
Probabilistic Unrolling: Scalable, Inverse-Free Maximum
Likelihood Estimation for Latent Gaussian Models

Alexander Lin 1 Bahareh Tolooshams 1 Yves Atchadé 2 Demba Ba 1

Abstract

Latent Gaussian models have a rich history in
statistics and machine learning, with applications
ranging from factor analysis to compressed sens-
ing to time series analysis. The classical method
for maximizing the likelihood of these models
is the expectation-maximization (EM) algorithm.
For problems with high-dimensional latent vari-
ables and large datasets, EM scales poorly be-
cause it needs to invert as many large covariance
matrices as the number of data points. We intro-
duce probabilistic unrolling, a method that com-
bines Monte Carlo sampling with iterative linear
solvers to circumvent matrix inversion. Our the-
oretical analyses reveal that unrolling and back-
propagation through the iterations of the solver
can accelerate gradient estimation for maximum
likelihood estimation. In experiments on simu-
lated and real data, we demonstrate that proba-
bilistic unrolling learns latent Gaussian models
up to an order of magnitude faster than gradient
EM, with minimal losses in model performance.

1. Introduction
Latent variable models with Gaussian prior and Gaussian
likelihood, i.e. latent Gaussian models (LGMs), are popular
and powerful tools within statistics and machine learning.
They have found applications in many settings, such as fac-
tor analysis (Basilevsky, 2009), sparse Bayesian learning
(Tipping, 2001), state-space models (Durbin & Koopman,
2012), and neural linear models (Ober & Rasmussen, 2019).
In these models, the means and/or covariances of the Gaus-
sian distributions are functions of parameters that must be
optimized to fit observed data.

1School of Engineering and Applied Sciences, Harvard Univer-
sity, Boston, MA, USA 2Department of Mathematics and Statistics,
Boston University, Boston, MA, USA. Correspondence to: Alexan-
der Lin <alin@seas.harvard.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

The expectation-maximization (EM) algorithm (Dempster
et al., 1977) is a popular way to optimize the parameters
by maximum likelihood estimation. One variant called gra-
dient EM (Lange, 1995) implements the M-step through a
single iteration of gradient descent. For problems with high-
dimensional latent variables and many training examples,
gradient EM scales poorly due to the need to invert as many
large covariance matrices as the number of examples.

Advances in numerical linear algebra have demonstrated, in
various contexts, that iterative solvers often provide a much
faster alternative to matrix inversion (Saad, 2003; Ubaru
et al., 2017; Gardner et al., 2018; Lin et al., 2022b). A
separate, burgeoning literature on unrolled optimization has
shown theoretical and practical benefits to differentiating
through the iterations of deterministic optimizers (Maclau-
rin et al., 2015; Shaban et al., 2019; Ablin et al., 2020;
Tolooshams & Ba, 2022; Malézieux et al., 2021). This liter-
ature begs questions as to the potential benefits, in a latent
variable setting, of unrolling the iterations of a sampler (i.e.
stochastic solver), and differentiating through them.

Contributions We introduce probabilistic unrolling, a com-
putational framework that accelerates maximum likelihood
estimation for large-scale, high-dimensional LGMs. Our
method provides a way to run gradient EM without matrix
inversions. Specifically, we design iterative linear solvers
to yield the probabilistic quantities needed by the EM algo-
rithm (i.e. posterior means and covariance samples). Our
method reduces the complexity of gradient EM from a cubic
function of the latent dimension to a quadratic function in
the general case, and a linear function in special cases.

We theoretically analyze the faithfulness of probabilistic
unrolling to gradient EM when encountering two sources
of error: (a) the statistical error from using a finite number
of covariance samples, and (b) the optimization error from
stopping the solver before convergence. We provide bounds
for both of these factors, producing insights on how to pick
the number of samples and the number of solver iterations.
Finally, we show that our method can further improve its
approximation to the true EM gradient by backpropagating
through the unrolled iterations of the solver.

Probabilistic unrolling can be viewed as training a recur-
rent network in which each layer applies a matrix operation

1

ar
X

iv
:2

30
6.

03
24

9v
1

 [
cs

.L
G

]
 5

 J
un

 2
02

3

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

from the unrolled linear solver. We implement this highly
structured architecture in modern deep learning frameworks
to further benefit from GPU acceleration. We perform sev-
eral experiments with simulated and real data, showing that
probabilistic unrolling can fit LGMs of practical interest up
to 70 times faster than gradient EM. Our code is available
at https://github.com/al5250/prob-unroll.

2. Background: Latent Gaussian Model
Let {y(n)}Nn=1 denote N i.i.d. observations, each associated
with a latent variable z(n). In a LGM, the prior on each
latent variable and likelihood (i.e. conditional distribution)
of each observation both follow Gaussian distributions,

z(n)|θ ∼ N (νθ,Γ
−1
θ), (1)

y(n)|z(n),θ ∼ N (Φθz
(n) + ηθ,Ψ

−1
θ), n = 1, . . . , N.

The prior and likelihood depend on a set of canonical param-
eters (νθ ∈ RD,Γθ ∈ RD×D,Φθ ∈ RM×D,ηθ ∈ RM ,
and a diagonal matrix Ψθ ∈ RM×M) that form the means
and covariances of the Gaussian distributions. The canon-
ical parameters are themselves functions of the model’s
free parameters θ, which are individual values that can be
learned through maximum likelihood estimation.

Examples The LGM (1) generalizes many models within
statistics and machine learning. Some famous examples
include (a) factor analysis, a probabilistic generalization
of PCA (Basilevsky, 2009), (b) sparse Bayesian learning,
a Bayesian approach to compressed sensing (Wipf & Rao,
2004), and (c) state-space models, one of the most popular
class of probabilistic time series models (Durbin & Koop-
man, 2012). With the advent of deep learning, the LGM
class has broadened to include complex, non-linear struc-
tures such as (d) neural linear models, i.e. neural networks
whose trainable weights correspond to free parameters (Ober
& Rasmussen, 2019). For each of these models (and others),
we work out the definition of free parameters θ and how
they map to the canonical parameters in Appendix A.

Missing Data In many applications of LGMs, y(n) may
have missing values, i.e. we may not observe all its entries.
To account for missing data, we assume that for each n,
we observe ỹ(n) = Ω(n)y(n), where the mask Ω(n) ∈
RMn×M is a row-wise subset of the M ×M identity matrix.

EM Inference To fit the parameters θ ∈ Θ to data
ỹ(1), . . . , ỹ(N), we perform maximum likelihood estima-
tion or, equivalently, minimize the negative log-likelihood,

L(θ) := 1

N

N∑
n=1

− log p(ỹ(n)|θ) (2)

=
1

N

N∑
n=1

− log

∫
p(ỹ(n)|z(n),θ)p(z(n)|θ)dz(n).

Due to the latent variable z(n), one common approach to
minimizing (2) is to use the expectation-maximization (EM)
algorithm (Dempster et al., 1977). EM revolves around the
Q-function, which is defined for any {θ1,θ2} ∈ Θ×Θ as

Q(θ1|θ2) :=
1

N

N∑
n=1

q(n)(θ1|θ2), (3)

q(n)(θ1|θ2) := Ep(z(n)|ỹ(n),θ2)
[− log p(z(n), ỹ(n)|θ1)].

The Q-function is called the expected complete-data neg-
ative log-likelihood because it averages the negative log-
likelihood of the observed data y(n) and the unobserved
data z(n) over all possible realizations of z(n) (Bishop &
Nasrabadi, 2006, Ch. 9). EM iterations repeatedly alternate
between constructingQ and minimizing it to make progress
on L: Given a current solution θold, the E-step computes the
posterior distribution p(z(n)|ỹ(n),θold) to form the function
Q(θ|θold), defined for all θ ∈ Θ. The M-step then finds a
new solution θnew such that Q(θnew|θold) ≤ Q(θold|θold).
This guarantees that L(θnew) ≤ L(θold).

Variants of EM differ in how they implement the M-step.
Classical EM (Dempster et al., 1977) solves an optimization
problem, i.e. θnew := argminθ∈ΘQ(θ|θold). We focus on
a computationally-simpler alternative called gradient EM
(Lange, 1995; Balakrishnan et al., 2017),

θnew := θold − α · ∇1Q(θold|θold), (4)

where α ∈ R is the step size and ∇1Q means the gradient
with respect to the first argument of Q, as defined in (3).

EM for the LGM For latent Gaussian models, Q and its
gradient are computable in closed-form. Each q(n) in (3)
simplifies to (dropping the index n for convenience):

q(θ1|θ2) =
1

2
µ⊤

θ2
Aθ1

µθ2
− b⊤θ1

µθ2
(5)

+
1

2
Tr(Aθ1

Σθ2
) + cθ1

,

where, for all θ ∈ Θ, we define the quantities

Aθ := Γθ +Φ⊤
θ Ω

⊤ΩΨθΩ
⊤ΩΦθ, (6)

bθ := Γθνθ +Φ⊤
θ Ω

⊤ΩΨθΩ
⊤(ỹ −Ωηθ),

cθ := 1
2 (ỹ −Ωηθ)

⊤ΩΨθΩ
⊤(ỹ −Ωηθ) +

1
2ν

⊤
θ Γθνθ

− 1
2 log detΩΨθΩ

⊤ − 1
2 log detΓθ,

and the posterior p(z|ỹ,θ) ∼ N (µθ,Σθ) is given by

µθ := Σθbθ, Σθ := A−1
θ . (7)

The derivation for equations (5)-(7) is given in Appendix B.

Computational Challenges Gradient EM involves comput-
ing the gradient of (5) (which we call the exact gradient),

g⋆(θ) := ∇1q(θ|θ). (8)

2

https://github.com/al5250/prob-unroll

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

Since g⋆(θ) depends on the posterior moments (µθ,Σθ),
it requires inverting a large matrix of size D × D. This
has time cost O(D3) and storage cost O(D2), which be-
comes prohibitive for large D. Furthermore, for N different
data vectors, we need to compute N posterior moments
(µ

(n)
θ ,Σ

(n)
θ), which requires N separate matrix inversions.

We now arrive at the main goal of the paper: In the ensuing
sections, we introduce a computational framework called
probabilistic unrolling that can provably accelerate gradient
EM by avoiding explicit matrix inversions. This allows us
to fit latent Gaussian models at substantially greater scale in
high dimensions D and for large dataset sizes N .

3. Method: Probabilistic Unrolling
Probabilistic unrolling circumvents matrix inversion by it-
eratively solving multiple linear systems in parallel. We
design the systems to perform posterior inference, i.e. the
solutions are the posterior mean µθ and covariance sam-
ples distributed as N (0,Σθ). We use these quantities to
estimate the EM objective (5) and its gradient g⋆(θ) (8).
This process requires less time and memory than computing
g⋆(θ) directly. We also show that backpropagating through
the linear solvers further improves our estimation of g⋆(θ).

From a deep learning perspective, the overall method looks
like a recurrent network (Fig. 1). We can view the unrolled
sequence of solver iterations as a recurrent encoder, with
weights θ, that takes the observed data ỹ and refines hidden
states representing the distribution p(z|ỹ,θ). The hidden
states are then passed through an output layer, also parame-
terized by θ, to evaluate the loss (5). Training this network
is equivalent to running gradient EM for the LGM.

3.1. Monte Carlo Gradient EM

In high-dimensional settings, inverting a matrix to com-
pute Σθ is the main bottleneck of (5). The first step of our
method replaces the trace term containing Σθ with an un-
biased estimator. Given any square matrix A and a sample
σθ ∼ N (0,Σθ), it follows that E[σ⊤

θ Aσθ] = Tr(AΣθ)
(Skilling, 1989; Hutchinson, 1989). Using K > 1 inde-
pendent samples σ1,θ, . . . ,σK,θ ∼ N (0,Σθ) (to reduce
variance) leads to the following approximation of (5),

q#(θ1|θ2) :=
1

2
µ⊤

θ2
Aθ1

µθ2
− b⊤θ1

µθ2
(9)

+
1

2K

K∑
k=1

σ⊤
k,θ2

Aθ1
σk,θ2

+ cθ1
.

