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We introduce a method for hyperspectral unmixing that incorporates wave-
length dependence in addition to spatial dependence. Spatial dependence is
incorporated into the model using class labels on the pixels that is assigned
using spectral clustering. Wavelength dependence is introduced by correlat-
ing the errors in the unmixing regression models. We propose a non-standard
alternating direction method of multipliers (ADMM) algorithm to solve the
resulting non-convex optimization problem that simultaneously recovers the
abundances and the sparse precision matrices of the spectral signatures. Us-
ing data collected by the SpecTIR imaging sensor, we show that the proposed
method outperforms several other well-established unmixing models.
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1 Introduction

Hyperspectral imaging has become ubiquitous due to recent advancement in imaging
technology. However, the signal processing step remains a challenging task. Indeed, due
to the limited spatial resolution of the sensors, each pixel in a hyperspectral image is
typically a mixture of endmember spectral signatures. Hyperspectral unmixing is the
task of identifying these mixtures ([2, 27]).
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A standard approach for unmixing hyperspectral images is to fit pixel-by-pixel regressions
of the observed spectral signature on a set of reference spectral signatures or endmembers
([32, 24, 12, 23, 7, 18, 34]). The set of reference endmembers is often referred to as a
“spectral library” . The library can be constructed by spectral analysis of materials in
a lab or via pure spectral extraction from the image. However this basic pixel-by-pixel
approach ignores the spatial dependence between the observed signatures as well as the
dependence between data observed at different wavelengths.

Several authors have recognized the importance of incorporating spatial dependence in the
analysis of hyperspectral images ([30, 28, 22, 21, 34]). As shown in these works, accounting
for spatial dependence improves the unmixing. Most of the literature makes use of discrete
Markov random fields models to partition the images into homogeneous groups of pixels.
Under the assumption that pixels in the same group are fairly homogeneous, it is possible
to develop more parsimonious data generating models. Hence accounting for spatial
dependence actually improves the performance of the unmixing task, but also improves
the computational efficiency and interpretability of the model ([34, 30]).

In this work we introduce spatial dependence in the unmixing model using class labels
on the pixels that is assigned using spectral clustering ([19]). All pixels with the same
class assignment share the same regression parameters. Spectral clustering is a powerful
clustering algorithm that has been documented to perform better than centroid-based
clustering methods such as K-mean. However one difficulty with spectral clustering in
the amount of floating point operations it entails, which grows as O(Lp2 + p3), where p
is the number of pixels, and L is the number of wavelengths. This significantly limits the
size of the images that can be effectively processed by spectral clustering. In order to
circumvent this problem, we use the Nystrom algorithm ([13, 9]) to produce a low rank
approximation of the adjacency matrix, resulting in a huge saving in the computation
time.
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Figure 1: Spectral signatures of 3 randomly selected pixels from the Reno scene

As the discussion above shows, the spatial dependence inherent to hyperspectral images
has been widely explored to improve the unmixing. However we are not aware of any
statistical model in the literature that employs wavelength dependence in analyzing hy-
perspectral images, despite ample evidence that most hyperspectral data collected have
wavelength dependence. For example Figure 1 shows the spectral signatures at three
randomly selected pixels from an image collected by the SpecTIR imaging sensor over
the city of Reno, Nevada. These spectral signatures are smooth, which suggests that
contiguous wavelength bands are not independent of each other.

We propose a new hyperspectral unmixing framework that incorporate both spatial and
wavelength dependence. As discussed above, the spatial dependence is incorporated
into the model using class labels on the pixels that is assigned using spectral clustering.
The wavelength dependence is introduced by assuming correlated error terms in the
unmixing regression models. More precisely for each group of pixels, the joint distribution
of the error terms is assumed to be a mean-zero Gaussian distribution parametrized
by a possibly sparse precision matrix (inverse covariance matrix). Accounting for the
fact that the number of wavelengths is potentially large, we propose to fit the model
via a penalized maximum likelihood approach, with a sparsity promoting penalty. The
proposed model leads to a non-convex optimization problems with several constraints and
penalty (positivity and size constraints on the abundances, sparsity promoting penalty on
the precision matrices). We propose to solve this problem using the alternating direction
method of multipliers (ADMM) algorithm ([10, 5]). However the standard version of the
ADMM algorithm is not tractable in our case. As a result, we develop a non-standard
block-update version of the ADMM algorithm. We show that with an appropriately
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chosen step-size, the algorithm is stable in the sense that positive definiteness of the
precision matrices are guaranteed throughout the iterations. Furthermore we show that
the Lagrangian objective function of the problem is always non-increasing along the
iterations.

We perform several numerical experiments with real and simulated data to investigate
the behavior of the Nystrom approximation, and we formulate some practical guidelines.
Using data collected by the SpecTIR imaging sensor, we compare the proposed model to
several other well-established unmixing models. Using the Bayesian Information Criterion
(BIC) as a goodness of fit criterion, we show that accounting for wavelength dependence
significantly improves the unmixing model, compared to the alternative models consid-
ered.

The paper is organized as follows. Section 2 contains the main methodological contri-
butions. The main model is described in Section 2. The proposed ADMM algorithm is
presented in Section 2.1, with the technical proofs postponed to Section 5. Spectral
clustering and its approximation using the Nystrom method are presented in Section
2.2 and Section 2.3 respectively. The numerical experiments using both synthetic and
real data are presented in Section 3. The paper ends with some concluding remarks in
Section 4.

