL is the sum of the infinity norm and Lipschitz norm of f . In that case, if

ρθ denotes the contraction constant of Kθ, we have from (2) that

∥PnKL
θ − pθ∥BL ≤ ρLθ ∥Pn − pθ∥BL ≤ ρLθ

(
∥Pn − P⋆∥BL +

µLeb(X)

2
∥Eθ − Eθ⋆∥∞

)
.

Since Xi
i.i.d.∼ P⋆, it is generally the case that ∥Pn − P⋆∥BL is small. Therefore, if

the energy functions Eθ do not vary too much, CD would work well, even when L

is small. However, CD is typically of little help when applied to EBMs from deep

neural networks, since for these models the terms ∥Eθ−Eθ⋆∥∞ are typically very large

quantities.

Algorithm 1. Let θ(0) ∈ Rd be the initial solution, and {γ(k), k ≥ 1} a sequence of

step-size. At iteration k ≥ 1, given θ(k−1):

(1) Draw X+
1 , . . . , X+

B
i.i.d.∼ Pn, and draw random variables X−

1 , . . . , X−
B

i.i.d.∼
p̂θ(k−1) , where p̂θ(k−1) is some approximation of pθ(k−1) , typically based on

MCMC. Compute

∇̂ℓn(θ
(k−1))

def
=

1

B

B∑
i=1

Gθ(k−1)(X+
i )−

1

B

B∑
i=1

Gθ(k−1)(X−
i ). (6)

(2) Compute

θ(k) = ProxR
γ(k)

(
θ(k−1) − γ(k)∇̂ℓn(θ

(k−1))
)
.

Persistent CD improves on CD by taking p̂θ(k−1) as ν(k)KL
θ(k−1) , where the initial

distribution ν(k) is built from negative samples drawn over the previous few iterations.

A similar analysis as above shows that persistent CD will also typically fail unless

the step-size {γ(k), k ≥ 1} are appropriately tuned, and small enough to keep the

variations ∥Eθ(k) − Eθ(k−1)∥∞ small, which leads to a much more costly algorithm. In

conclusion, it is the case that fitting EBMs in large scale problems is often a formidable

computational undertaking.
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3. Generative EBMs

In this section we will assume for simplicity that the function (x, θ) 7→ Eθ(x) is

continuously differentiable. To address the computational challenges alluded to above,

Nijkamp et al. (2019) introduced the idea of running a short, noise-initialized, and

non-persistent Markov chain to approximate the score function. Specifically, take

ν any probability distribution on Rp, and L ≥ 1 an integer. Typically, we take

ν as the isotropic multivariate Gaussian distribution. Given θ, step-size sequences

ρ = (ρ1, . . . , ρL), σ = (σ1, . . . , σL) where ρi > 0, and σi ≥ 0, generate a sequence

(X0 . . . , XL) as follows. First we draw X0 ∼ ν, and then draw

Xj = Xj−1 − ρj∇xEθ(Xj−1) + σjZj , j = 1, . . . , L, (7)

where (Z1, . . . , ZL) are iid random vectors with distribution N(0, Ip), and ∇xEθ(x)
denotes the partial derivative with respect to x of the function Eθ(x). Let πθ denote

the distribution of XL where the randomness comes from the initial distribution ν,

and from the noise (Z1, . . . , ZL) (when σi > 0). Clearly, πθ depends also on the choice

of ν, ρ,σ, and L. But we shall omit those dependencies in the notation. The short-run

MCMC approximation of Nijkamp et al. (2019) consists in using Algorithm 1, with

p̂θ chosen as πθ. The resulting algorithm is presented in Algorithm 2. Because L is

typically small and the initial distribution ν is taken as a noise-generating distribution,

we note that Algorithm 2 is fundamentally different from Algorithm 1.