Eq. (9) satisfies E[q#(θ1|θ2)] = q(θ1|θ2), where the ex-
pectation is taken with respect to σ1,θ, . . . ,σK,θ. We now
define the Monte Carlo gradient

g#(θ) := ∇1q
#(θ|θ), (10)

ỹ Ω Φθ Γθ Ψθ νθ ηθ

Output Gradient

Network Gradient

Recurrent Encoder (i.e. Linear Solver)

Data Parameters

Aθ, Bθ

Output Layer

q⟨I⟩(θ |θ)…Aθ, Bθ X⟨I⟩
θ =

μ⟨I⟩
θ

σ⟨I⟩1,θ
⋮

σ⟨I⟩
K,θ

Aθ, Bθ Aθ, Bθ

Loss

Linear Systems

+

X⟨2⟩
θX⟨1⟩

θ

Figure 1. The probabilistic unrolling architecture: The data point
ỹ, mask Ω, and parameters θ define the linear operator Aθ and
construct the matrix Bθ . A linear solver, unrolled for I steps,
solves the matrix equation AθXθ = Bθ , yielding the posterior
mean µθ and samples {σ1,θ}Kk=1 with covariance Σθ . These
posterior quantities are used to compute either the output gradient
(16) or network gradient (17) to approximate the true EM gradient.

which can take the place of g⋆(θ) for updating θ in gradient
EM. The estimator satisfies E[g#(θ)] = g⋆(θ).

Constructing Samples The question remains as to how
we draw each sample σk,θ. Consider independent random
vectors ξk ∼ N (0,Γθ) and ζk ∼ N (0,Ψθ), and let

δk := ξk +Φ⊤
θ Ω

⊤Ωζk. (11)

It follows from properties of Gaussian random vectors that
δk ∼ N (0,Aθ), where Aθ is defined in (6). Then, we let

σk,θ := Σθδk, k = 1, . . . ,K. (12)

As a result, σk,θ has covariance ΣθAθΣθ = Σθ.

3.2. Linear Systems and Iterative Solvers

Although the large covariance matrix Σθ is no longer ex-
plicitly written in the new objective (9), it still appears in
the definitions for µθ and σk,θ in (7) and (12), respectively.
In this section, we show how to obtain µθ,σk,θ without
explicitly forming the covariance matrix.

First, we cast µθ and σk,θ as the solutions to linear systems,

Aθµθ = bθ, Aθσk,θ = δk, k = 1, . . . ,K, (13)

where Aθ = Σ−1
θ is defined in (6). Then, we solve (13)

using an iterative linear solver (Saad, 2003). For a sys-
tem Ax = b, iterative solvers refine a solution x⟨i⟩ over
iterations i = 1, . . . , I until x⟨I⟩ ≈ A−1b. At iteration i,

x⟨i+1⟩ := x⟨i⟩ + p⟨i⟩, (14)

3

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

where p⟨i⟩ is the search direction. Different solvers vary
in how they construct p⟨i⟩. Examples of popular solvers
include gradient descent, steepest descent, and conjugate
gradient (Saad, 2003), which we review in Appendix D.

3.3. Gradients from Truncated Linear Solvers

High-dimensional latent spaces D may require a large num-
ber of iterations I (hence a high computational cost) to
obtain exact solutions. Thus, in practice, it is desirable to
run the solver for small I , which leads to approximations
(µ

⟨I⟩
θ ,σ

⟨I⟩
k,θ) of the true quantities (µθ,σk,θ). This section

proposes two ways to obtain an approximate EM gradient
from these partial solutions (µ⟨I⟩

θ ,σ
⟨I⟩
k,θ). We defer a theo-

retical analysis of the gradient error to Section 5.

First, we substitute (µ
⟨I⟩
θ ,σ

⟨I⟩
k,θ) for (µθ,σk,θ) in (9), i.e.

q⟨I⟩(θ1|θ2) :=
1

2
(µ

⟨I⟩
θ2

)⊤Aθ1
µ

⟨I⟩
θ2
− b⊤θ1

µ
⟨I⟩
θ2

(15)

+
1

2K

K∑
k=1

(σ
⟨I⟩
k,θ2

)⊤Aθ1
σ

⟨I⟩
k,θ2

+ cθ1
,

which satisfies limI→∞ q⟨I⟩(θ1|θ2) = q#(θ1|θ2).

Option 1: Output Gradient We can take the gradient of
(15) in a manner similar to (10) to obtain the output gradient

ĝ⟨I⟩(θ) := ∇1q
⟨I⟩(θ|θ), (16)

which satisifies limI→∞ ĝ⟨I⟩(θ) = g#(θ). We interpret
this gradient as backpropagating through only the output
layer of the architecture in Fig. 1, hence the terminology.

Option 2: Network Gradient Since the inputs to the output
layer (µ⟨I⟩

θ ,σ
⟨I⟩
k,θ) are themselves functions of the parame-

ters θ, a natural question arises as to the benefits of addi-
tionally propagating the gradient through these quantities
(and the linear solver). This leads to the network gradient

g̃⟨I⟩(θ) :=
∂

∂θ

[
q⟨I⟩(θ|θ)− 1

K

K∑
k=1

δ⊤k σ
⟨I⟩
k,θ

]
, (17)

which backpropagates through the whole architecture in Fig.
1. There are two changes that (17) makes to (16): (a) the
use of ∂

∂θ instead of∇1 means that (17) differentiates with
respect to both variables in (15) (not just the first argument);
(b) (17) has an extra term with δk, which is absent from (16)
but is necessary in (17) to ensure limI→∞ g̃⟨I⟩(θ) = g#(θ)
(short proof in Appendix C; longer proof in Appendix E.3).
In Section 5.2, we will show that compared to the output
gradient ĝ⟨I⟩, the network gradient g̃⟨I⟩ exhibits a “super-
efficiency” phenomenon (Ablin et al., 2020; Tolooshams &
Ba, 2022), which means that it converges faster to g#.

3.4. Full Algorithm

The probabilistic unrolling algorithm is given in Algorithm
1. The LINEARSOLVER step depends on the particular
choice of solver; options include gradient descent, steepest
descent, and conjugate gradient. In addition to circumvent-
ing matrix inversion, probabilistic unrolling provides several
computational benefits over EM, which we explain below.

Covariance-Free Computation. The iterative solvers elim-
inate the need to explicitly form the D × D covariance
matrix Σθ (or even its inverse Aθ). At each iteration i, a
linear solver simply needs to compute matrix-vector prod-
ucts of the form Aθv, for any v ∈ RD, efficiently. For an
LGM, the matrix Aθ is a highly-structured function of its
canonical parameters and the data mask Ω, as shown in (6).

Exploiting LGM Structure. In many cases, the canonical
parameters of the LGM exhibit additional structure, such
as diagonal, Toeplitz, low rank, and sparse structure, to
name a few examples. This can significantly reduce the
computational and storage costs of each iteration of the lin-
ear solver. For example, in applications of sparse Bayesian
learning (Lin et al., 2022b), Φθ and its transpose often arise
as Fourier-like operators. Efficient algorithms, in both com-
putation and storage, exist for applying such operators to
vectors. For a single linear system, the time cost of the
solver is O(Iτθ), where I is the number of iterations and
τθ is the time needed to compute the matrix-vector multipli-
cation Aθv. The space cost is O(D+ ωθ), where ωθ is the
space needed to store the canonical parameters.

Amenability to Parallelization. Iterative solvers are simple
and straightforward to parallelize for solving multiple linear
systems (e.g. in (13)) through AθXθ = Bθ, where

Xθ := [µθ|σ1,θ| · · · |σK,θ], Bθ := [bθ|δ1| · · · |δK].

For example, Gardner et al. (2018) and Lin et al. (2022b)
show how to parallelize the preconditioned conjugate gra-
dient algorithm to solve for Xθ. They demonstrate that
matrix-based parallelization is especially suitable for multi-
core hardware, such as graphics processing units. In this
work, we go a step further by parallelizing the solver across
data points {ỹ(n)}Nn=1 to obtain solutions {X(n)

θ }Nn=1 for
every n. By (6), the operators {A(n)

θ }Nn=1 only differ in the
masks {Ω(n)}Nn=1. Thus, the total storage needed for per-
forming NK matrix-vector multiplications with {A(n)

θ }Nn=1

is only O(NKD + ωθ) (where ωθ is at most O(D2)) even
though the matrices {A(n)

θ }Nn=1 have O(ND2) entries.

We compare the computational complexities of gradient EM
using matrix inversion and probabilistic unrolling in Table
1. The additional factor of I in the space complexity of
the network gradient comes from the need to store all I
intermediate states of the solver for backpropagation.

4

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

Algorithm 1 PROBABILISTICUNROLLING

1: Inputs: parameters θ, dataset {ỹ(1), . . . , ỹ(N)}, masks
{Ω(1), . . . ,Ω(N)}, unrolling iterations I , samples K

2: repeat for number of EM iterations
3: for n = 1, 2, . . . , N do
4: Define A

(n)
θ and compute b

(n)
θ by (6).

5: Draw δ
(n)
1 , . . . , δ

(n)
K using the scheme in (11).

6: Define B
(n)
θ ← [b

(n)
θ |δ

(n)
1 | . . . |δ

(n)
K].

7: X
(n)
θ ← LINEARSOLVER(A(n)

θ ,B
(n)
θ , I).

8: Let [µ⟨I⟩,(n)
θ |σ⟨I⟩,(n)

1,θ | . . . |σ⟨I⟩,(n)
K,θ]← X

(n)
θ .

9: if use output gradient then
10: Compute gradient ĝ⟨I⟩,(n) using (16).
11: else if use network gradient then
12: Compute gradient g̃⟨I⟩,(n) using (17).
13: end if
14: end for
15: Update θ ← θ − α · 1

N

∑N
n=1 g

⟨I⟩,(n).

Table 1. Comparing computational complexities of EM and PU
(probabilistic unrolling). In the worst case, τθ and ωθ are O(D2).

Time Space

EM O(ND3) O(ND2)
PU (Output Gradient) O(NKIτθ) O(NKD + ωθ)
PU (Network Gradient) O(NKIτθ) O(NKDI + ωθ)

4. Related Work
Efficient Learning with Linear Solvers. Using iterative
solvers to circumvent matrix inversion is a widely-known
technique within numerical linear algebra (Saad, 2003;
Halko et al., 2011). Recently, solvers such as the Lanc-
zos algorithm (Lanczos, 1950) and conjugate gradient (CG)
(Hestenes & Stiefel, 1952) have become popular for acceler-
ating gradient-based learning for Gaussian processes (Dong
et al., 2017; Gardner et al., 2018; Wang et al., 2019; Wenger
et al., 2022). In addition, Lin et al. (2022b) and Lin et al.
(2022c) used CG to accelerate the classical EM algorithm
for sparse Bayesian learning. Many of these works consider
when the number of data vectors N = 1, as opposed to the
setting of the LGM where N can be large. They also do not
consider the idea of backpropagation through the solver.

Backpropagating through Optimization Algorithms. Au-
tomatic differentiation (or “backpropagation”) (Baydin et al.,
2018) has been widely used and studied in machine learn-
ing (Domke, 2012; Deledalle et al., 2014; Shaban et al.,
2019). Domke (2012) studied truncated backpropagation
as a replacement for implicit differentiation (e.g. Foo et al.,
2007; Blondel et al., 2022; Bertrand et al., 2022) when
performing incomplete energy minimization. Shaban et al.
(2019) studied the use of truncated backpropagation for pa-

rameter estimation using unrolled networks. Backpropagat-
ing through an unrolled parameter estimation mapping has
also been applied to hyperparameter optimization (Maclau-
rin et al., 2015; Franceschi et al., 2018), and constructing
generative adversarial networks (Metz et al., 2016). Ablin
et al. (2020) theoretically studied how backpropagation can
accelerate gradient estimation for bilevel (i.e. min-min) op-
timization problems, in the setting where the inner and outer
objectives are the same, and when the inner optimization
algorithm is gradient descent. Moreover, Tolooshams &
Ba (2022); Malézieux et al. (2021) studied the acceleration
phenomenon for the sparse coding problem. This paper
differs from the aforementioned prior work as follows: (a)
probabilistic unrolling is designed for the specific setting of
the LGM (as opposed to the general energy minimization
problem of Domke (2012)), and contains a novel Monte
Carlo sampling step to avoid inversion of the covariance ma-
trix, (b) the fact that our inner optimization originates from
this sampling step necessitates statistical considerations and
analyses absent from previous work, (c) we extend the result
of Ablin et al. (2020), showing that backpropagation can ac-
celerate gradient estimation even in cases in which the inner
and outer objectives are different, and (d) we provide gradi-
ent convergence analysis for steepest descent (an algorithm
that is more sophisticated than gradient descent, requiring
analysis of backpropagation through the step size).