2 Unmixing with wavelength dependence

We begin with a presentation of the unmixing model. Our basic assumption is that
the hyperspectral image is partitioned in K groups (not necessarily contiguous) such
that the pixels in each group represent similar materials, and their spectral signatures
therefore have similar probability distributions. We impose this assumption in order to
reduce the complexity of the model, and improve the scalability of the method. We
show how to bring the data close to this model in Section 2.2 using spectral clustering.
Under this assumption, we shall proceed to solve the unmixing problem on each group
independently. Hence the model that follows applies to a given group k. However, for
notational simplicity, we shall omit to explicitly write the dependence on the group in
the modeling. Let Y1, . . . , YN (Yi ∈ RL) denote the spectral signatures observed on pixels
i = 1, . . . , N . To perform the unmixing, the library X ∈ RL×R of pure end-members
(possibly tailored to the group) are recovered using one of several algorithms such as
VCA [23] performed on the pixels within the group in question. We allow the library to
include non-linear combinations of the pure end-members. Hence our methodology can
be applied to both linear and non-linear (mainly bilinear) unmixing [24, 12]. We assume
that the library matrix X is full-rank column, which implies that R ≤ L. Consistent with
our assumption that the pixels in the same group represent the same material, we model
the vectors Y1, . . . , YN as independent and identically distributed random variables and

Yi = Xβ + εi (1)
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where εi
i.i.d.∼ N(0,Θ−1), for a precision matrix Θ and β ∈ B+

def
= [0, B]R, for some constant

B > 0. In other words, our working assumption is that the pixels in the same given group
can be viewed as noisy representations of the same mixture of pure end-members with
mixing coefficient β.

The constraint restricting all components of the mixing coefficient β to be nonnegative is
known as the positivity constraint, and is standard in hyperspectral unmixing literature
[31, 18, 8, 17]. Here we also restrict the mixing coefficients to be upper bounded by the
constant B. This is imposed in order to guarantee the stability of the algorithm that
we propose to solve the unmixing problem. In practice this restriction is rarely an issue
provided that B is taken as a very large constant.

In the sequel we will use the notationML (resp. M+
L) to denote the space of symmetric

(resp. symmetric positive definite ) L × L matrices. In most hyperspectral unmixing
models, the precision matrix Θ is assumed to be a diagonal matrix, implying that there is
no wavelength correlation. In practice, we frequently observe spectral signatures that are
smooth as seen in Figure 1. This means the adjacent wavelength bands are correlated,
implying that some of the off-diagonal values of the concentration matrix are non-zero
under the Gaussian noise formulation as above. As we illustrate below a better solution
to the unmixing problem is obtained by taking these correlations into account.

For β ∈ B+, we define

S(β)
def
=

1

N

N∑
i=1

(Yi −Xβ)(Yi −Xβ)T .

The negative log-likelihood of the model1 is given by:

`(β,Θ) = −1

2
log |Θ|+ 1

2
Tr (ΘS(β)) , β ∈ B+, Θ ∈M+

L .

In the above display, |Θ| denotes the determinant of the matrix Θ.

In hyperspectral imaging, the number of spectral bands L can be large (several hundreds).
To improve the recovery of the precision matrix Θ, we shall add a sparsity inducing
penalty to recover sparse precision matrices Θ. In general the structure of Θ depends on
the material at hand. However, it seems a reasonable assumption that most wavelength
bands are partially uncorrelated. Under this assumption we are led to the following
optimization problem:

(β̂, Θ̂) = argmin(β∈RR, Θ∈M+
L)

[
−1

2
log |Θ|+ 1

2
Tr(ΘS(β)) + I+(β) + λReg(Θ)

]
, (2)

where

I+(β) =

{
1 if β ∈ B+

+∞ otherwise
, and Reg(Θ)

def
=
∑
i,j

(
α|Θij|+

1− α
2

Θ2
ij

)
.

1up to an additive constant that we ignore
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The function I+ enforces the positivity constraint, and the regularization term Reg (a
mixture of `1 and `2 regularization) is added to promote sparsity. The special case α = 1,
corresponds to the LASSO of [29] applied to the concentration matrix [11]. The addition
of the second term corresponding to α 6= 1 leads to the elastic net [36] to aid in terms of
variable selection. The parameter λ > 0 controls the strength of the regularization. In
practice the parameters α and λ need to be tuned for a good behavior of the method.

It not hard to see that the optimization problem (2) has always at least one solution.
Indeed, if we endowML with the Frobenius norm (denoted ‖·‖F), and B+ with the usual
Euclidean norm ‖ · ‖2, and since log |Θ| → −∞, as ‖Θ‖F → 0, we have

lim
‖Θ‖F+‖β‖2→0

[
−1

2
log |Θ|+ 1

2
Tr(ΘS(β)) + I+(β) + λReg(Θ)

]
= lim
‖Θ‖F+‖β‖2→+∞

[
−1

2
log |Θ|+ 1

2
Tr(ΘS(β)) + I+(β) + λReg(Θ)

]
= +∞.

Therefore it suffices to solve Problem (2) on a sufficiently large compact ball. And since
the objective function is continuous, it has at least one solution on any such balls.

Given a hyperspectral image partitioned into K groups, and given a spectral library for
each group, we solve K optimization problems of the form (2) to find for each group, the
mixing parameter β̂ and the precision matrix Θ̂.