Our goal in this note is to shed some light on Algorithm 2. First, we find it

important to decouple the modeling framework and the estimation framework of

Nijkamp et al. (2019). On the modeling side, we argue that the short-run MCMC

framework implicitly replaces the initial EBM {pθ, θ ∈ Θ} by an approximation

{πθ, θ ∈ Θ} that we propose to call a generative EBM (GEBM). Furthermore, we offer

the view that the GEBM is an instance of algorithm unrolling modeling. Algorithm

unrolling is a general framework for constructing statistical models from optimization

algorithms. We refer the reader to (Ongie et al. (2020); Shlezinger et al. (2021)) for

thorough literature reviews. First we note that the EBM pθ is the unique solution of

the minimization problem

min
µ

[∫
Eθ(x)µ(dx) +

∫
log (fµ(x)) fµ(x)dx

]
, (8)

where fµ is the density of µ, and the minimization is taken over all probability measure

that are absolutely continuous with respect to µLeb. Therefore we can construct more

tractable densities that retain the features of pθ by iterating an optimization algorithm

for solving (8). With σj =
√

2ρj , the dynamics in (7) is precisely the discretization of

the gradient flow for solving (8) (see e.g. Wibisono (2018)). Although not considered
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here, the interest of this connection to algorithm unrolling is that more sophisticated

optimization algorithms for (8) (for instance the underdamped Langevin dynamics)

can be considered leading to GEBM with potentially different statistical properties.

Algorithm 2. Let θ(0) ∈ Rd be the initial solution, and {γ(k), k ≥ 1} a sequence of

step-size. At iteration k ≥ 1, given θ(k−1):

(1) DrawX+
1 , . . . , X+

B
i.i.d.∼ Pn if needed, and draw random variablesX−

1 , . . . , X−
B
i.i.d.∼

πθ(k−1) , where πθ is as described in (7), and compute

∆̂(k) =
1

B

B∑
i=1

Gθ(k−1)(X+
i )−

1

B

B∑
i=1

Gθ(k−1)(X−
i ).

(2) Compute

θ(k) = ProxR
γ(k)

(
θ(k−1) − γ(k)∆̂(k)

)
.

3.1. Some basic properties of generative energy-based models. In the last

section, we have introduced the GEBM {πθ, θ ∈ Θ} as a different density class that

approximates {pθ, θ ∈ Θ} but is easier to draw samples from. We argue in this section

that Algorithm 2 consists in fitting the GEBM {πθ, θ ∈ Θ} to data by maximum mean

discrepancy minimization.

For two probability measures µ1, µ2 on X, and a family F of measurable real-valued

functions on X, we define

dF (µ1, µ2)
def
= sup

f∈F

∣∣∣∣∫
X
f(x)µ1(dx)−

∫
X
f(x)µ2(dx)

∣∣∣∣ .
Given θ ∈ Θ, we recall that Gθ(x) denotes the gradient ∇θEθ(x). Let Gj,θ(x) denote

the j-component of Gθ(x). In other words, Gj,θ(x) = ∂Eθ(x)/∂θj . We define

Gθ
def
=


d∑
j=1

wjGj,θ, w
def
= (w1, . . . , wd) ∈ Rd, ∥w∥2 ≤ 1

 .

And for θ ∈ Θ, we define

dθ(µ1, µ2)
def
= dGθ

(µ1, µ2).

Given f(·) =
∑d

j=1 αjGj,θ(·), and g(·) =
∑d

j=1 βjGj,θ(·) two elements of Gθ, we define
their inner product as

⟨f, g⟩θ
def
=

d∑
j=1

αjβj .
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Gθ equipped with the inner product ⟨·, ·⟩θ is (the unit ball of) a reproducing kernel

Hilbert space with reproducing kernel

Kθ(x, x
′)

def
=

d∑
j=1

Gj,θ(x)Gj,θ(x
′).

We refer the reader to (Wainwright (2019)) for more details on reproducing kernel

Hilbert spaces. In the deep learning literature, the kernel Kθ is known as the neural

tangent kernel of the model (Jacot et al. (2018)). It is easily seen that

dθ(µ1, µ2)
2 =

∫
Kθ(x, y)µ1(dx)µ1(dy) = ∥µ1(Gθ)− µ2(Gθ)∥22.