Unrolled Networks. Our interpretation of unrolled solvers
as a deep neural network is known as unrolled/unfolded net-
works in the literature. Gregor & LeCun (2010) introduced
this approach for solving the sparse coding problem. Prior
works designed and studied deep unrolled networks (Chen
et al., 2018; Ablin et al., 2019). Moreover, unrolled net-
works have found advantages in various applications such as
compressed sensing MRI (Sun et al., 2016), Poisson image
denoising (Tolooshams et al., 2020), and pattern learning
from physiological data (Malézieux et al., 2021).

Variational EM and Variational Auto-Encoders. Varia-
tional inference (VI) is a popular approach for approximat-
ing posterior distributions with simpler surrogates. Using
VI for the E-Step of EM leads to the variational EM (VEM)
algorithm (Murphy, 2023, Sec. 10.3.5), which is a potential
alternative to probabilistic unrolling for accelerating EM
inference. VEM is more flexible than probabilistic unrolling
because it can perform inference for models outside the
LGM family. However, the most common form of VEM
learns a “mean-field” approximation to the posterior, which
does not model covariance between latent variables and
therefore biases the learning process away from the nega-
tive log-likelihood objective L(θ) (2) (Lin et al., 2022b);
in contrast, probabilistic unrolling captures rich covariance
structure using samples from the true posterior and like EM,
still optimizes L(θ) as its central objective. The variational
auto-encoder (VAE) (Kingma & Welling, 2013) is one of

5

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

the most widely-used instances of VEM that trains a deep
neural network to perform VI. Although VAEs are efficient
tools for inference, they (a) require a separate inference
network that is different from the generative model, increas-
ing the number of parameters for training, and (b) require
custom design of this network’s architecture (e.g. layers,
activations, etc.). In contrast, the probabilistic unrolling ar-
chitecture (Fig. 1) is based on an interpretable linear solver
that uses the same parameters as the generative model.

5. Theoretical Analysis
How well probabilistic unrolling approximates the exact EM
gradient depends on the number of solver iterations, and the
quality of the Monte Carlo approximation. We conduct a
theoretical analysis of these two sources of error. We begin
by defining population-level quantities for each gradient,

h⋆ :=
1

N

N∑
n=1

g⋆,(n) h# :=
1

N

N∑
n=1

g#,(n) (18)

ĥ
⟨I⟩

:=
1

N

N∑
n=1

ĝ⟨I⟩,(n) h̃
⟨I⟩

:=
1

N

N∑
n=1

g̃⟨I⟩,(n),

where h⋆(θ) = ∇1Q(θ|θ) is the exact gradient EM update
of (4). We denote the approximate gradient after I iterations

of probabilistic unrolling by h⟨I⟩, with variants ĥ
⟨I⟩

and

h̃
⟨I⟩

corresponding, respectively, to the output and network
gradients defined previously. The quantity of interest is

∥h⋆ − h⟨I⟩∥ ≤ ∥h⋆ − h#∥︸ ︷︷ ︸
statistical error

+ ∥h# − h⟨I⟩∥︸ ︷︷ ︸
optimization error

, (19)

which decomposes into two terms. The first term, which we
name statistical error, comes from approximating h⋆ with
Monte Carlo samples. We name the second term optimiza-
tion error: this term captures the error due to performing a
finite number I of iterations of the linear solver.

5.1. Statistical Error

Given θ ∈ Θ, we first bound ∥h⋆(θ)− h#(θ)∥∞.

Proposition 5.1. Let N be the number of data points, K
be the number of samples for each data point, and L be the
dimesionality of θ. For every n ∈ {1, . . . , N} we define

M(n,ℓ) := (Σ
(n)
θ)1/2

∂A
(n)
θ

∂θℓ
(Σ

(n)
θ)1/2, (20)

where A
(n)
θ is defined in (6), Σ

(n)
θ is defined in (7),

and ∂A
(n)
θ

∂θℓ
is the D × D matrix of partial derivatives

of the entries of A
(n)
θ with respect to θℓ. Let ξ :=

maxℓmaxn∥M(n,ℓ)∥F , where ∥·∥2 denotes the spectral
norm and ∥·∥F denotes Frobenius norm.

Then, there is an absolute constant C such that if the number
of Monte Carlo samples K satisfies

K ≥ log(4NL)

C
max
ℓ

(
maxn∥M(n,ℓ)∥22∑

n∥M(n,ℓ)∥2F

)
, (21)

it follows that

Pr

(
∥h⋆ − h#∥∞ > ξ

√
log(4NL)

CNK

)
≤ 1

N
. (22)

We give the proof in Appendix E.1. The implication of Prop.
5.1 is that with high probability, h# is close to h⋆. The con-
dition in (21) is a mild Monte Carlo sample size requirement
and is satisfied for instance if K ≥ log(4NL)

Cmax(1,κN) , where κ is

any number such that for all ℓ, n, n′, ∥M(n,ℓ)∥2
2

∥M(n′,ℓ)∥2
2

≥ κ.

5.2. Optimization Error

Next, we bound optimization error ∥h#(θ)− h⟨I⟩(θ)∥2.

Proposition 5.2. Let I denote the number of linear solver

iterations. Then, the output gradient ĥ
⟨I⟩

and the network

gradient h̃
⟨I⟩

converge to h# with the following rates:

∥h# − ĥ
⟨I⟩
∥2 = O(ρI), ∥h# − h̃

⟨I⟩
∥2 = O(Iρ2I),

where ρ < 1 is the solver convergence rate. For gradient
descent (GD) and steepest descent (SD), these rates are

ρGD :=
ι− 1

ι
, ρSD :=

ι− 1

ι+ 1
, (23)

where ι denotes the condition number (i.e. ratio between
largest and smallest eigenvalues) of the matrix Aθ (6).

From Prop. 5.2, we draw three conclusions: First, both the

output gradient ĥ
⟨I⟩

and the network gradient h̃
⟨I⟩

converge

to h# as I →∞. Second, h̃
⟨I⟩

achieves asymptotically bet-

ter estimation of h# (compared to ĥ
⟨I⟩

). Third, the results
suggest that the error in both gradients can be decreased
by the use of solvers that converge faster than gradient de-
scent, e.g., using steepest descent (as shown in Prop. 5.2),
or conjugate gradient (CG), which has convergence rate
ρCG =

√
ι−1√
ι+1

(Shewchuk et al., 1994).

The proof of Prop. 5.2 is given in Appendix E.2. It relies on
a connection we build between probabilistic unrolling and
bilevel optimization, i.e. minimizing functions defined as a
minimum (Ablin et al., 2020). Probabilistic unrolling (15) is
an instance of bilevel optimization in which the outer level
optimizes the EM objective by estimating its gradient with
respect to parameters θ. This gradient is itself dependent
on the solutions µθ, {σk,θ}Kk=1 of K + 1 linear systems,

6

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

each equivalent to minimizing an inner quadratic function
that depends on θ. As part of our proof, we introduce the
following two lemmas, which may be of broader interest
beyond our particular setting of probabilistic unrolling for
LGMs. The first result (Lemma 5.3, proof in Appendix E.3)
is a general statement on gradient convergence for bilevel
optimization problems; it extends Prop. 2.2 of Ablin et al.
(2020) to settings in which the outer and inner objectives
have different forms. The second result (Lemma 5.4, proof
in Appendix E.4) analyzes Jacobian convergence for itera-
tive solvers based on gradient descent and steepest descent.

Lemma 5.3. Consider a bilevel optimization problem with
outer objective r(θ,β) and inner objective s(θ,β),

min
θ

r(θ,β#) s.t. β# := argmin
β

s(θ,β), (24)

in which the gradients {∇1r(θ,β),∇2s(θ,β)} and the
second derivatives {∇2

22s(θ,β),∇2
12r(θ,β)} are Lipschitz

continuous in β. Let g# := ∇1r(θ,β
#) be the desired

gradient. Let β⟨I⟩ denote an approximation of β# ob-
tained from running an iterative (and differentiable) op-
timizer for I steps. We use β⟨I⟩ to define two approximate
gradients: (1) the analytic gradient (called “output gra-
dient” in our work) ĝ⟨I⟩ := ∇1r(θ,β

⟨I⟩) and (2) the au-
tomatic gradient (called “network gradient” in our work)
g̃⟨I⟩ := ∇1r(θ,β

⟨I⟩) + ∂β⟨I⟩

∂θ · ∇2s(θ,β
⟨I⟩). Additionally,

define the Jacobians J# := ∂β#

∂θ and J ⟨I⟩ := ∂β⟨I⟩

∂θ , and
let J ⟨I⟩ be bounded (i.e. ∥J ⟨I⟩∥2 ≤ JM). If the outer
and inner objectives share second-order derivatives, i.e.
∇2

12r(θ,β
#) = ∇2

12s(θ,β
#), then the analytic and auto-

matic gradients converge at the following rates:

∥ĝ⟨I⟩ − g#∥2 = O(∥β⟨I⟩ − β#∥2), (25)

∥g̃⟨I⟩ − g#∥2 = O(∥β⟨I⟩ − β#∥2 · ∥J ⟨I⟩ − J#∥2).

Lemma 5.4. Given the bilevel optimization problem
from Prop. 5.3, let the inner objective s(θ,β) :=
1
2β

⊤Aθβ − u⊤
θ β be a strongly convex quadratic func-

tion with positive definite Aθ. Given θ, let β⟨I⟩ :=
LINEARSOLVER(Aθ,uθ, I) be the output of an I-step lin-
ear solver used to approximate β# := argminβ s(θ,β) =
A−1

θ uθ . Then, for gradient descent and steepest descent as
the linear solver, the Jacobian error is the following function
of solver error: ∥J ⟨I⟩ − J#∥2 = O(I · ∥β⟨I⟩ − β#∥2).

Insights on Unrolling Depth Taken together, Prop. 5.1 and
5.2 offer insights in choosing the number of unrolling iter-
ations I . Since the overall gradient error is the sum of the
optimization and statistical errors1, the latter being imper-
vious to I , the results suggest taking I just large enough

1Using the fact that the ℓ2-norm is an upper-bound on the
ℓ∞-norm, we can bound the overall error (19) in ℓ∞ norm (with
probability 1− 1/N) by adding the results of Prop. 5.1 and 5.2.

to balance the two sources of error. A rough calculation
yields I ≈ C log(NK)/ log(1/ρ) for output gradient and
I ≈ C log(NK)/ log(1/ρ2) for network gradient, for some
dimension-dependent constant C, where ρ is the conver-
gence rate of the solver.

6. Experiments
We perform experiments on several LGM applications, rang-
ing from recovering unknown parameters to solving inverse
problems to predicting movie ratings. We demonstrate that
probabilistic unrolling provides significant scalability over
EM, without loss in model performance. In all instances of
EM, we use a single gradient step for the M-Step update (i.e.
gradient EM). We implement all algorithms in PyTorch and
on a single Nvidia T4 GPU with 16 GB RAM.

The main hyperparameters for probabilistic unrolling are the
number of samples K and the number of solver iterations I .
When solving a linear system Ax = b, we let I be just large
enough so that the residual error ∥b − Ax⟨I⟩∥22 is below
some small threshold (i.e. 10−8). We set K based on our
theoretical analysis (21). We keep K small if either the num-
ber of data points N is large or the number of parameters L
is small; otherwise we increase K. In our experiments, we
find that having I and K in the range [10, 30] is sufficient
even when D increases to (tens of) thousands of dimensions.