2.1 Computation

In this section we describe a practical algorithm to solve the optimization problem (2),
and we show that the algorithm is stable, and converges to a stationary point of Problem
(2). The algorithm that we propose is a modification of the well-known ADMM algorithm
[10, 5]. One can set up the ADMM algorithm for Problem (2) by rewriting the problem
equivalently as

min [f(Θ, β) + g(u)] , Θ ∈M+
L , β ∈ RR, u ∈ RR s.t. β = u,

where

f(Θ, β) = −1

2
log |Θ|+ 1

2
Tr(ΘS(β)) + λReg(Θ), and g(u) = I+(u).

The augmented Lagrangian for this problem is given by

L(Θ, β, u, q) = f(Θ, β) + g(u) + 〈q, β − u〉+
ρq
2
‖β − u‖2,

for a regularization parameter ρq > 0. Based on this augmented Lagrangian the ADMM
algorithm for solving (2) takes the following form.

Algorithm 2.1. Choose some initial value (Θ0, β0, u0, q0). For k = 0, 1, . . . repeat the
following. Given (Θk, βk, uk, qk):
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1. Solve
uk+1 = Argminu∈RR L(Θk, βk, u, qk),

2. Solve
(Θk+1, βk+1) = Argmin(Θ∈M+

L , β∈RR) L(Θ, β, uk+1, qk).

3. Then update
qk+1 = qk + ρq (βk+1 − uk+1) .

Algorithm 2.1 is a standard ADMM algorithm as applied to the optimization (2). It allows
a nice decoupling of the constraints on β. However the algorithm cannot be implemented
because the optimization in Step 2 cannot be solved in closed form. We circumvent this
difficulty by replacing Step 2 by an approximate block update. For θ ∈ML, δ > 0, define

Proxδ(θ)
def
= Argmin u∈ML

[
Reg(u) +

1

2δ
‖u− θ‖2

F

]
.

The matrix Proxδ(θ) is straightforward to compute. Its (i, j)-th component is given by

(Proxδ(θ))ij =


0 if |θij| < αδ
θij−αδ

1+(1−α)δ
if θij ≥ αδ

θij+αδ

1+(1−α)δ
if θij ≤ −αδ

Similar let ProjB+
: RR → B+ denote the component-wise projection on B+. We are

thus lead to the following algorithm.

Algorithm 2.2 (Main algorithm). Choose some initial value (Θ0, β0, u0, q0). For k =
0, 1, . . . repeat the following. Given (Θk, βk, uk, qk):

1. Solve
uk+1 = Argminu∈RR L(Θk, βk, u, qk),

2. Compute
Θk+1 = Proxλδ

(
Θk − δ

(
S(βk)−Θ−1

k

))
,

3. Solve
βk+1 = Argminβ∈RR L(Θk+1, β, uk+1, qk).

4. Then update
qk+1 = qk + ρq (βk+1 − uk+1) .

The optimization problems in Steps (1) and (3) can be solved explicitly. This yields the
following practical version of the algorithm that can be easily implemented.

Algorithm 2.3 (Main algorithm–Practical version). Choose some initial value (Θ0, β0, u0, q0).
For k = 0, 1, . . . repeat the following. Given (Θk, βk, uk, qk):
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1. Compute

uk+1 = ProjB+

(
βk +

1

ρq
qk

)
,

2. Compute
Θk+1 = Proxλδ

(
Θk − δ

(
S(βk)−Θ−1

k

))
,

3. Compute

βk+1 =
1

N

(
XTΘkX +

ρq
N
IR

)−1
(
XTΘk

(
N∑
i=1

Yi

)
+ ρquk+1 − qk

)
.

4. Then update
qk+1 = qk + ρq (βk+1 − uk+1) .

One issue with the proposed algoirhm is that in Step (2) of Algorithm 2.2, when the
inverse of Θk is taken there is no guarantee that the matrix Θk is non-singular. Another
issue is that the objective function in Problem (2) is non-convex, although it is bi-convex.
Hence it is not possible to provide a theoretical guarantee that the algorithm proposed
above converges to a solution of (2). The theoretical analysis below addresses these two
issues. We show that for a well-chosen step-size δ, and a well-chosen initial value Θ0,
all the matrix Θk produced by Algorithm 2.2 are in fact non-singular and the algorithm
never fails. We also show that the sequence of Lagrangian values along the iterations
of the algorithm is non-increasing. The derived results rely on more general results on
gradient iterations for graphical lasso developed by [6], and a general analysis of the
ADMM algorithm by [10].

We define
Lk = L(Θk, βk, uk, qk), k ≥ 0.

And we set µ
def
= supβ∈B+

‖S(β)‖2 + αλL,

π?
def
=

√
µ2 + 4(1− α)λ− µ

2(1− α)λ
, and Π?

def
=

√
α2λ2L2 + 4(1− α)λ+ αλL

2(1− α)λ
.

Given 0 < a < b ≤ ∞, we denote M+
L(a, b) the set of all symmetric positive definite

matrices A such that λmin(A) ≥ a, and λmax(A) ≤ b, where λmin(A) (resp. λmax(A))
denotes the smallest (resp. largest) eigenvalue of A.

Theorem 2.1. Suppose that Θ0 ∈ M+
L(π?,Π?), and δ ∈ (0, π2

?]. Then for all k ≥ 0,
Θk ∈ M+

L(π?,Π?). Furthermore if the sequence {βk, k ≥ 0} remains bounded and ρq is
taken sufficiently large, then the sequence {Lk, k ≥ 0} is non-increasing and converges
to a limit L?, as k →∞.