These observations on reproducing kernel Hilbert spaces are well-known, and hold in

broader generality (see for instance (Gretton et al. (2012))). In what follows we write

∥A∥op to denote the spectral norm of A. And for θ ∈ Θ, we set

Hθ(x)
def
= ∇θ log πθ(x), x ∈ X.

We make the following standard boundedness and Lipschitz smoothness assumption.

H1. For all θ0 ∈ Θ, the function θ 7→
∫
XGθ0(x)πθ(x)dx is twice continuously differ-

entiable under the integral and there exists L < ∞ that may depend on θ0 such that

for all θ ∈ Θ, ∫
X

[
∥Gθ0(x)∥22 + ∥Hθ(x)∥22

]
πθ(dx) ≤ L,

and for all θ, ϕ ∈ Θ,∥∥∥∥∫
X
Gθ0(x)

[
Hθ(x)

Tπθ(x)−Hϕ(x)
Tπϕ(x)

]
dx

∥∥∥∥
op

≤ L∥θ − ϕ∥2.

We will also impose the following standard condition on the step-size sequence.

H2. There exists c0 > 0 such that the sequence {γ(k), k ≥ 1} satisfies

0 < γ(k) ≤ c0,
∑
k≥1

γ(k) = ∞, and
∑
k≥1

(
γ(k)

)2
< ∞.

The following result is a statement on the limiting behavior of the sequence {θ(k), k ≥
1} produced by Algorithm 2. For simplicity, we focus on the case R ≡ 0.

Theorem 1. Assume that H1 and H2 hold for some constant c0 small enough. Let

{θ(k), k ≥ 0} denotes the sequence generated by Algorithm 2, with R ≡ 0. Let

G0
def
= Gθ(0). Suppose that there exists µ > 0 such that for all v ∈ Rd, and for all

k ≥ 1,

vT
(∫

X
Hθ(k)(x) {G0(x)}T πθ(k)(x)dx

)
v ≥ µ∥v∥22, (9)
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and

Kθ(k) = Kθ(0) . (10)

Then

lim
k→∞

E
[
dθ(0)(πθ(k) , Pn) | θ

(0)
]
= 0.

Proof. See Section 7.1. □

To motivate assumption (9), consider the ideal case where πθ(x) = pθ(x) = e−⟨θ,G(x)⟩/Zθ.

In that case G0 = G, Hθ = G− πθ(G), and∫
X
Hθ(x)G0(x)

Tπθ(x)dx =

∫
X
(G(x)− πθ(G)) (G(x)− πθ(G))T πθ(dx).

Hence in this particular case, (9) corresponds to the assumption that the covariance

matrices in the last display remains positive definite during the algorithm, which

often holds for graphical models. In the general case, (9) is a measure of covariation

between G0 and Hθ. Its positive definiteness is admittedly a very difficult assumption

to check when it comes to deep learning models. Nevertheless, although much remains

to be learned about deep learning models, the currently emerging understanding

supports (9). Indeed, in these highly over-parameterized deep learning models, due

to the wealth of local solutions, the parameter θ needs not vary much during training.

Therefore, one can argue that (9) is equivalent to the positive definiteness of

{∇θ log πθ(0)(x)} {∇θEθ(0)(x)}
T ,

which is a more plausible assumption.

We assume in (10) that the neural tangent kernels remain stable during the algo-

rithm. Clearly, that assumption holds if Gθ does not depend on θ, as for instance

with many graphical models. It has been observed recently that for deep and wide

neural network functions, the neural tangent kernel is indeed remarkably stable dur-

ing training (Du et al. (2019); Bietti and Mairal (2019)). Hence for these types of

deep neural networks, assumption (10) also seems reasonable.