6.1. Parameter Recovery for Noisy AR Models

The noisy auto-regressive (AR) model is a time series model
with applications in radar (Çayır & Candan, 2021) and
biomedical imaging (Luo et al., 2020). A noisy AR model
of order P for a time series y := {yd}Dd=1 is written as

{z1, . . . , zP } ∼ N (0,Qϕ), Qϕ ∈ RP , (26)

zd =

P∑
p=1

ϕp · zd−p + wd, wd ∼ N (0, κ), P < d ≤ D,

yd = zd + vd, vd ∼ N (0, λ), 1 ≤ d ≤ D.

The initial covariance matrix Qϕ is some function of the
AR coefficients ϕ := {ϕ1, . . . , ϕP } that ensures stationarity
for the latent process (see Appendix F.1.1 for details). The
model’s free parameters are θ = {ϕ, λ, κ}. We can write
this model as an LGM (1), where νθ = 0,Φθ = I,ηθ = 0,
Ψθ = λ−1I, and Γθ is a function of {ϕ, κ}.

Complexity Comparison. Using matrix inversion, exact-
gradient EM will require O(D3)-time and O(D2)-space.
In comparison, probabilistic unrolling scales with the time
τθ and space ωθ needed for matrix-vector multiplication
with the posterior inverse-covariance matrix Aθ (6). For
the noisy AR model of order P , Aθ is a banded matrix with
2P +1 non-zero bands (derivation given in Appendix F.1.1).
As a result, τθ = O(DP + P 3) and ωθ = O(DP + P 2),

7

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

Table 2. Comparing percent error in noisy AR parameter recovery and computation time for EM and probabilistic unrolling (PU).

D r(ϕEM,ϕ⋆) r(ϕPU,ϕ⋆) r(κEM, κ⋆) r(κPU, κ⋆) r(λEM, λ⋆) r(λPU, λ⋆) EM Time (Best) PU Time

1,000 7.5±4.7 % 6.8±3.1 % 3.6±4.4 % 3.1±1.5 % 5.0±2.9 % 6.0±3.7 % 41±0 s 8±0 s
3,000 3.0±2.5 % 3.7±2.1 % 3.1±2.2 % 3.6±2.6 % 2.8±3.6 % 3.0±3.5 % 413±2 s 10±0 s

10,000 1.8±1.1 % 2.5±2.2 % 1.3±0.8 % 1.5±0.7 % 1.3±0.3 % 1.0±0.5 % 1361±36 s 29±0 s
30,000 0.5±0.2 % 0.4±0.2 % 0.4±0.1 % 0.4±0.2 % 0.7±0.1 % 0.8±0.2 % 4139±49 s 87±1 s

Table 3. Averaged CS results (see Appendix F.2.4 for breakdown
by digit type). Without Woodbury identity, EM time is 4725±61 s.

r(µEM, z̃) r(µPU, z̃) EM Time PU Time

Avg. 4.8±1.0 % 4.7±1.4 % 1481±19 s 21±0 s

which is much more efficient than EM.2

Setup and Results. We compare the accuracy and speed of
exact-gradient EM and probabilistic unrolling in parameter
recovery for noisy AR models of order P = 5. First, we
randomly sample a set of true parameters {ϕ⋆, λ⋆, κ⋆}, gen-
erate N = 5 time series according to (26), and randomly
mask out 10% of the observations from each time series to
create ỹ(1), . . . , ỹ(5). Then, we perform maximum likeli-
hood estimation using either gradient EM or probabilistic
unrolling to produce parameter estimates {ϕ̂, λ̂, κ̂}. We
measure accuracy using the normalized root-mean-square
error (NRMSE) r(θ,θ⋆) := ∥θ̂ − θ⋆∥2/∥θ⋆∥2 × 100%.
For probabilistic unrolling, we use K = 10 Monte Carlo
samples, unroll I = 30 iterations of the conjugate gradient
solver, and use the network gradient. Other details can be
found in Appendix F.1.3. We report results for different
values of D in Table 2. Probabilistic unrolling consistently
matches the performance of gradient EM, while being up
to 47 times faster. For each D, we report the smaller of the
times between EM with matrix inversion and EM with a
Kalman smoother (see Appendix F.1.2). Typically, inversion
is faster for smaller D while using the Kalman smoother
is faster for larger D. Probabilistic unrolling is faster than
both of these for all D. We additionally perform compar-
isons between probabilistic unrolling and variational EM (as
implemented through the variational auto-encoder (VAE)
(Kingma & Welling, 2013)) in Appendix F.1.4.

6.2. Bayesian Compressed Sensing of Sparse Signals

With applications from radio astronomy (Wiaux et al., 2009)
to MRI (Lustig et al., 2008), compressed sensing (CS) is a
technique for reconstructing sparse, high-dimensional sig-

2We note that instead of using matrix inversion, we could cast
(26) as a state-space model and use a Kalman smoother to run
exact-gradient EM in O(DP 3)-time and O(DP 2)-space (see Ap-
pendix F.1.2). However, unlike probabilistic unrolling, the Kalman
filter is a sequential algorithm and does not parallelize across D.

nals z̃(n) from measurements ỹ(n). Bayesian compressed
sensing (Ji et al., 2008b; Bilgic et al., 2011; Lin et al.,
2021; 2022a) is an approach to CS that employs the sparse
Bayesian learning model (Wipf & Rao, 2004)

z(n) ∼ N (0, diag(α)−1), n = 1, . . . , N (27)

ỹ(n)|z(n) ∼ N (Φ(n)z(n), β−1I), n = 1, . . . , N,

where each z(n) ∈ RD is an unknown signal, ỹ(n) ∈ RM is
a measurement associated of the signal, and Φ(n) ∈ RM×D

is a so-called measurement matrix. The free parameters θ
of the model are α ∈ RD and β ∈ R. When a common
sparsity pattern underlies the observations {ỹ(n)}Nn=1, maxi-
mum likelihood estimation will push many of the entries αm
to adopt large values, tending to∞, and, thus, encouraging
sparsity of samples from the posterior p(z(n)|ỹ(n),α, β)
(Yee & Atchadé, 2017). The mean µ(n) of each posterior is
then used as an estimate for z̃(n) (Ji et al., 2008a).

Complexity Comparison. In several applications (e.g. MRI,
astronomy), each Φ(n) = Ω(n)Φ, where Φ ∈ CD×D is
the Fourier transform and Ω(n) ∈ RM×D is a random un-
dersampling mask. Thus, (27) is an instance of the LGM,
where θ := {α, β}. Using gradient EM to fit θ requires
O(D3)-time and O(D2)-space. On the other hand, proba-
bilistic unrolling scales with the complexity needed to apply
Aθ (6) to vectors; this is dominated by the Fourier transform
Φ, which only requires O(D logD)-time and O(D)-space.

Setup and Results. We perform CS experiments on NIST
(Grother, 1995), a dataset of handwritten digits. For each
digit type (i.e. 0 through 9), we sample N = 10 images z̃(n)

of size 128× 128, which are high-dimensional signals with
D = 16,384 pixels. Each image is naturally sparse because
most pixels are zero. For each z̃(n), we randomly under-
sample its 2D Fourier transform by 15% (i.e. M = 0.15D)
and add noise to construct the measurement ỹ(n). Then, we
fit a Bayesian compressed sensing model (27) to {ỹ(n)}Nn=1

to obtain reconstructions {µ(n)}Nn=1. We measure success
using the NRMSE between µ and z̃, where µ, z̃ ∈ RND
are the concatenations of {µ(n)}Nn=1 and the true signals
{z̃(n)}Nn=1, respectively. For probabilistic unrolling, we
use K = 30 samples, I = 25 iterations of preconditioned
conjugate gradient, and the network gradient. More details
can be found in Appendix F.2.2. Results averaged over the
10 different digit types are given in Table 3. We find that

8

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

Table 4. MovieLens results. For timing, a cycle is defined as 2,000 gradient steps. EM requires too much memory to run ML-25M.

Dataset N (users) M (movies) EM RMSE PU RMSE EM Time/Cycle PU Time/Cycle PU Mem PU Mem

ML-1M 6,000 4,000 0.8433 0.8436 54 min, 42 s 5 min, 50 s 1.94 GB 0.17 GB
ML-10M 72,000 10,000 0.7809 0.7796 78 min, 36 s 12 min, 8 s 5.62 GB 2.64 GB
ML-25M 162,000 62,000 — 0.7700 — 31 min, 11 s >16 GB 8.48 GB

0 1000 2000
Latent Dimension

0

1000

2000

3000

4000

Ti
m

e
pe

r 5
00

 g

ra
di

en
t s

te
ps

 (s
ec

)

EM
PU

0 1000 2000
Latent Dimension

0

2

4

6

GP
U

M
em

or
y

(G
B) EM

PU

Figure 2. Time and memory versus D for the ML-1M dataset.

probabilistic unrolling and gradient EM have similar error.
However, probabilistic unrolling is approximately 70 times
faster than gradient EM, even after we accelerate EM using
the Woodbury matrix identity (see Appendix F.2.1).

6.3. Collaborative Filtering through Factor Analysis

The goal of recommender systems is to predict user ratings
for various items. One common approach is collaborative
filtering, in which we pool together incomplete ratings data
for M items across N users to infer how all users would
rate all items. One of the central challenges of collaborative
filtering is the inherent sparsity of the data – for every user,
we typically only observe ratings for a small fraction of
items, leading to large amounts of missing data (Rendle
et al., 2020; Wu et al., 2021). In this section, we use factor
analysis models for collaborative filtering. Factor analysis
is a Bayesian analog of matrix factorization, one of the state-
of-the-art methods for recommender systems (Koren et al.,
2009; Lawrence & Urtasun, 2009; Rendle et al., 2019).

Let y(n) ∈ RM be the ratings for user n across M movies.
Only part of this vector is known: ỹ(n) = Ω(n)y(n) ∈ RMn ,
where Mn < M . The factor analysis model is written as

z(n) ∼ N (0, I), (28)

ỹ(n)|z(n) ∼ N (Ω(n)(Φz(n) + η),Ω(n)Ψ−1(Ω(n))⊤),

where each z(n) ∈ RD for D < M is a set of latent fac-
tors for user n. The free parameters of this model are
θ := {Φ,η,Ψ}, where Φ ∈ RM×D, η ∈ RM , and Ψ
is a diagonal M ×M matrix. After estimating θ, we can
predict any unknown rating y

(n)
m ̸∈ ỹ(n) using the mean of

the distribution p(y
(n)
m |ỹ(n),θ) (i.e. ŷ(n)m = ϕ⊤

mµ
(n)
θ + ηm,

where µ
(n)
θ is defined by (7) and ϕm is the m-th row of Φ).

Setup and Results. We perform collaborative filtering exper-
iments on MovieLens (Harper & Konstan, 2015), a group of

successively larger datasets with R = 1 million, 10 million,
and 25 million ratings of thousands of movies, by thousands
of users. For each dataset, we perform a 90%-10% train-test
split of the ratings data (Sedhain et al., 2015). Then, we fit
a factor analysis model to the training set using mini-batch
gradient descent, where the gradients are calculated using
either gradient EM or probabilistic unrolling. For probabilis-
tic unrolling, we use K = 10 Monte Carlo samples, I = 10
unrolled iterations of conjugate gradient, and the output gra-
dient to reduce memory consumption. After convergence,
we calculate the root-mean-square error between all ratings
in the test set y(n)m and the fitted model’s predictions ŷ(n)m .
Further experimental details can be found in Appendix F.3.1.
The results for the three MovieLens datasets are given in
Table 4. We also report processing time and GPU memory
utilized by EM and probabilistic unrolling. All of the results
in Table 4 are for D = 1,000 latent factors. Figure 2 shows
a plot of time/memory vs. D for other values of D. An
additional VAE baseline is provided in Appendix F.3.2.

7. Conclusion
We introduced probabilistic unrolling, a computational
framework for accelerating gradient-based maximum likeli-
hood estimation for a large class of latent variable models
with Gaussian prior and Gaussian likelihood. Our method
combines Monte Carlo sampling with iterative solvers and
unrolled optimization, leading to a novel means of back-
propagating through a sampling algorithm. Our theoretical
analyses demonstrated that this can accelerate gradient es-
timation and, hence, maximum likelihood estimation. Our
analyses provide insight into the relationship between the
number of solver iterations, i.e. network depth, the number
of Monte Carlo samples, and the gradient approximation
error. In the future, we will consider extensions of prob-
abilistic unrolling to other classes of probabilistic latent
variable models.