Proof. See Section 5.

[31].
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2.2 Spectral Clustering

Hyperspectral images are dense in terms of spectral wavelength resolution. Due to the
complexity involved in modeling the data generating mechanism, we assumed that for a
given image, the pixels in the image can be partitioned into groups that are fairly ho-
mogeneous in terms of their observed spectral signature. Within a homogeneous group,
the observed spectral signatures are assumed to share the same mixing composition and
library in addition to wavelength correlation structure as developed in Section 2. This
assumption greatly simplifies the problem of unmixing by reducing the number of param-
eters estimated. In addition to the model simplification, the construction of the spectral
library via VCA[23] within each group is also made easier due to the reduced number
spectral signatures considered for each within group unmixing. In

Although the partitioning can be done using central grouping methods like k-means [20],
the method does not work well for pixels that are similar but are not in spatial proximity2.
A more appealing alternative is the use of pair-wise affinities: spectral clustering [19].

Figure 2: A demonstration of k-means compared to Spectral Clustering applied on the
same dataset[1].

Spectral clustering3 is an empirical approach to cluster pixels using eigenvectors of ma-
trices derived from data associated with the pixels [25]. The method involves the use of
an adjacency/weight matrix constructed via a distance kernel applied to the pixels. In-
tuitively, the method seeks to group pixels in such a way that the weights between pixels
belonging to the same group (intra-group weights) are large while the weights between
pixels belonging to different groups (inter-group weights) are small. This means the pix-
els within the same group are more similar to each other while the pixels belonging to
different groups are dissimilar to each other. Suppose there are P pixels in the image, the
method begins by building an adjacency matrix W ∈ RP×P using the following kernel:

Wij = exp

{
−‖Yi − Yj‖

2
2

L

}
2refer to Figure 2 for an illustration.
3see for instance [19] for a good review

9



where Yi ∈ RL is the spectral signature observed at pixel i. The kernel used here only
depends on the distance between the spectral signatures. The kernel may be altered to
incorporate various other measures of similarity between4. But for the purpose of this
paper we will concentrate on the `2 distance between the spectral signatures. Once the
adjacency matrix has been constructed, we proceed to build the Laplacian matrix L:

D = diag

(∑
j

Wij

)
L = D−1/2WD−1/2

where L is the normalized Laplacian. Once this has been constructed, we apply the eigen-
decomposition to L. It is important to note that there are alternate ways to define the
Laplacian. In the present formulation, the leading eigenvalues are most pertinent, while
the formulation as in [19] will result in the case where the smallest eigenvalues are most
meaningful to spectral clustering. The number of groups G is determined by examining
the largest eigenvalues. Suppose the eigenvalues of L are arranged in descending order
{e(P ), . . . e(1)}, the number of groups is:

G = max{P − i : e(i) ≥ τ, i = 1, . . . P}

Where τ is the threshold for setting the number of groups. At this point, it is important
to note that spectral clustering is a supervised approach to clustering. The threshold τ is
dependent on the observed data and setting this requires a certain amount of judgement
regarding the number of groups relative to the number of pixels in the image.

Once G has been established, we collect G eigenvectors associated with the G largest
eigenvalues into the matrix V ∈ RP×G. We then apply K-means clustering on the P
G-dimensional row-vectors. The resulting classification is assigned to the pixels.

Spectral clustering is known to be an extremely effective classification algorithm. Figure
3 is an example of a classification plot recovered from a synthetic dataset.

4such as geographical distance, or similarity along some important covariates
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Figure 3: Classification plots of the ground truth (left) and the recovered (right) classes
for synthetic data using exact spectral clustering.

2.3 Spectral Clustering via the Nystrom Method

One difficulty with spectral clustering in large image analysis is that the computation and
storage of the adjacency matrix W scales exponentially with the number of pixels. For
instance, on a small image with p = 104 pixels, the computation of W requires O(Lp2) =
O(L × 108) operations and the memory to store W is O(p2) = O(108) values. The
exponential growth of memory and computation costs associated with spectral clustering
limits the size of the image that can be effectively partitioned. In order to circumvent this
problem, we use a low rank approximation to the adjacency matrix based on the Nystrom
algorithm ([26, 16, 14, 13, 9]). As we will illustrate in this section, the Nystrom method
dramatically reduces the storage and computational burden for spectral clustering while
incurring an acceptable loss of fidelity in the recreation of the image partition. This is
especially apparent in Table 1. There is a tradeoff between the fidelity of the partition
and the number of ranks used in the adjacency matrix. The choice of the number of
ranks has to be balanced with the computational and storage burden incurred.
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Suppose that we randomly select n� P pixels and partition the adjacency matrix as:

W =

[
A B
BT C

]
Where A ∈ Rn×n is the adjacency matrix computed from the n sampled pixels, B ∈
Rn×(P−n) consists of the adjacency computed from the n sampled points with respect
to the P − n non-sampled points, and C ∈ R(P−n)×(P−n) is the adjacency between the
non-sampled points. Under this formulation, the approximate eigenvectors Û for W via
the Nystrom method takes the following form:

Û =

[
U

BTUΛ−1

]
Where U contains orthogonal eigenvectors of A and Λ is diagonal containing eigenvalues
of A. Therefore, A = UΛUT . The low rank representation/approximation of W takes
the following form:

Ŵ = ÛΛÛT

=

[
A
BT

]
A+
[
A B

]
Where A+ is the pseudo-inverse of A. In most cases, if A is symmetric and invertible,
this coincides with its inverse, A+ = A−1 .From the formulation above, the low-rank
representation of W via the Nystrom method approximates the matrix C as C ≈ BTA+B.
Suppose we define A1/2 as the symmetric positive definite square root of the matrix A,
Z = A+ (A+)1/2BBT (A+)1/2, and Z ∈ Rn×n is diagonalized as UZΛZU

T
Z . The matrix V

defined as:

V =

[
A
BT

]
(A+)1/2UZΛ

−1/2
Z

will be the matrix of eigenvectors which will diagonalize Ŵ = V ΛZV
T . Suppose we wish

to perform spectral clustering that solves the regularized optimization of the min-cut
problem[19], we need the row sums of Ŵ which can be computed as

d = Ŵ1

=

[
A1n +B1(P−n)

BT1n +BTA+B1(P−n)

]
We then “normalize” the matrix by replacing the entries of A and B with:

Ãij ←
Aij√
didj

∀i, j = 1, . . . n

B̃ij ←
Bij√
didj

∀i = 1, . . . n, j = n+ 1, . . . , P
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After renormalization we may use the renormalized version of the eigenvectors:

Ṽ =

[
Ã

B̃T

]
(Ã+)1/2UZ̃Λ

−1/2

Z̃

Where Z̃ = Ã+(Ã+)1/2B̃B̃T (Ã+)1/2. The number of groups G̃ is determined by examining
the leading eigenvalues given by the diagonal values of ΛS̃. Suppose once more we have
eigenvalues arranged in descending order {ẽ(n), . . . ẽ(1)}, the number of groups is:

G̃ = max{n− i : ẽ(i) ≥ τ̃ , i = 1, . . . n} (3)

Note that the low-rank approximation only requires the storage of matrix A ∈ Rn×n and
B ∈ Rn×(P−n) and the diagonalization of the matrix S ∈ Rn×n which is significantly less
complex than the storage and the diagonalization of the matrix W ∈ RP×P . Similar
to the group number determination in exact spectral clustering, τ̃ is dependent on the
observed data and setting it requires a judgmental call regarding the number of groups
relative to the number of pixels in the image. Once G̃ has been established, we collect G̃
eigenvectors associated with the G̃ largest eigenvalues into matrix Ẽ ∈ RP×G̃. We then
apply K-means clustering on the P G̃-dimensional row-vectors.

In order to explore the behavior of the Nystrom method we conducted an experiment
with synthetic data containing 600 × 600 pixels5 with 7 groups. For each of the group,
we generated a random β with number of non-zeros set at 15% of its entries. A library X
is chosen from the group of libraries extracted from the Reno scene analyzed below. In
addition, each library is augmented with bilinear combinations resulting in each library
having 20 columns (ie. X ∈ R356×20). Each pixel in a given group will have the following
observed spectral signature:

Yi = Xβ + εi εi ∼ N(0, 0.1252I356)

We investigate how well spectral clustering based on the Nystrom method can recover
the true classes. In our experiments we tested the low-rank approximation with dif-
ferent number of sampled pixels used. The performance of the Nystrom-based spectral
clustering depends crucially on n, the number of sampled pixels. We experimented with
n ∈ {100, 200, 300, 400, 500, 600, 700, 800} and Table 1 contains the average misclassifica-
tion rate for these experiments over 20 repetitions. As reference, we included classification
plots for some interesting cases of the recovery using Nystrom method in Figure 4. It
is important to note that increasing the number of pixels sampled increases the compu-
tational burden in terms of memory and operations by the order of O(n2) while results
of the experiments with synthetic data does not show dramatic improvement in the clas-
sification rate. Based on these results, we chose n = 300 pixels in our application of the
proposed method in real data simulations in order to strike a balance between accuracy
and computational complexity.

5which is comparable to the number of pixels in the Gulf Wetlands image analyzed below
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# sampled 100 200 300 400 500 600 700 800

Error rate 0.3008 0.2700 0.2759 0.2701 0.2557 0.2398 0.2466 0.1972

Table 1: Misclassification rates using the low-rank approximation to spectral clustering.

(a) The ground truth used to generate
synthetic data

(b) Recovery using 300 sampled pixels

(c) Recovery using 600 sampled pixels (d) Recovery using 700 sampled pixels

Figure 4: Classification for the ground truth and the recovered classification for different
sampled pixels.
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3 Numerical experiments

This section contains the simulation studies conducted using the proposed methodology
and the results of the simulation studies. The simulation will start off with a controlled
experiment using synthetic data set which has known parameters Θ and β from which
the synthetic spectral signatures are generated.

In the real data experiments, we generated the library X using VCA [23]. VCA is an
iterative algorithm that extracts endmembers from observed spectral signature in the
image. This method assumes that there is at least one pure pixel in the image (pixel
group). The algorithm takes the following form:

1. Begin by select a random pixel from the image as an endmember in the library. The
first endmember can be taken from the pixel with the largest spectral signature.

2. Find the space that is orthogonal to the column space of the library.

3. From the remaining pixels, the pixel with the largest orthogonal projection is added
into the library as an endmember.

4. Repeat steps 2 and 3 until an appropriate number of endmembers are included in
the library. It is obvious that the maximum number of endmembers cannot exceed
the number of pixels in the image.