Assuming the initial solution θ(0) is non-random, the main implication of the the-

orem is that the short-run MCMC algorithm converges to the minimum distance

estimator

θ̂
def
= Argmin

θ∈Θ
dθ(0)(πθ, Pn), (11)

as anticipated by Nijkamp et al. (2019). This estimator is closely related to the max-

imum mean discrepancy GAN (MMD-GAN) estimators Li et al. (2017); Binkowski

et al. (2018). More specifically, let Kϕ : X × X → R, ϕ ∈ Φ, be a family of kernels,
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and let Fϕ denote the unit ball of the reproducing kernel Hilbert space associated to

Kϕ. The MMD-GAN estimator of θ is define as

Argmin
θ∈Θ

max
ϕ∈Θ

dFϕ
(πθ, Pn).

Hence the difference between the short run MCMC and MMD-GAN is that the former

aims at a specific MMD kernel, whereas the latter search for the best kernel in a given

set. Although conceptually more flexible, the MMD-GAN leads to challenging min-

max optimization problems that are challenging to solve.

We now turn to the statistical properties of θ̂. We recall that the sub-exponential

norm of a random variable Z is defined as

∥Z∥ψ1

def
= inf

{
t > 0, E

(
e

|X|
t

)
≤ 2

}
.

Proposition 2. Assume H1, and suppose that the initial value θ(0) in Algorithm 2

is non-random, and∫
X
∥Gθ(0)(x)∥∞P⋆(dx) < ∞,

and max
1≤j≤p

∥Gj,θ(0)(X)− E(Gj,θ(0)(X))∥ψ1 ≤ K, (12)

for some constant K < ∞. Then with probability at least 1− 2/d, the estimator θ̂ as

defined in (11) satisfies

dθ(0)(πθ̂, P⋆) ≤ min
θ∈Θ

dθ(0)(πθ, P⋆) + c1K

√
d log(d)

n
.

Proof. See Section 7.2. □

The term (minθ∈Θ dθ(0)(πθ, P⋆)) is the model approximation error, whereas the

second term (K

√
d log(d)

n ) is the statistical error. We note however that the sub-

exponential norm K may depend unfavorably on the dimension. Bounding the model

error minθ∈Θ dθ(0)(πθ, P⋆) is a more challenging problem that we leave for possible

future research.

3.2. Implementation using stochastic proximal gradient ADAM. In some

problems, selecting the correct step-size sequence {γ(k), k ≥ 1} in Algorithm 2 can

be challenging. In many of these cases, the use of an adaptive momentum (ADAM)

yields better behaving solvers. Algorithm 3 below gives a synoptic view of the sto-

chastic proximal gradient algorithm with ADAM. The algorithm requires adaptation

parameters β1, β2 which are typically set to β1 = 0.9, and β2 = 0.9999, and a tol-

erance parameter ϵ typically taken as 10−8. In the algorithm, ⊕,⊗ and ⊘ denote

component-wise addition, multiplication and division, respectively.
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We should add that although ADAM has become the de facto standard method

for deep learning optimization, its theoretical properties remain poorly understood.

We refer to Bock and Weib (2019) for some local convergence results.

Algorithm 3. Let θ(0) ∈ Rd be the initial solution, and {γ(k), k ≥ 1} a sequence of

step-size. Set m(0) = v(0) = 0d. At iteration k ≥ 1, given θ(k−1), m(k−1), v(k−1):

(1) DrawX+
1 , . . . , X+

B
i.i.d.∼ Pn if needed, and draw random variablesX−

1 , . . . , X−
B
i.i.d.∼

πθ(k−1) , where πθ is as described in (7), and compute

∆̂(k) =
1

B

B∑
i=1

Gθ(k−1)(X+
i )−

1

B

B∑
i=1

Gθ(k−1)(X−
i ).

(2) Compute

m(k) = β1m
(k−1) + (1− β1)∆̂(k),

v(k) = β2v
(k−1) + (1− β2)∆̂(k) ⊗ ∆̂(k),

θ̄ = θ(k−1) − γ(k)

√
1− βk2

(1− βk1 )
m(k) ⊘

√
v(k) ⊕ ϵ.

θ(k) = ProxR
γ(k)

(θ̄).