Acknowledgements
This work was supported by a National Defense Science and
Engineering Graduate Fellowship, and grants PHY-2019786,
DMS-2015485, and DMS-2210664 from the National Sci-
ence Foundation. The authors also thank the anonymous
reviewers, whose comments greatly improved this paper.

9

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

References
Ablin, P., Moreau, T., Massias, M., and Gramfort, A. Learn-

ing step sizes for unfolded sparse coding. Advances in
Neural Information Processing Systems, 32, 2019.

Ablin, P., Peyré, G., and Moreau, T. Super-efficiency of
automatic differentiation for functions defined as a mini-
mum. In International Conference on Machine Learning,
pp. 32–41. PMLR, 2020.

Balakrishnan, S., Wainwright, M. J., and Yu, B. Statistical
guarantees for the EM algorithm: From population to
sample-based analysis. The Annals of Statistics, 45(1):
77–120, 2017.

Basilevsky, A. T. Statistical factor analysis and related
methods: theory and applications. John Wiley & Sons,
2009.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind,
J. M. Automatic differentiation in machine learning: a
survey. Journal of Marchine Learning Research, 18:1–43,
2018.

Bertrand, Q., Klopfenstein, Q., Massias, M., Blondel, M.,
Vaiter, S., Gramfort, A., and Salmon, J. Implicit differen-
tiation for fast hyperparameter selection in non-smooth
convex learning. The Journal of Machine Learning Re-
search, 23(1):6680–6722, 2022.

Bilgic, B., Goyal, V. K., and Adalsteinsson, E. Multi-
contrast reconstruction with Bayesian compressed sens-
ing. Magnetic resonance in medicine, 66(6):1601–1615,
2011.

Bishop, C. M. and Nasrabadi, N. M. Pattern recognition
and machine learning, volume 4. Springer, 2006.

Blondel, M., Berthet, Q., Cuturi, M., Frostig, R., Hoyer, S.,
Llinares-López, F., Pedregosa, F., and Vert, J.-P. Efficient
and modular implicit differentiation. Advances in Neural
Information Processing Systems, 35:5230–5242, 2022.

Çayır, Ö. and Candan, Ç. Maximum likelihood autoregres-
sive model parameter estimation with noise corrupted
independent snapshots. Signal Processing, 186:108118,
2021.

Chen, X., Liu, J., Wang, Z., and Yin, W. Theoretical linear
convergence of unfolded ISTA and its practical weights
and thresholds. Advances in Neural Information Process-
ing Systems, 31, 2018.

Deledalle, C.-A., Vaiter, S., Fadili, J., and Peyré, G. Stein
unbiased gradient estimator of the risk (SUGAR) for
multiple parameter selection. SIAM Journal on Imaging
Sciences, 7(4):2448–2487, 2014.

Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum
likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society: Series B (Method-
ological), 39(1):1–22, 1977.

Domke, J. Generic methods for optimization-based mod-
eling. In Lawrence, N. D. and Girolami, M. (eds.), Pro-
ceedings of the Fifteenth International Conference on
Artificial Intelligence and Statistics, volume 22 of Pro-
ceedings of Machine Learning Research, pp. 318–326,
La Palma, Canary Islands, 21–23 Apr 2012. PMLR.

Dong, K., Eriksson, D., Nickisch, H., Bindel, D., and Wil-
son, A. G. Scalable log determinants for Gaussian process
kernel learning. Advances in Neural Information Process-
ing Systems, 30, 2017.

Durbin, J. and Koopman, S. J. Time series analysis by state
space methods, volume 38. OUP Oxford, 2012.

Foo, C.-s., Ng, A., et al. Efficient multiple hyperparame-
ter learning for log-linear models. Advances in neural
information processing systems, 20, 2007.

Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., and Pontil,
M. Bilevel programming for hyperparameter optimiza-
tion and meta-learning. In Dy, J. and Krause, A. (eds.),
Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 1568–1577. PMLR, 10–15 Jul
2018.

Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D., and
Wilson, A. G. GPytorch: Blackbox matrix-matrix Gaus-
sian process inference with GPU acceleration. Advances
in neural information processing systems, 31, 2018.

Gregor, K. and LeCun, Y. Learning fast approximations of
sparse coding. In Proceedings of the 27th international
conference on international conference on machine learn-
ing, pp. 399–406, 2010.

Grother, P. J. NIST special database 19-hand-printed forms
and characters database. Technical Report, National In-
stitute of Standards and Technology, 1995.

Halko, N., Martinsson, P.-G., and Tropp, J. A. Finding
structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions. SIAM
review, 53(2):217–288, 2011.

Harper, F. M. and Konstan, J. A. The MovieLens datasets:
History and context. Acm transactions on interactive
intelligent systems (tiis), 5(4):1–19, 2015.

Hestenes, M. R. and Stiefel, E. Methods of conjugate gra-
dients for solving. Journal of research of the National
Bureau of Standards, 49(6):409, 1952.

10

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

Hutchinson, M. F. A stochastic estimator of the trace of the
influence matrix for Laplacian smoothing splines. Com-
munications in Statistics-Simulation and Computation,
18(3):1059–1076, 1989.

Ji, S., Dunson, D., and Carin, L. Multitask compressive
sensing. IEEE Transactions on Signal Processing, 57(1):
92–106, 2008a.

Ji, S., Xue, Y., and Carin, L. Bayesian compressive sens-
ing. IEEE Transactions on signal processing, 56(6):2346–
2356, 2008b.

Kingma, D. P. and Welling, M. Auto-encoding variational
Bayes. arXiv preprint arXiv:1312.6114, 2013.

Koren, Y., Bell, R., and Volinsky, C. Matrix factorization
techniques for recommender systems. Computer, 42(8):
30–37, 2009.

Lanczos, C. An iteration method for the solution of the
eigenvalue problem of linear differential and integral op-
erators. 1950.

Lange, K. A gradient algorithm locally equivalent to the
EM algorithm. Journal of the Royal Statistical Society:
Series B (Methodological), 57(2):425–437, 1995.

Lawrence, N. D. and Urtasun, R. Non-linear matrix factor-
ization with Gaussian processes. In Proceedings of the
26th annual international conference on machine learn-
ing, pp. 601–608, 2009.

Lin, A., Ba, D., and Bilgic, B. Accelerating Bayesian
compressed sensing for fast multi-contrast reconstruction.
In Proceedings of the 30th Annual Meeting of ISMRM,
2021.

Lin, A., Ba, D., and Bilgic, B. Bayesian sensitivity encoding
enables parameter-free, highly accelerated joint multi-
contrast reconstruction. In Proceedings of the 31st Annual
Meeting of ISMRM, 2022a.

Lin, A., Song, A. H., Bilgic, B., and Ba, D. Covariance-free
sparse Bayesian learning. IEEE Transactions on Signal
Processing, 70:3818–3831, 2022b.

Lin, A., Song, A. H., Bilgic, B., and Ba, D. High-
dimensional sparse Bayesian learning without covari-
ance matrices. In ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1511–1515. IEEE, 2022c.

Luo, Q., Misaki, M., Mulyana, B., Wong, C.-K., and Bo-
durka, J. Improved autoregressive model for correction of
noise serial correlation in fast fMRI. Magnetic resonance
in medicine, 84(3):1293–1305, 2020.

Lustig, M., Donoho, D. L., Santos, J. M., and Pauly, J. M.
Compressed sensing MRI. IEEE signal processing maga-
zine, 25(2):72–82, 2008.

Maclaurin, D., Duvenaud, D., and Adams, R. Gradient-
based hyperparameter optimization through reversible
learning. In International conference on machine learn-
ing, pp. 2113–2122. PMLR, 2015.

Malézieux, B., Moreau, T., and Kowalski, M. Understand-
ing approximate and unrolled dictionary learning for pat-
tern recovery. In International Conference on Learning
Representations, 2021.

Metz, L., Poole, B., Pfau, D., and Sohl-Dickstein, J. Un-
rolled generative adversarial networks. arXiv preprint
arXiv:1611.02163, 2016.

Murphy, K. P. Probabilistic Machine Learning: Advanced
Topics. MIT Press, 2023. URL http://probml.
github.io/book2.

Ober, S. W. and Rasmussen, C. E. Benchmarking the
neural linear model for regression. arXiv preprint
arXiv:1912.08416, 2019.

Rendle, S., Zhang, L., and Koren, Y. On the difficulty of
evaluating baselines: A study on recommender systems.
arXiv preprint arXiv:1905.01395, 2019.

Rendle, S., Krichene, W., Zhang, L., and Anderson, J. Neu-
ral collaborative filtering vs. matrix factorization revisited.
In Proceedings of the 14th ACM Conference on Recom-
mender Systems, pp. 240–248, 2020.

Saad, Y. Iterative methods for sparse linear systems. SIAM,
2003.

Sedhain, S., Menon, A. K., Sanner, S., and Xie, L. Autorec:
Autoencoders meet collaborative filtering. In Proceedings
of the 24th international conference on World Wide Web,
pp. 111–112, 2015.

Shaban, A., Cheng, C.-A., Hatch, N., and Boots, B. Trun-
cated back-propagation for bilevel optimization. In The
22nd International Conference on Artificial Intelligence
and Statistics, pp. 1723–1732. PMLR, 2019.

Shewchuk, J. R. et al. An introduction to the conjugate
gradient method without the agonizing pain, 1994.

Skilling, J. The eigenvalues of mega-dimensional matrices.
Maximum Entropy and Bayesian Methods: Cambridge,
England, 1988, pp. 455–466, 1989.

Sun, J., Li, H., Xu, Z., et al. Deep ADMM-net for com-
pressive sensing MRI. Advances in neural information
processing systems, 29, 2016.

11

http://probml.github.io/book2
http://probml.github.io/book2

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

Tipping, M. E. Sparse Bayesian learning and the relevance
vector machine. Journal of machine learning research, 1
(Jun):211–244, 2001.

Tolooshams, B. and Ba, D. E. Stable and interpretable
unrolled dictionary learning. Transactions on Machine
Learning Research, 2022.

Tolooshams, B., Song, A., Temereanca, S., and Ba, D. Con-
volutional dictionary learning based auto-encoders for
natural exponential-family distributions. In III, H. D. and
Singh, A. (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Pro-
ceedings of Machine Learning Research, pp. 9493–9503.
PMLR, 13–18 Jul 2020.

Ubaru, S., Chen, J., and Saad, Y. Fast estimation of tr(f(a))
via stochastic Lanczos quadrature. SIAM Journal on Ma-
trix Analysis and Applications, 38(4):1075–1099, 2017.

Wang, K., Pleiss, G., Gardner, J., Tyree, S., Weinberger,
K. Q., and Wilson, A. G. Exact Gaussian processes on
a million data points. Advances in Neural Information
Processing Systems, 32, 2019.

Wenger, J., Pleiss, G., Hennig, P., Cunningham, J., and
Gardner, J. Preconditioning for scalable Gaussian process
hyperparameter optimization. In International Confer-
ence on Machine Learning, pp. 23751–23780. PMLR,
2022.

Wiaux, Y., Jacques, L., Puy, G., Scaife, A. M., and Van-
dergheynst, P. Compressed sensing imaging techniques
for radio interferometry. Monthly Notices of the Royal
Astronomical Society, 395(3):1733–1742, 2009.

Wipf, D. P. and Rao, B. D. Sparse Bayesian learning for
basis selection. IEEE Transactions on Signal processing,
52(8):2153–2164, 2004.

Wu, D., Shang, M., Luo, X., and Wang, Z. An l 1-and-l
2-norm-oriented latent factor model for recommender
systems. IEEE Transactions on Neural Networks and
Learning Systems, 33(10):5775–5788, 2021.

Yee, C. C. and Atchadé, Y. F. On the sparse Bayesian
learning of linear models. Communications in Statistics-
Theory and Methods, 46(15):7672–7691, 2017.