From our observation of the recovered endmembers from VCA, only the first few itera-
tions of VCA are needed. We augmented the library with bilinear combinations of the
original spectral signatures.

3.1 Synthetic Data

We document the synthetic and real data simulation results in this section. The syn-
thetic data involves a 50 × 50 image consisting of 4 classes. Spectral clustering does
a good job of separating the pixels correctly as evidenced by Figure 3. Within each
class, we implemented the algorithm described in Algorithm 2.3 in order to recover the
abundances and the structure of the wavelength dependence. We measure the accuracy
of the recovered concentration matrix Θ within each group using the relative Frobenius
error which is defined as

RelFrobΘ(Θ̂) =
‖Θ− Θ̂‖2

‖Θ‖2

Where Θ is the concentration matrix used to generate the synthetic wavelength depen-
dence in the synthetic data and Θ̂ is the recovered concentration matrix. Figures 5a
- 5d shows how the relative Frobenius error of the concentration matrix decreases as a
function of the number of iterations. This shows that iterating the updates Θk are con-
verging. The relative l2 error for the abundances for all 4 groups converge very quickly
as evidenced by Figures 6a - 6d.
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(a) Relative Frobenius error for group 1
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(b) Relative Frobenius error for group 2
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(c) Relative Frobenius error for group 3
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(d) Relative Frobenius error for group 4

Figure 5: Relative Frobenius error of the estimated wavelength dependence as a function
of iterations. This provides empirical proof that the algorithm produces a
sequence of Θs that converges
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(a) Relative l2 error for group 1
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(b) Relative l2 error for group 2
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(c) Relative l2 error for group 3
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(d) Relative l2 error for group 4

Figure 6: Relative l2 error of the estimated abundances as a function of iterations. This
provides empirical proof that the algorithm produces a sequence of βs that
converges.

3.2 Reno Scene

We applied the proposed methodology to a scene from Reno obtained from [4]. The scene
is an urban area from Reno, Nevada contains 600× 320 pixels. The scene contains build-
ings, roads, parking lots, and a river. This scene was chosen because of the distinctive
features of the urban environment enables some form of “eyeball” validation of the clas-
sification plots using images taken on the visible spectrum. We performed exact spectral
clustering on the top-left 100× 100 subset of the scene in the exploratory analysis. The
classification recovered from the exact spectral clustering can be seen in Figure 7 (a).
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(a) (b)

Figure 7: Classification plot of a subset of the Reno data using spectral clustering. (a)
Exact spectral clustering, (b) Nystrom approximation.

We performed the approximate spectral clustering via the Nystrom method as outlined
in Section 2.3 on the whole image. In the approximation, we sampled n = 300 pixels
from 600×320 pixels and performed Nystrom method-based spectral clustering resulting
G = 14 distinct groups in the image.

Figure 7 (b) shows the top-left 100×100 subset of the classification plot retrieved by the
Nystrom method-based spectral clustering. This image is to be compared with Figure
7 (a). From these two classification plots, we can see that there is very little loss in fidelity
in utilizing the low-rank approximation, since the classification plot for the approximate
spectral clustering is still able to capture the building and the parking lot covered in the
classification plot recovered from exact spectral clustering. This exercise confirms that
the loss in fidelity in utilizing a low-rank representation of W for spectral clustering is
minimal. Also note that there appears to be attenuation based on the “wavy” appearance
of the roads and rivers in the image. This may be an artifact of image processing which
converts the radiance data from the remote sensor into reflectance data via the radiance
to reflectance equation in [3].

Figure 8 (b) shows the full classification plot retrieved from the Nystrom-based spectral
clustering, and Figure 8 (a) shows a subset of the Reno scene image in the visible
spectrum, which can be distinctly recognized in the middle part of Figure 8 (b).

After classification, we performed VCA within each class to recover endmembers for the
library. In this exercise, we extracted 5 endmembers from the each group of pixels and
augmented the 5 endmembers with bilinear combinations resulting in a library containing
20 endmembers (columns). Once we have the library X, we applied the updates outlined
in Algorithm 2.3 .
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(a) Visible spectrum photo

(b) Recovered classification plot

Figure 8: Complete classification of the Reno scene using Nystrom method.
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In order to achieve 10
L×L level of sparsity for Θ, we can set α ≈ 0.9 with λ ∝

√
L
|Gi| where

|Gi| is the number of pixels within group Gi. For the Reno scene we set α = 0.5 and

λ = c
√

L
|Gi| . The constant c ∈ {0, 0.025, . . . , 0.25} is found by grid search evaluating a

model selection criterion.

Selecting the penalization level requires a metric that measures the fit of the model while
penalizing for model complexity. For most cases, the Bayesian Information Criterion
(BIC) as defined below is adequate

BICλ(Θ̂, β̂) = −2 logL(Θ̂, β̂) +R|Θ̂|0 log |Gi|

Where |Gi| is the number of pixels in group i. However, in the estimation of the con-
centration matrix it is often that we run into cases where the number of parameters6

is growing with the sample size which violates one of the assumption required for BIC
consistency[15]. In lieu of the regular BIC as a criterion for selecting c, we used the
extended BIC[15] which allows for the growth of the number of non-zero entries in the
concentration matrix. The extended BIC takes the following form for group Gi :

˜BICλ(Θ̂, β̂) = −2 logL(Θ̂, β̂) +R|Θ̂|0 log |Gi|+ 4|Θ̂|0λ logL (4)

Note the additional penalization term in the extended BIC which means the extended
BIC is more punitive towards complex models. The resultant BICs are compared for
different values of c ∈ {0, 0.025, . . . , 0.25} and the one with the lowest value is chosen as
the optimal λ?. The estimates are then computed using λ?. The resultant estimates of
Θ̂ and β̂ are taken as the ideal estimates.