4. An illustration with Gaussian graphical models

Since graphical models are examples of energy-based models, we show here that the

generative energy-based modeling developed above leads to a novel method for fitting

graphical models. We focus on Gaussian graphical models, but extensions beyond is

straightforward. We consider the problem of estimating a precision matrix θ ∈ Rp×p

from a data set x1, . . . ,xn ∈ Rp, where xi
i.i.d.∼ N(0, θ−1) for i = 1, . . . , n. One of the

most popular such regularization method is the graphical Lasso (GLASSO) Yuan and

Lin (2007); Friedman et al. (2007), where we estimate θ under the assumption that

it is sparse. This leads to:

minimize
θ∈M+

− log det θ + Tr(θS) + λ
∑
i,j

|θij |, (13)

where, S = 1
n

∑n
i=1 xix

′
i is the sample covariance matrix, M+ denotes the set of

positive definite matrices and λ > 0 is a tuning parameter that controls the degree

of regularization. So long as λ > 0, Problem (13) admits a unique minimizer. The

problem of computing (13) has generated an impressive literature (Mazumder and

Hastie (2012); Rolfs et al. (2012); Yuan (2012); Li and Toh (2010); Hsieh et al. (2014).

All these existing algorithms have a cost per-iteration of at least O(p3), possibly larger
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for some of these algorithms. Hence when p is large, fitting a Gaussian graphical model

using GLASSO is typically costly.

The density of the multivariate distribution N(0, θ−1) can be written as an energy-

based model of the form

pθ(x) =
e−Eθ(x)∫

Rp e−Eθ(x)dx
, where Eθ(x) =

1

2
x′θx

The corresponding generative EBM is then as follows. Given θ, and a step-size ρ > 0,

we first drawX0 ∼ N(0, Ip), and define the sequence (X1 . . . , XL) generated as follows.

Xj = (Ip − ρθ)Xj−1 +
√
ρZj , j = 1, . . . , L, (14)

where Z1, . . . , ZL
i.i.d.∼ N(0, Ip). We take πθ as the distribution of XL. It is easy seen

that in this case πθ = N(0,ΣL(θ)), where

ΣL(θ) = θ−1 + (Ip − ρθ)2L
(
Ip − θ−1

)
.

Algorithm 2 thus readily applies. Here the proximal operator is the usual lasso

soft-thresholding operator (with threshold γλ) applied componentwise. Note that

iterating equation (14) L times to generate each X−
i is done at the computational cost

of O(Lp2). Hence for this example, each iteration of Algorithm 2 has a computational

cost of O(B(L+1)p2). When B×L is small compared to p, each iteration of Algorithm

2 is cheaper than the typical O(p3) needed by classical GLASSO solvers.

4.1. Numerical Experiments. We illustrate the practical merit of Algorithm 2 on

some synthesis dataset. We test the algorithm with p ∈ {3000, 5000}, and n = p/2.

We then solve the graphical lasso problem (13) with λ = 0.03. The true precision

matrix θ⋆ is generated as follows. First we generate a symmetric sparse matrixM such

that the proportion of non-zeros entries is 5/p. We magnified the signal by adding

2 to all the non-zeros entries of M , and subtracting 2 for negative non-zero entries.

Then we set θ⋆ = M + (1− λmin(M)) Ip, where λmin(A) is the smallest eigenvalue of

A.

As initial solution we use the diagonal matrix obtained by taking the inverse sample

variances. And we run Algorithm 2 with a constant step-size γ = 8, and a mini-batch

size B = 30. The step-size for generating the negative samples using (7) was set to

ρ = 0.008. We run Algorithm 2 for 500 iterations, and compute:

error(θ) =
∥∥∥θ − θ̂

∥∥∥
F
/∥θ̂∥F , and sp(θ) =

∥θ∥0
p

.

Figure 1 shows the relative error, and the computational time as the number of MCMC

steps L increases, when p = 3000. The result shows excellent recovery of θ̂ for L as

small as 10, with little improvement for L > 10.



ON GENERATIVE ENERGY-BASED MODELS 13

(a) (b)

Figure 1. Relative error, and computational time versus L, the num-

ber of MCMC steps.