12

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

A. Examples of LGMs
Factor Analysis This model sets νθ ← 0 and Γθ ← I to constant values. Given data, it learns the entries of Φθ,ηθ and
Ψθ as free parameters (Basilevsky, 2009).

Probabilistic PCA Probabilistic principal components analysis is a slight variation of factor analysis in which Ψθ = βI
has a single free parameter β that determines its constant diagonal values (?).

Sparse Bayesian Learning This model assumes that νθ ← 0 and ηθ ← 0. The matrix Φθ is a known and typically
overcomplete (i.e. D > M) dictionary. The free parameters are θ = {α, β}, where α ∈ RD determines the prior precision
Γθ := diag(α) and β ∈ R determines the likelihood precision Ψθ := βI. (Tipping, 2001; Wipf & Rao, 2004).

State-Space Model This is a popular time series model that generalizes other popular variants (e.g. auto-regressive
processes, moving average processes) (Durbin & Koopman, 2012). For a single time series n, it is typically written as:

z(n)
m = Az

(n)
m−1 +w(n)

m , w(n)
m ∼ N (0,Q), (29)

y(n)m = c⊤z(n)
m + v(n)m , v(n)m ∼ N (0, σ2).

At time step m, z(n)
m ∈ RS is a latent state vector and y

(n)
m ∈ R is the observed data point. We can write (29) in the form of

(1) by defining z(n) (with length D = S ·M) as the concatentation of all z(n)
m across m. The canonical parameters can then

be written as functions of the free parameters θ := {A, c,Q, σ2}. Note that multiple time series can share these parameters
in an LGM framework.

Bayesian Linear Regression Given a dataset of covariates and response variables (x1, y1), . . . , (xM , yM) where each
xm ∈ RD, Bayesian linear regression posits the model

ym = x⊤
mz + εm, (30)

where each regression weight zd ∼ N (0, 1/α) and each noise variable εm ∼ N (0, 1/β) for parameters α ∈ R, β ∈ R.
This is an LGM in which N = 1, νθ ← 0, and the rows of Φθ are comprised of x1, . . . ,xM . The free parameters θ are
{α, β} with Γθ := αI and Ψθ := βI (Bishop & Nasrabadi, 2006) (Section 9.3.4).

Neural Linear Model One modern instance of Bayesian linear regression is the neural linear model (NLM):

ym = fϕ(xm)⊤z + εm, (31)

where fϕ is a neural network featurizer with weights ϕ (?Ober & Rasmussen, 2019). Thus, different from traditional
Bayesian linear regression, the canonical parameter Φθ is now learned through ϕ. Therefore, the free parameteters are
{α, β,ϕ}. NLMs can learn very complicated, non-linear relationships (e.g. see Figure 1c in ? and Figure 1 in Ober &
Rasmussen (2019)). The LGM also covers multi-task versions of the NLM, in which we may have multiple target vectors
y(1), . . . ,y(N) for N > 1 (?).

B. Derivation of q-Function for the LGM (5)

Taking into account missing data with the data mask Ω(n), the model in (1) becomes:

z(n) ∼ N (νθ,Γ
−1
θ), (32)

ỹ(n)|z(n) ∼ N (Ω(n)(Φθz
(n) + ηθ),Ω

(n)Ψ−1
θ (Ω(n))⊤).

From the definition of q in (3), we have (dropping the index n for notational convenience)

q(θ1|θ2) := Ep(z|ỹ,Ω,θ2)[− log p(z, ỹ|Ω,θ1)]. (33)

For any θ ∈ Θ, the log-posterior can be written as

log p(z|ỹ,Ω,θ) = log p(z, ỹ|Ω,θ)− log p(ỹ|Ω,θ), (34)

13

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

where the second term is constant with respect to z. Expanding the first term using the probability density function for
multivariate Gaussians, we have

log p(z, ỹ|Ω,θ) = log p(ỹ|z,Ω,θ) + log p(z|θ) (35)

∼= −
1

2
(ỹ −ΩΦθz −Ωηθ)

⊤(ΩΨ−1
θ Ω⊤)−1(ỹ −ΩΦθz −Ωηθ) +

1

2
log det(ΩΨ−1

θ Ω⊤)−1

− 1

2
(z − νθ)

⊤Γθ(z − νθ) +
1

2
log detΓθ,

where ∼= denotes equality up to additive constants with respect to z and θ. Note that (ΩΨ−1
θ Ω⊤)−1 = ΩΨθΩ

⊤ because
Ψθ is a diagonal matrix. This leads to the simplification

log p(z, ỹ|Ω,θ) ∼= −
1

2
(ỹ −ΩΦθz −Ωηθ)

⊤ΩΨθΩ
⊤(ỹ −ΩΦθz −Ωηθ) +

1

2
log det(ΩΨθΩ

⊤) (36)

− 1

2
(z − νθ)

⊤Γθ(z − νθ) +
1

2
log detΓθ.

We can then combine terms based on whether they are quadratic, linear, or constant functions of z to obtain the following
simplified quadratic form:

log p(z, ỹ|Ω,θ) ∼= −
1

2
z⊤Aθz + b⊤θ z − cθ, (37)

where

Aθ := Γθ +Φ⊤
θ Ω

⊤ΩΨθΩ
⊤ΩΦθ, (38)

bθ := Γθνθ +Φ⊤
θ Ω

⊤ΩΨθΩ
⊤(ỹ −Ωηθ),

cθ :=
1

2
(ỹ −Ωηθ)

⊤ΩΨθΩ
⊤(ỹ −Ωηθ) +

1

2
ν⊤
θ Γθνθ −

1

2
log detΩΨθΩ

⊤ − 1

2
log detΓθ.

By Gaussian prior-Gaussian likelihood conjugacy in (1), we know that the posterior p(z|ỹ,Ω,θ) is also Gaussian with some
mean µθ and some covariance Σθ. From the derivations above, the log-pdf of this posterior (up to an additive constant) is
given by (37). By matching this log-pdf to that of a N (µθ,Σθ), we can conclude that Σθ = A−1

θ and µθ = A−1
θ bθ. In

conclusion, we have

q(θ1|θ2) = Ep(z|ỹ,Ω,θ2)[− log p(z, ỹ|Ω,θ1)] ∼= Ez∼N (µθ2
,Σθ2

)

[
1

2
z⊤Aθ1z − b⊤θ1

z + cθ1

]
(39)

=
1

2
µ⊤

θ Aθ′µθ − b⊤θ′µθ + cθ′ +
1

2
Tr(Aθ′Σθ).

C. Derivation of Network Gradient Limit (17)

We provide a short derivation, showing that the limit of the network gradient (17) is the desired Monte Carlo gradient (10).

g̃⟨I⟩(θ) :=
∂

∂θ

[
q⟨I⟩(θ|θ)− 1

K

K∑
k=1

δ⊤k σ
⟨I⟩
k,θ

]
(40)

= ∇1q
⟨I⟩(θ|θ)︸ ︷︷ ︸

ĝ⟨I⟩(θ) by (16)

+∇2q
⟨I⟩(θ|θ)− ∂

∂θ

[
1

K

K∑
k=1

δ⊤k σ
⟨I⟩
k,θ

]

= ĝ⟨I⟩(θ) +
∂µ

⟨I⟩
θ

∂θ
· ∂

∂µ
⟨I⟩
θ

[
1

2
(µ

⟨I⟩
θ)⊤Aθµ

⟨I⟩
θ − b⊤θ µ

⟨I⟩
θ

]
︸ ︷︷ ︸

converges to 0 as I → ∞

+
1

K

K∑
k=1

∂σ
⟨I⟩
k,θ

∂θ
· ∂

∂σ
⟨I⟩
k,θ

[
1

2
(σ

⟨I⟩
k,θ)

⊤Aθσ
⟨I⟩
k,θ − δ⊤k,θσ

⟨I⟩
k,θ

]
︸ ︷︷ ︸

converges to 0 as I → ∞

The indicated derivatives converge to 0 because limI→∞ µ
⟨I⟩
θ , limI→∞ σ

⟨I⟩
k,θ minimize the respective functions in brackets.

It follows that limI→∞ g̃⟨I⟩(θ) = limI→∞ ĝ⟨I⟩(θ) = g#(θ).

14

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

D. Examples of Iterative Linear Solvers
In this appendix, we provide a few examples of iterative linear solvers for the system Ax = b; see Saad (2003) for other
examples. The first example is gradient descent on the quadratic form 1

2x
⊤Ax− b⊤x, with step size parameter α ∈ R.

The next example is steepest descent, which learns the optimal step size α⟨i⟩ at each iteration i. Finally, we have conjugate
gradient, which enforces orthogonality in the residuals r⟨i⟩ and conjugacy (with respect to A) in the search directions d⟨i⟩.

Algorithm 2 GRADIENTDESCENT

1: x⟨0⟩ ← 0
2: for i = 1, 2, . . . , I do
3: r⟨i⟩ ← b−Ax⟨i⟩

4: x⟨i⟩ ← x⟨i−1⟩ + α · r⟨i⟩
5: end for

Algorithm 3 STEEPESTDESCENT

1: x⟨0⟩ ← 0
2: for i = 1, 2, . . . , I do
3: r⟨i⟩ ← b−Ax⟨i⟩

4: α⟨i⟩ ← ⟨r⟨i⟩, r⟨i⟩⟩
⟨r⟨i⟩,Ar⟨i⟩⟩

5: x⟨i⟩ ← x⟨i−1⟩ + α⟨i⟩ · r⟨i⟩
6: end for

Algorithm 4 CONJUGATEGRADIENT

1: x⟨0⟩ ← 0
2: r⟨0⟩ ← b−Ax⟨0⟩

3: d⟨0⟩ ← r⟨0⟩

4: for i = 1, 2, . . . , I do

5: α⟨i⟩ ← ⟨r⟨i−1⟩, r⟨i−1⟩⟩
⟨d⟨i−1⟩,Ad⟨i−1⟩⟩

6: x⟨i⟩ ← x⟨i−1⟩ + α⟨i⟩ · d⟨i−1⟩

7: r⟨i⟩ ← r⟨i−1⟩ + α⟨i⟩ ·Ad⟨i−1⟩

8: β⟨i⟩ ← ⟨r⟨i⟩, r⟨i⟩⟩
⟨r⟨i−1⟩, r⟨i−1⟩⟩

9: d⟨i⟩ ← r⟨i⟩ + β⟨i⟩ · d⟨i−1⟩

10: end for

E. Proofs for Section 5
E.1. Proposition 5.1

Proof. We will write h⋆ − h# as a short for h⋆(θ)− h#(θ). Recall from definitions that

h#
ℓ − h⋆ℓ =

1

N

N∑
n=1

g
#,(n)
ℓ − g

⋆,(n)
ℓ =

1

N

N∑
n=1

[∇1q
#,(n)(θ|θ)−∇1q

(n)(θ|θ)]ℓ (41)

where q is given by (5) and q# is given by (9). Observe that the only difference between these two objectives q, q# is the
trace term in q versus the Monte Carlo approximation in q#. It therefore follows that for each n,

g
#,(n)
ℓ − g

⋆,(n)
ℓ =

〈
∂

∂θℓ
A

(n)
θ ,

1

K

K∑
k=1

x
(n)
k,θ(x

(n)
k,θ)

⊤ −Σ
(n)
θ

〉
, (42)

15

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

where for two matrices Q,R we define ⟨Q,R⟩ := Tr(QR⊤). Recall that for all k, each x
(n)
k,θ ∼ N (0,Σ

(n)
θ). Thus, we can

equivalently write x
(n)
k,θ = (Σ

(n)
θ)1/2ϵ

(n)
k , where each ϵ

(n)
k ∼ N (0, I). It then follows that

g
#,(n)
ℓ − g

⋆,(n)
ℓ =

〈
∂

∂θℓ
A

(n)
θ , (Σ

(n)
θ)1/2

(
1

K

K∑
k=1

ϵ
(n)
k (ϵ

(n)
k)⊤ − I

)
(Σ

(n)
θ)1/2

〉
(43)

=

〈
(Σ

(n)
θ)1/2

(
∂

∂θℓ
A

(n)
θ

)
(Σ

(n)
θ)1/2︸ ︷︷ ︸

M(n,ℓ)

,
1

K

K∑
k=1

ϵ
(n)
k (ϵ

(n)
k)⊤ − I

〉
. (44)

Our proof strategy is now similar to that of the Hanson-Wright inequality (Theorem 6.2.1 in ?).