In order to gain insight into the improvement spatial dependence and wavelength depen-
dence brings to our model, we compare our proposed model with several other unmixing
models listed below:

1. Each group has one mixture parameter β shared by all pixels in that grou, but
there is no wavelength dependence. This model accounts for spatial dependence
(using the same Nystrom-based spectral clustering described above) while leaving
out wavelength dependence. Hereforth we would refer to this as Model 1.

2. Each pixel in each group has a mixture parameter β without accounting for wave-
length dependence. This model is similar to Model 1 in terms of accounting for
spatial dependence but has more mixture parameters β which results in a better fit
residual-wise. Hereforth we would refer to this as Model 2.

3. Each pixel in the image has a mixture parameter β without accounting for wave-
length dependence. This model does not account for spatial and wavelength de-
pendence. Essentially, this model performs pixel level unmixing. The library used
in this model is extracted from the whole image rather than at the group level.
Hereforth we would refer to this as Model 3.

6number of non-zeros in the concentration matrix
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In order to compare the proposed to the 3 models listed above, we calculated the regular
BIC for the 3 models listed and compared them to the extended BIC (eBIC) of the
proposed model. The regular BIC for the challenger models:

BIC(β̂) = −2 logL(β̂) +R log(number of pixels) (5)

Note that the extended BIC is just the regular BIC with additional penalties for non-zero
values for the concentration matrix. Table 2 documents the BIC and eBIC computed
for the models as a comparison. The reason we chose BIC and eBIC as a comparison
is to provide a meaningful way to compare model fit for models with different number
of parameters. As evidenced from the results, even with the extra penalization term in
eBIC, the model with the best fit is the one that incorporates spatial and wavelength
dependence.

Model Proposed Model 1 Model 2 Model 3

BIC and eBIC 52,455,479 125,789,217 166,595,863 172,547,769

Table 2: The BIC for the 3 challenger models and extended BIC for the proposed model
applied to the Reno scene.

3.3 Gulf Wetlands (Suwannee River) Scene

Besides the Reno scene, we also examined a scene from the Suwannee River obtained from
[4]. The scene contains a river delta, wetlands, and plants indigenous to swamp lands. The
image contains 1200×320 pixels. We performed the approximate spectral clustering using
the low-rank approximation of W using 300 sampled pixels and recovered G = 13 groups
from the scene. Figure 9 contains the classification plot and the image on the visible
spectrum. From the classification plot, we can tell that approximate spectral clustering is
able to clearly distinguish the river from the wetlands overgrown with indigenous plants.
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(a) Visible spectrum photo

(b) Recovered classification plot

Figure 9: Complete classification of the Gulf Wetlands (Suwannee River) scene using
Nystrom method.
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In addition, we also performed similar comparisons via the BIC/eBIC relative to the
3 challenger models as described in Section 3.2. Table 3 documents the resultant
BIC/eBIC computed for the models as a comparison between the models. In this case,
the improvement in model fit is more dramatic when compared to the Reno scene.

Model Proposed Model 1 Model 2 Model 3

BIC and eBIC 99,419,358 254,110,811 338,084,541 352,836,042

Table 3: The BIC for the 3 challenger models and extended BIC for the proposed model
applied to the Gulf Wetlands (Suwannee River) scene.

4 Conclusion

We have proposed a novel model for hyperspectral unmixing and classification that in-
corporates both spatial and wavelength dependence. Spectral clustering combined with
the Nystrom method for fast computation is employed for clustering the image, and a
non-convex optimization algorithm is proposed to fit the model. We give some theoretical
guarantee that the proposed algorithm is stable and consistently lower the Lagrangian
objective function along the iterations. The empirical evidence from the synthetic data
simulation suggests that the algorithm converges to the problem solution. The real data
analysis results from the Reno and Suwannee scenes demonstrate that the incorporation of
spatial and wavelength dependence significantly improves model fit when compared with
several standard unmixing models. One promising avenue for future is the extension of
the model to handle hyperspectral images acquired over time for change detection.

5 Proof of Theorem 2.1

For the proof we need the following results. Lemma 5.1 is a special case of Lemma 2 of
[6], and Lemma 5.2 is a special case of Lemma 12 and Lemma 14 of [6].

Lemma 5.1. Suppose that δ ∈ (0, π2
?]. For Θ ∈ M+

L(π?,Π?), and for β ∈ B+, we set
Θ̄ = Proxδ (Θ− δ (S(β)−Θ−1)). Then Θ̄ ∈M+

L(π?,Π?).

Lemma 5.2. For some arbitrary symmetric matrix S ∈ RL×L, we define

h(Θ)
def
= − log |Θ| + Tr(ΘS), and f(Θ)

def
= h(Θ) + λReg (Θ) , Θ ∈ M+

L .

Fix 0 < π < Π ≤ ∞.
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1. For Θ1,Θ0 ∈M+
p (π,Π), we have

h(Θ0) +
〈
S −Θ−1

0 ,Θ1 −Θ0

〉
+

1

2Π2
‖Θ1 −Θ0‖F ≤ h(Θ1)

≤ h(Θ0) +
〈
S −Θ−1

0 ,Θ1 −Θ0

〉
+

1

2π2
‖Θ1 −Θ0‖F .