We also compare the performance of the short run MCMC with the deterministic

proximal gradient (PG) algorithm of Rolfs et al. (2012). In this comparison we set

L = 10, and B = 30. We repeat the experiments 30 times and take average values for

the relative error, sparsity, and computational time. The relative error, computational

time, and sparsity are presented in table 1. The results show that the short run

MCMC is roughly p/(3 ∗ B ∗ L) ≈ 5 faster than the deterministic proximal gradient

algorithm at the cost of a small loss of accuracy.

error
Running times
(500 iterations) sp

Algo 2 0.401 350 seconds 5.58

PG 0.387 1728 seconds 7.20

Table 1. Comparison of Algo 2 with the deterministic proximal gra-

dient algorithm (PG) of Rolfs et al. (2012). p = 5000.

5. Illustration with density estimation for image data

Statistical models from machine learning have produced several breakthrough in

high-dimensional density estimation over the last decade, with modeling framework

such as generative adversarial networks (Goodfellow et al., 2014). In this section we

reproduce the results of Nijkamp et al. (2019) showing that the generative EBMs

yield results with comparable performance.
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(a) (b)

Figure 2. Generated MNIST and CelebA images with Uniform Noise

Initial Distribution

Given a datasetX1, . . . , Xn, where eachXi is an image vectorized into a d-dimensional

vector, we view the data as i.i.d. realizations of a generative EBM built as in (7),

where the energy function Eθ is a deep neural network with the same architecture as

in Nijkamp et al. (2019). Specifically, we use a 5-layer CNN architecture where each

convolutional layer is followed by a LeakyReLU activation function. We refer the

reader to Section 8 for a detailed description of the architecture. We aim to estimate

the parameter θ of the model, and evaluate the performance of the model to generate

natural-looking images. We illustrate the model with two standard machine learning

datasets: CIFAR10 and CelebA. The CIFAR-10 dataset is a large dataset consists

of 60,000 32 × 32 color images in 10 classes, with 6000 per class. There are 50,000

training images and 10,000 test images. CelebFaces Attributes (CelebA) dataset is a

large-scale attributes dataset with more than 200,000 celebrity images. The images

in this dataset cover large pose variation and background.

We fit the model both with and without a lasso regularization, where the regular-

ization parameter is set to λ = 0.1. In both models, we generate negative samples

from the generative EBM using ρ = 1, and σ = 0.0, and L taken between 25 and 100.

To fit the models, in both cases we use Algorithm 3, with batch-size B = 64, and an

initial step-size γ = 10−4. with step decay 0.8 every 100 iterations. A random selec-

tion of generated images using the estimated densities from CIFAR-10 and CelebA

are presented in Figure 2, respectively.
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We demonstrate the fidelity of generated images by using Inception Score (IS;

higher values are preferred) (Barratt and Sharma, 2018) and Frechet Inception Dis-

tance (FID; lower values are preferred) (Heusel et al., 2017). Table 2 present the FID

and IS with different number of MCMC steps. The results also include a comparison

with DCGAN (Goodfellow et al. (2014)). These empirical results show that the gen-

erative EBM, together with the moment matching estimation procedure of Nijkamp

et al. (2019) produce results that match the performance of DCGAN. In this example,

and unlike the Gaussian graphical example, we did not find any clear advantage to

adding a ℓ1-regularization term. The penalization produced somewhat sparse models,

but with notably degraded performances for larger values of L.