Let M (n,ℓ)
d,d denote the d-th diagonal element of the D ×D matrix M(n,ℓ) and let M̃(n,ℓ) denote the matrix M(n,ℓ) with its

diagonal set to zero. Then,

h#
ℓ − h⋆ℓ =

1

NK

N∑
n=1

K∑
k=1

D∑
d=1

M
(n,ℓ)
d,d

(
(ϵ

(n)
k,d)

2 − 1
)
+

1

NK

N∑
n=1

K∑
k=1

(ϵ
(n)
k)⊤M̃(n,ℓ)ϵ

(n)
k . (45)

We then write

Pr
(∣∣∣NK · (h#

ℓ − h⋆ℓ)
∣∣∣ > t

)
≤ Pr

(∣∣∣∣∣
N∑
n=1

K∑
k=1

D∑
d=1

M
(n,ℓ)
d,d

(
(ϵ

(n)
k,d)

2 − 1
)∣∣∣∣∣ > t

2

)

+Pr

(∣∣∣∣∣
N∑
n=1

K∑
k=1

(ϵ
(n)
k)⊤M̃(n,ℓ)ϵ

(n)
k

∣∣∣∣∣ > t

2

)
, (46)

and bound each of these two terms separately.

(I) Diagonal Elements. We recall the definition of sub-exponential norm for a random variable X ,

∥X∥ψ1
:= inf

{
t > 0 : E

(
exp
|X|
t

)
≤ 2

}
. (47)

For ϵ(n)k,d ∼ N (0, 1), we have∥∥∥M (n,ℓ)
d,d

(
(ϵ

(n)
k,d)

2 − 1
)∥∥∥

ψ1

≤
∣∣∣M (n,ℓ)

d,d

∣∣∣ ∥∥∥(ϵ(n)k,d)
2 − 1

∥∥∥
ψ1

≤ c0|M (n,ℓ)
d,d |, (48)

for some absolute constant c0. Then, by Bernstein’s inequality, we have for all t > 0,

Pr

(∣∣∣∣∣
N∑
n=1

K∑
k=1

D∑
d=1

M
(n,ℓ)
d,d

(
(ϵ

(n)
k,d)

2 − 1
)∣∣∣∣∣ > t

2

)
≤ 2 exp

(
−c1 min

(
t2

K
∑
n

∑D
d=1 |M

(n,ℓ)
d,d |2

,
t

maxnmaxd |M (n,ℓ)
d,d |

))

≤ 2 exp

(
−c1 min

(
t2

K
∑
n∥M(n,ℓ)∥2F

,
t

maxn∥M(n,ℓ)∥2

))
, (49)

for some absolute constant c1, and where ∥·∥F denotes Frobenius norm and ∥·∥2 denotes spectral norm.

(II) Off-diagonal Elements. We can bound one side of the off-diagonal term in (46) as follows: For all λ ∈ R and by
Markov’s inequality, we have

Pr

(
N∑
n=1

K∑
k=1

(ϵ
(n)
k)⊤M̃(n,ℓ)ϵ

(n)
k >

t

2

)
≤
(
exp
−λt
2

) N∏
n=1

K∏
k=1

E
[
exp

(
λ · (ϵ(n)k)⊤M̃(n,ℓ)ϵ

(n)
k

)]
. (50)

We now apply decoupling (Theorem 6.1.1 in ?) to have

E
[
exp

(
λ · (ϵ(n)k)⊤M̃(n,ℓ)ϵ

(n)
k

)]
≤ E

[
exp

(
4λ · (ϵ(n)k)⊤M̃(n,ℓ)ϵ̃

(n)
k

)]
, (51)

16

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

where {ϵ̃(n)k } is an independent copy of {ϵ(n)k }. Then, by a known bound on the moment generating function of Gaussian
chaos (Lemma 6.2.2 in ?), we can find an absolute constant c2, such that for λmaxn∥M̃(n,ℓ)∥2 ≤ c2,

E
[
exp

(
4λ · (ϵ(n)k)⊤M̃(n,ℓ)ϵ̃

(n)
k

)]
≤ exp

(
c2λ

2∥M̃(n,ℓ)∥2F
)
. (52)

Then,

Pr

(
N∑
n=1

K∑
k=1

(ϵ
(n)
k)⊤M̃(n,ℓ)ϵ

(n)
k >

t

2

)
≤ inf

λ>0,

λmaxn∥M̃(n,ℓ)∥2≤c2

exp

(
−λt

2
+ c2Kλ2

N∑
n=1

∥M̃(n,ℓ)∥2F

)
. (53)

We can then optimize over λ to get

Pr

(
N∑
n=1

K∑
k=1

(ϵ
(n)
k)⊤M̃(n,ℓ)ϵ

(n)
k >

t

2

)
≤ exp

(
−c2 min

(
t2

K
∑N
n=1∥M(n,ℓ)∥2F

,
t

maxn∥M(n,ℓ)∥2

))
. (54)

Bounding both sides then yields

Pr

(∣∣∣∣∣
N∑
n=1

K∑
k=1

(ϵ
(n)
k,d)

⊤M̃(n,ℓ)ϵ
(n)
k,d

∣∣∣∣∣ > t

2

)
≤ 2 exp

(
−c2 min

(
t2

K
∑N
n=1∥M(n,ℓ)∥2F

,
t

maxn∥M(n,ℓ)∥2

))
. (55)

Returning to our original objective in (46), we can take C := min{c1, c2} and conclude

Pr
(∣∣∣NK · (h#

ℓ − h⋆ℓ)
∣∣∣ > t

)
≤ 4 exp

(
−Cmin

(
t2

K
∑N
n=1∥M(n,ℓ)∥2F

,
t

maxn∥M(n,ℓ)∥2

))
. (56)

Now, if we choose t =
√
t0(K/C)

∑
n∥M(n,ℓ)∥2F for some t0 > 0, we have

Pr
(∣∣∣NK · (h#

ℓ − h⋆ℓ)
∣∣∣ > t

)
≤ 4 exp

(
−Cmin

(
t0
C
,

√ ∑
n∥M(n,ℓ)∥2F

maxn∥M(n,ℓ)∥22
t0K

C

))
≤ 4e−t0 , (57)

as long as

t0
C
≤

√ ∑
n∥M(n,ℓ)∥2F

maxn∥M(n,ℓ)∥22
t0K

C
=⇒ K ≥ t0

C

(
maxn∥M(n,ℓ)∥22∑

n∥M(n,ℓ)∥2F

)
. (58)

Since for all ℓ,
∑
n∥M(n,ℓ)∥2F ≤ Nξ2, we have

for all ℓ : Pr

(∣∣∣NK · (h#
ℓ − h⋆ℓ)

∣∣∣ > ξ

√
t0NK

C

)
≤ 4 exp(−t0), (59)

as long as

K ≥ t0
C

max
ℓ

(
maxn∥M(n,ℓ)∥22∑

n∥M(n,ℓ)∥2F

)
.

By union bound and taking t0 = log(4NL), we can conclude that for some absolute constant C,

Pr

(
∥h⋆ − h#∥∞ > ξ

√
log(4NL)

CNK

)
≤ 4Le−t0 ≤ 1

N
,

under the condition

K ≥ log(4NL)

C
max
ℓ

(
maxn∥M(n,ℓ)∥22∑

n∥M(n,ℓ)∥2F

)
. (60)

17

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

Clearly, maxn∥M(n,ℓ)∥2
2∑

n∥M(n,ℓ)∥2
F
≤ 1. And if we can find κ ≥ 0 such that for all ℓ, n, n′,

∥M(n,ℓ)∥22
∥M(n′,ℓ)∥22

≥ κ,

then ∑
n∥M(n,ℓ)∥2F

maxn∥M(n,ℓ)∥22
=
∑
n

∥M(n,ℓ)∥2F
∥M(n,ℓ)∥22

∥M(n,ℓ)∥22
maxn∥M(n,ℓ)∥22

≥ κN.

Hence the condition in (60) is implied by the condition

K ≥ log(4NL)

Cmax(1, Nκ)
.

E.2. Proposition 5.2

Proof. First, observe that

∥ĥ
⟨I⟩
− h#∥2 ≤

1

N

N∑
n=1

∥ĝ⟨I⟩,(n) − g#,(n)∥2, ∥h̃
⟨I⟩
− h#∥2 ≤

1

N

N∑
n=1

∥g̃⟨I⟩,(n) − g#,(n)∥2. (61)

Thus, if we show that for each n,

∥ĝ⟨I⟩,(n) − g#,(n)∥2 = O(ρI), ∥g̃⟨I⟩,(n) − g#,(n)∥2 = O(I · ρ2I), (62)

then the same convergence rates also hold for the population-level quantities ∥ĥ
⟨I⟩
− h#∥2 and ∥h̃

⟨I⟩
− h#∥2.

The rest of the proof is dedicated to proving (62). At a high level, we will reinterpret probabilistic unrolling as solving a
bilevel optimization problem. We will then leverage new results that we prove for general bilevel optimization (i.e. Lemmas
5.3 and 5.4) to draw conclusions about the gradients’ optimization error.

We define the bivariate function r : Θ× R(K+1)×D → R,

r(θ, {µ,σ1, . . . ,σK}) :=
1

2
µ⊤Aθµ− b⊤θ µ+

1

2K

K∑
k=1

σ⊤
kAθσk + cθ. (63)

We now re-express the gradients g#, ĝ⟨I⟩, g̃⟨I⟩ in terms of r to analyze the relationships between them: For example, the
Monte Carlo EM gradient (10) can be written as

g#(θ) = ∇1r(θ, {µθ,σ1,θ, . . . ,σK,θ}). (64)

Here, ∇1r denotes the gradient of r with respect to its first argument θ and

µθ := A−1
θ bθ = argmin

µ

[
s0(θ,µ) :=

1
2µ

⊤Aθµ− b⊤θ µ
]
, (65)

σk,θ := A−1
θ uθ = argmin

σk

[
sk(θ,σk) :=

1
2σ

⊤
kAθσk − δ⊤k σk

]
,∀k,

are minimizers of inner problems {sk}Kk=0 parameterized by θ. Linear solvers, unrolled for I iterations, approximate the
minimizers with (µ

⟨I⟩
θ ,σ

⟨I⟩
k,θ). Using r and {sk}Kk=0, we can write the output (16) and network (17) gradients as

ĝ⟨I⟩(θ) = ∇1r(θ, {µ⟨I⟩
θ ,σ

⟨I⟩
1,θ, . . . ,σ

⟨I⟩
K,θ}), (66)

g̃⟨I⟩(θ) = ∇1r(θ, {µ⟨I⟩
θ ,σ

⟨I⟩
1,θ, . . . ,σ

⟨I⟩
K,θ}) +

∂µ
⟨I⟩
θ

∂θ
· ∇2s0(θ,µ

⟨I⟩
θ) +

1

K

K∑
k=1

∂σ
⟨I⟩
k,θ

∂θ
· ∇2sk(θ,σ

⟨I⟩
k,θ). (67)

18

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

By Lemma 5.3, the output gradient (also called the “analytic gradient” by Ablin et al. (2020)) and the network gradient (also
called the “automatic gradient” by Ablin et al. (2020)3) converge with rates

∥g# − ĝ⟨I⟩∥2 = O(∥β# − β⟨I⟩∥2), ∥g# − g̃⟨I⟩∥2 = O(∥J ⟨I⟩ − J#∥2∥β⟨I⟩ − β#∥2). (68)

where

β# :=

µθ

σ1,θ

...
σK,θ

 , β⟨I⟩ :=

µ

⟨I⟩
θ

σ
⟨I⟩
1,θ
...