2. Let δ ∈ (0, π2], and Θ, Θ̄,Θ0 ∈M+
p (π,Π). Suppose that

Θ̄ = Proxδ
(
Θ− δ(S −Θ−1)

)
,

then
2δ
(
f(Θ̄)− f(Θ0)

)
+
∥∥Θ̄−Θ0

∥∥2

F
≤
(

1− γ

Π2

)
‖Θ−Θ0‖2

F .

Since Lk = L(Θk, βk, uk, qk), we have

Lk+1 − Lk = L(Θk+1, βk+1, uk+1, qk+1)− L(Θk+1, βk+1, uk+1, qk)

+L(Θk+1, βk+1, uk+1, qk)− L(Θk+1, βk, uk+1, qk)

+L(Θk+1, βk, uk+1, qk)− L(Θk, βk, uk+1, qk)

+L(Θk, βk, uk+1, qk)− L(Θk, βk, uk, qk)

We have

L(Θk+1, βk+1, uk+1, qk+1)− L(Θk+1, βk+1, uk+1, qk) = 〈qk+1 − qk, βk+1 − uk+1〉

=
1

ρq
‖qk+1 − qk‖2

2. (6)

We can write the second term as

L(Θk+1, βk+1, uk+1, qk)− L(Θk+1, βk, uk+1, qk) = Ψ(βk+1)−Ψ(βk),

where

Ψ(β)
def
=

1

2
Tr(S(β)Θk+1) + 〈qk, β − uk+1〉+

ρq
2
‖β − uk+1‖2

2.

By the choice of βk+1 in Step (3), we have ∇Ψ(βk+1) = 0. Using this and a Taylor
expansion of Ψ around βk+1, we have

Ψ(βk+1)−Ψ(βk) = − (βk − βk+1)′ (ρIR +NX ′Θk+1X) (βk − βk+1)

≤ − (ρq +N‖X ′Θk+1X‖2) ‖βk+1 − βk‖2. (7)

For the third term we have

L(Θk+1, βk, uk+1, qk)− L(Θk, βk, uk+1, qk) = f(Θk+1, βk)− f(Θk, βk).
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We know from Lemma 5.1 that the sequence {Θk, k ≥ 0} remains in the setM+
L(π?,Π?),

and Θk+1 = Proxδ
(
Θk − δ

(
S(βk)−Θ−1

k

))
. Hence, by Lemma 5.2-(2), we have

L(Θk+1, βk, uk+1, qk)− L(Θk, βk, uk+1, qk) = f(Θk+1, βk)− f(Θk, βk)

≤ − 1

2δ
‖Θk+1 −Θk‖2

F . (8)

For the last term, we note that the function u 7→ L(Θk, βk, u, qk) is strongly convex with
strong convexity parameter ρq, and since uk+1 minimizes this function we have

L(Θk, βk, uk+1, qk)− L(Θk, βk, uk, qk) ≤ −
ρq
2
‖uk+1 − uk‖2

2. (9)

By putting together the bounds in (6-9), we get

Lk+1 − Lk ≤
1

ρq
‖qk+1 − qk‖2

2 − (ρq + ‖X ′Θk+1X‖2) ‖βk+1 − βk‖2

− 1

2δ
‖Θk+1 −Θk‖2

F −
ρq
2
‖uk+1 − uk‖2

2. (10)

The optimality condition of Step (3) of the Algorithm 2.2 is

∂L(Θk, β, uk+1, qk)

∂β
|βk+1

= qk −X ′Θk+1

N∑
i=1

(Yi −Xβk+1) + ρq (βk+1 − uk+1) = 0.

And since ρq(βk+1 − uk+1) = qk+1 − qk, this optimality condition gives

qk+1 = X ′Θk+1

N∑
i=1

(Yi −Xβk+1)

= X ′ (Θk+1 −Θk)
N∑
i=1

(Yi −Xβk+1) +X ′Θk

N∑
i=1

(Yi −Xβk+1) .

Hence

qk+1 − qk = X ′ (Θk+1 −Θk)
N∑
i=1

(Yi −Xβk+1) +NX ′ΘkX(βk − βk+1).

Hence

‖qk+1 − qk‖2
2 ≤ 2‖X‖2

2 sup
β∈B+

∥∥∥∥∥
N∑
i=1

(Yi −Xβk+1)

∥∥∥∥∥
2

2

‖Θk+1 −Θk‖2
F

+ 2N2‖X ′ΘkX‖2
2‖βk+1 − βk‖2

2.

Setting c0
def
= 2‖X‖2

2 supβ∈B+

∥∥∥∑N
i=1 (Yi −Xβk+1)

∥∥∥2

2
, and using this last inequality in (10),

we get
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Lk+1 − Lk ≤ −
(
ρq +N‖X ′Θk+1X‖2 −

2

ρq
N2‖X ′ΘkX‖2

2

)
‖βk+1 − βk‖2

−
(

1

2δ
− c0

ρq

)
‖Θk+1 −Θk‖2

F −
ρq
2
‖uk+1 − uk‖2

2. (11)

Therefore for ρq > 0 large enough so that 1
2δ
> c0

ρq
the conclusion of the theorem readily

follows.

�
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