Table 2. Influence of short-run steps on performance for CIFAR10

and CelebA

Data L Without penalty With Penalty DCGAN

FID IS FID IS Sparsity FID IS

CIFAR-10 25 222 1.49 238 1.45 0.703 203 2.77

50 187 3.13 204 2.05 0.585

75 187 3.34 198 1.95 0.541

100 173 2.76 193 1.90 0.581

CelebA 25 320 1.64 259 2.42 0.640 117 2.53

50 319 1.58 235 2.51 0.656

75 292 2.23 184 2.13 0.645

100 158 1.96 174 2.06 0.591

6. Further discussion

We have shown in this work that the short run MCMC methodology of Nijkamp

et al. (2019) consists in replacing the initial EBM by a generative EBM that is then

estimated by minimum MMD estimation, where the MMD kernel is taken as the

neural tangent kernel of the deep neural network function. Importantly, the model is

an example of algorithm unrolling modeling, and can be applied more broadly. Our

numerical illustration shows that the method can substantially reduce the estimation

time of high-dimensional Gaussian graphical models. And the numerical illustration
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with the image density estimation problem reproduces the results of Nijkamp et al.

(2019), and show that the method compares favorably with DCGAN.

7. Proofs

7.1. Proof of Theorem 1.

Proof. Throughout the proof c1, c2, · · · denote some constants that depend on the

dimension d, and the sample size n, but not on the iteration index k. Let us set

G0
def
= Gθ(0) = ∇θEθ, d0

def
= dθ(0) ,

∆n(θ)
def
=

∫
X
Gθ(x)Pn(dx)−

∫
X
Gθ(x)πθ(dx), θ ∈ Θ, (15)

and

D(k) def
= d0(πθ(k) , Pn)

2 = ∥πθ(k)(G0)− Pn(G0)∥22.

We can write

D(k) = D(k−1) + ∥πθ(k)(G0)− πθ(k−1)(G0)∥22
+ 2 ⟨πθ(k)(G0)− πθ(k−1)(G0), πθ(k−1)(G0)− Pn(G0)⟩ . (16)

We first work on the term ∥πθ(k)(G0) − πθ(k−1)(G0)∥22. Under Assumption 2, we can

interchange derivation and integral, so that

Mθ
def
= ∇θ

∫
X
G0(x)πθ(x)dx =

∫
X
G0(x) {∇θ log πθ(x)}T πθ(x)dx.

A first order Taylor expansion then implies that we can find θ̄(k) ∈ Θ such that

πθ(k)(G0) = πθ(k−1)(G0) +Mθ̄(k)(θ
(k) − θ(k−1))

= πθ(k−1)(G0)− γ(k)Mθ̄(k)

(
∆n(θ

(k−1)) + η(k)
)
,

where

η(k) =

[
1

B

B∑
i=1

Gθ(k−1)(X+
i )−

∫
X
Gθ(k−1)(x)Pn(dx)

]

−

[
1

B

B∑
i=1

Gθ(k−1)(X−
i )−

∫
X
Gθ(k−1)(x)πθ(k−1)(dx)

]
.

Hence, using (9) in Assumption 2, we can conclude that

∥πθ(k)(G0)− πθ(k−1)(G0)∥22 ≤ L2
k∥∆n(θ

(k−1)) + η(k)∥22
≤ 2L2

k∥∆n(θ
(k−1))∥22 + 2L2

k∥η(k)∥22,
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where Lk = Lγ(k). Taking the conditional expectation given θ(k−1), we have

E
(
∥η(k)∥22 | θ(k−1)

)
≤ 1

B

∫
X
∥Gθ(k−1)(x)∥22Pn(dx) +

1

B

∫
X
∥Gθ(k−1)(x)∥22πθ(k−1)(dx) ≤ c1

B
,

for some constant c1. Using Assumption 1,

D(k−1) = dθ(k−1)(πθ(k−1) , Pn)
2 = ∥∆n(θ

(k−1))∥22.

The last term of on right-hand side of (16) can be written as

⟨πθ(k)(G0)− πθ(k−1)(G0), πθ(k−1)(G0)− Pn(G0)⟩

=
(
θ(k) − θ(k−1)

)T
MT
θ(k−1) (πθ(k−1)(G0)− Pn(G0))

+
(
θ(k) − θ(k−1)

)T
[Mθ̄(k) −Mθ(k−1) ]

T

× (πθ(k−1)(G0)− Pn(G0)) .

The conditional expectation given θ(k−1) of the first term on the right-hand side of

the last display is

− γ(k) (πθ(k−1)(G0)− Pn(G0))
TMT

θ(k−1)

× (πθ(k−1)(G0)− Pn(G0)) ≤ −µγ(k)D(k−1),

where we use (9). By Assumption 2,∣∣∣∣(θ(k) − θ(k−1)
)T

[Mθ̄(k) −Mθ(k−1) ]
T × (πθ(k−1)(G0)− Pn(G0))

∣∣∣∣
≤ c2L∥θ(k) − θ(k−1)∥22 ≤ 2c2Lγ

2
k

∥∥∥∆n(θ
(k−1)) + η(k)

∥∥∥2
2
.

Therefore, taking the conditional expectation given θ(k−1) on both sides of (16) yields

E
(
D(k) | θ(k−1)

)
≤

(
1− 2µγ(k) + c3L

2
k

)
D(k−1) +

c4L
2
k

B
, (17)

and taking the expectation on both sides of the last display yields

E
(
D(k)

)
≤

(
1− 2µγ(k) + c3L

2
k

)
E
(
D(k−1)

)
+

c4L
2
k

B
. (18)

We conclude that if {γ(k), k ≥ 1} is such that for all k ≥ 1 µγ(k) ≥ c3L
2
k, and∑

k(γ
(k))2 < ∞, then

E
(
D(k)

)
≤

(
1− µγ(k)

)
E
(
D(k−1)

)
+

c4L
2
k

B
,
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which implies that

µ
∑
k≥1

γ(k)E
(
D(k−1)

)
≤ E(D(0)) +

∑
k≥1

c4L
2
k

B
< ∞.

Consequently, since
∑

k γ
(k) = +∞, we must have limk E

(
D(k−1)

)
= 0. Hence the

theorem. □

7.2. Proof of Proposition 2. For all θ ∈ Θ, we have

dθ(0)(πθ, P⋆) ≤ dθ(0)(πθ, Pn) + dθ(0)(Pn, P⋆).

From the last display, we have

dθ(0)(πθ̂, P⋆) ≤ dθ(0)(πθ̂, Pn) + dθ(0)(Pn, P⋆).

By the definition of θ̂, for any θ ∈ Θ, we have

dθ(0)(πθ̂, Pn) ≤ dθ(0)(πθ, Pn) ≤ dθ(0)(πθ, P⋆) + dθ(0)(Pn, P⋆).

Combining these two inequalities yields

dθ(0)(πθ̂, P⋆) ≤ min
θ∈Θ

dθ(0)(πθ, P⋆) + 2dθ(0)(Pn, P⋆)

Using the sub-exponential assumption in (12), by Bernstein’s inequality (Vershynin

(2018)), there exists an absolute constant c0 > 0 such that for t = c1K

√
2 log(d)

n , for

some absolute constant c1,

P
(∥∥∥∥∫

Rp

Gθ(0)(x)P⋆(dx)−
∫
Rp

Gθ(0)(x)Pn(dx)

∥∥∥∥
∞

> t

)
≤

2d exp

(
−c0min

(
n2t2

nK2
,
nt

K

))
≤ 2

d
.

But since

dθ(0)(Pn, P⋆)

≤
√
d

∥∥∥∥∫
Rp

Gθ(0)(x)P⋆(dx)−
∫
Rp

Gθ(0)(x)Pn(dx)

∥∥∥∥
∞
,

we conclude that with probability at least 1− 2/d,

dθ(0)(Pn, P⋆) ≤ c1K

√
d log(d)

n
.

Hence the result.



ON GENERATIVE ENERGY-BASED MODELS 19

8. Appendix

Table 3. CNN Model Architecture

Layers In-Out Size Stride

Input 32× 32× 3

3× 3 conv(64), LeakyReLU 32× 32× 64 1

4× 4 conv(128), LeakyReLU 16× 16× 128 2

4× 4 conv(256), LeakyReLU 8× 8× 256 2

4× 4 conv(512), LeakyReLU 4× 4× 512 2

4× 4 conv(1) 1× 1× 1 1
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