σ
⟨I⟩
K,θ

 , J# :=
∂β#

∂θ
, J ⟨I⟩ :=

∂β⟨I⟩

∂θ
. (69)

Lemma 5.4 shows that for gradient descent (GD) and steepest descent (SD) as the linear solver,

∥β⟨I⟩ − β#∥ = O(ρI), (70)

∥J ⟨I⟩ − J#∥ = O(I · ∥β⟨I⟩ − β#∥) = O(I · ρI), (71)

where ρ < 1 is the solver’s convergence rate. These rates are known as (Saad, 2003)

ρGD :=
ι− 1

ι
, ρSD :=

ι− 1

ι+ 1
, (72)

where ι is the condition number of Aθ.

E.3. Lemma 5.3

Proof. We denote the Lipschitz constant of the gradients ∇1r(θ,β) and ∇2s(θ,β) with respect to β by Lr1 and Ls2,
respectively. Similarly, we let the second derivatives ∇2

22s(θ,β) and ∇2
12r(θ,β) be Ls22-Lipschitz and Lr12-Lipschitz with

respect to β, respectively (note that for a function f(a1,a2) of two variables a1 and a2, the notation ∇2
ijf denotes the

second derivative of f with respect to ai and aj for i, j ∈ {1, 2}).

Recall the target gradient is

g# := ∇1r(θ,β
#). (73)

The analytic gradient is defined as
ĝ⟨I⟩ := ∇1r(θ,β

⟨I⟩). (74)

By Lipschitz continuity, the automatic gradient satisfies

∥g# − ĝ⟨I⟩∥2 = ∥∇1r(θ,β
#)−∇1r(θ,β

⟨I⟩)∥2 ≤ Lr1∥β
− β⟨I⟩∥2. (75)

Hence, the error of the analytic gradient is on the order of the approximation error of the optimizer, i.e.

∥g# − ĝ⟨I⟩∥2 = O(∥β# − β⟨I⟩∥2). (76)

Next, we bound the error of the automatic gradient,

g̃⟨I⟩ := ∇1r(θ,β
⟨I⟩) + J ⟨I⟩ · ∇2s(θ,β

⟨I⟩), (77)

where J ⟨I⟩ := ∂β⟨I⟩

∂θ , which is assumed to be bounded ∥J ⟨I⟩∥2 ≤ JM for some constant JM .

We begin by establishing some identities that will be useful for constructing our bound. From the inner problem, we have

∇2s(θ,β
#) = 0. (78)

3Note that the analytic and automatic gradients we define here are technically more general than those defined by Ablin et al. (2020),
since Ablin et al. (2020) assume that the outer and inner optimization problems are the same (i.e. s = r).

19

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

In addition, by the implicit function theorem, the following also holds,

J# :=
∂β#

∂θ
= −∇2

12s(θ,β
#)
[
∇2

22s(θ,β
#)
]−1

=⇒ J# · ∇2
22s(θ,β

#) +∇2
12s(θ,β

#) = 0. (79)

We have

g# − g̃⟨I⟩ = ∇1r(θ,β
#)−∇1r(θ,β

⟨I⟩)− J ⟨I⟩ · ∇2s(θ,β
⟨I⟩) (80)

+ (∇2
12r(θ,β

#)−∇2
12r(θ,β

#))(β# − β⟨I⟩) = 0

+ (J ⟨I⟩ · ∇2
22s(θ,β

#)− J ⟨I⟩ · ∇2
22s(θ,β

#))(β# − β⟨I⟩) = 0

+ J ⟨I⟩ · ∇2s(θ,β
#) = 0 by (78)

− (J# · ∇2
22s(θ,β

#) +∇2
12s(θ,β

#))(β# − β⟨I⟩) = 0 by (79)

Rearranging terms, we have

g# − g̃⟨I⟩ = (∇1r(θ,β
#)−∇1r(θ,β

⟨I⟩)−∇2
12r(θ,β

#)(β# − β⟨I⟩)) (Term A)

+ J ⟨I⟩
(
∇2s(θ,β

#)−∇2s(θ,β
⟨I⟩)−∇2

22s(θ,β
#)(β# − β⟨I⟩)

)
(Term B)

+
(
J ⟨I⟩∇2

22s(θ,β
#) +∇2

12r(θ,β
#)− J#∇2

22s(θ,β
#)−∇2

12s(θ,β
#)
)
(β# − β⟨I⟩) (Term C)

We bound each term below. From Lipschitz-continuity of the second derivative∇12r, we have the quadratic bound

∥(Term A)∥2 = ∥∇1r(θ,β
#)−∇1r(θ,β

⟨I⟩)−∇2
12r(θ,β

#)(β# − β⟨I⟩)∥2 ≤
Lr12
2
∥β# − β⟨I⟩∥22. (81)

Similarly, from Lipschitz-continuity of the second derivative∇22s, we have another quadratic bound

∥(Term B)∥2 = ∥J ⟨I⟩
(
∇2s(θ,β

#)−∇2s(θ,β
⟨I⟩)−∇2

22s(θ,β
#)(β# − β⟨I⟩)

)
∥2 ≤ JM ·

Ls22
2
∥β# − β⟨I⟩∥22. (82)

Finally,

∥(Term C)∥2 = ∥
(
J ⟨I⟩∇2

22s(θ,β
#) +∇2

12r(θ,β
#)− J#∇2

22s(θ,β
#)−∇2

12s(θ,β
#)
)
(β# − β⟨I⟩)∥2

= ∥((J ⟨I⟩ − J#)∇2
22s(θ,β

#) + (∇2
12r(θ,β

#)−∇2
12s(θ,β

#)))(β# − β⟨I⟩)∥2
≤ Ls2∥J

⟨I⟩ − J#∥2∥β# − β⟨I⟩∥2 + ∥∇2
12r(θ,β

#)−∇2
12s(θ,β

#)∥2∥β# − β⟨I⟩∥2

(83)

Hence, under the sufficient condition of s and r sharing the same second order derivatives, i.e. ∇2
12r(θ,β

#) = ∇2
12s(θ,β

#),
the automatic gradient converges as

∥g# − g̃⟨I⟩∥2 = O(∥J ⟨I⟩ − J#∥2∥β⟨I⟩ − β#∥2). (84)

E.4. Lemma 5.4

This section proves the convergence rate of the Jacobian J ⟨I⟩ to J# for gradient descent and steepest descent. See Appendix
D for a summary of these algorithms.

E.4.1. SOLVER CONVERGENCE

For completeness, we begin by proving the convergence rate of the linear solver (i.e. how fast β⟨I⟩ converges to β⟨#⟩).

20

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

Gradient Descent For gradient descent, we have

β⟨I+1⟩ = β⟨I⟩ − α(Aθβ
⟨I⟩ − uθ)

= β⟨I⟩ − α(Aθβ
⟨I⟩ −Aθβ

#)

β⟨I+1⟩ − β# = (I− αAθ)(β
⟨I⟩ − β#)

∥β⟨I+1⟩ − β#∥ = ∥(I− αAθ)(β
⟨I⟩ − β#)∥2

≤ ∥I− αAθ∥2∥β⟨I⟩ − β#∥2
≤ ρGD∥β⟨I⟩ − β#∥2,

(85)

where α ∈ R is the constant step size of gradient descent. To ensure convergence, we require α ≤ 1
λmax(Aθ)

, where λmax(Aθ)

is the largest eigenvalue of matrix Aθ. Assuming α = 1
λmax(Aθ)

, the spectral norm ρGD (or largest eigenvalue) of the
symmetric positive definite matrix I− αAθ is

ρGD = 1− λmin(Aθ)

λmax(Aθ)
=

ι− 1

ι
, (86)

where ι := λmax(Aθ)
λmin(Aθ)

is defined as the condition number of Aθ. This leads to the following rate of convergence:

∥β⟨I⟩ − β#∥2 = O(ρIGD). (87)

Steepest Descent For steepest descent, let {vj}j be the set of eigenvectors of Aθ, with ∥vj∥2 = 1 and corresponding
eigenvalues of λ1 > λ2 > · · · > λp. We define the error at iteration I by e⟨I⟩ := β⟨I⟩ − β#. We express this error as a
linear combination of the eigenvectors,

e⟨I⟩ =
∑
j

ζ
⟨I⟩
j vj (88)

for some coefficients {ζ⟨I⟩
j }Dj=1. Now, we define the following residual

r⟨I⟩ = uθ −Aθβ
⟨I⟩ = −Aθe

⟨I⟩ = −
∑
j

ζ
⟨I⟩
j λjvj . (89)

This gives us ∥r⟨I⟩∥22 =
∑
j ζ

⟨I⟩2
j λ2

j and r⟨I⟩⊤Aθr
⟨I⟩ =

∑
j ζ

⟨I⟩2
j λ3

j . Hence, we can express the optimal step-size α⟨I⟩ as

α⟨I⟩ =

∑
j ζ

⟨I⟩2
j λ2

j∑
j ζ

⟨I⟩2
j λ3

j

. (90)

Now, we show that the updates of steepest descent are contractive,

∥β⟨I+1⟩ − β#∥2 = ∥(I− α⟨I⟩Aθ)(β
⟨I⟩ − β#)∥2

= ∥(I−
∑
j ζ

⟨I⟩2
j λ2

j∑
j ζ

⟨I⟩2
j λ3

j

Aθ)
∑
b

ζ
⟨I⟩
b vb∥2

= ∥
∑
b

(1−
∑
j ζ

⟨I⟩2
j λ2

j∑
j ζ

⟨I⟩2
j λ3

j

λb)ζ
⟨I⟩
b vb∥2

= ∥
∑
b

(1−
∑
j ζ

⟨I⟩2
j λ2

j∑
j ζ

⟨I⟩2
j λ3

j

λb)ζ
⟨I⟩
b vb∥2

= ω⟨I⟩∥β⟨I⟩ − β#∥2,

(91)

where

ω⟨I⟩ =

∥
∑
b(1−

∑
j ζ

⟨I⟩2
j λ2

j∑
j ζ

⟨I⟩2
j λ3

j

λb)ζ
⟨I⟩
b vb∥2

∥
∑
a ζ

⟨I⟩
a va∥2

. (92)

21

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

We are now left to find an upper bound on ω⟨I⟩ that goes to zero as I increases. We derive results for D = 2. The condition

number of Aθ is ι := λ1

λ2
> 1. We denote τ ⟨I⟩ :==

ζ
⟨I⟩
2

ζ
⟨I⟩
1

. We have

ω⟨I⟩ =

∥
∑
b(1−

∑
j ζ

⟨I⟩2
j λ2

j∑
j ζ

⟨I⟩2
j λ3

j

λb)ζ
⟨I⟩
b vb∥2

∥
∑
a ζ

⟨I⟩
a va∥2

=
∥
∑
b(1−

ζ
⟨I⟩2
1 λ2

1+ζ
⟨I⟩2
2 λ2

2

ζ
⟨I⟩2
1 λ3

1+ζ
⟨I⟩2
2 λ3

2

λb)ζ
⟨I⟩
b vb∥2

∥ζ⟨I⟩1 v1 + ζ
⟨I⟩
2 v2∥2

=
∥
∑
b(1−

ι2+τ⟨I⟩2

λ2(ι3+τ⟨I⟩2)
λb)ζ

⟨I⟩
b vb∥2

∥ζ⟨I⟩1 v1 + ζ
⟨I⟩
2 v2∥2

=
∥(1− ι2+τ⟨I⟩2

λ2(ι3+τ⟨I⟩2)
λ1)ζ

⟨I⟩
1 v1 + (1− ι2+τ⟨I⟩2

λ2(ι3+τ⟨I⟩2)
λ2)ζ

⟨I⟩
2 v2∥2

∥ζ⟨I⟩1 v1 + ζ
⟨I⟩
2 v2∥2

=
∥(ζ⟨I⟩1 v1 + ζ

⟨I⟩
2 v2)− (ι ι2+τ⟨I⟩2

(ι3+τ⟨I⟩2)
)ζ

⟨I⟩
1 v1 − (ι2+τ⟨I⟩2

(ι3+τ⟨I⟩2)
)ζ

⟨I⟩
2 v2∥2

∥ζ⟨I⟩1 v1 + ζi2v2∥2

=
∥(ζ⟨I⟩1 v1 + ζ

⟨I⟩
2 v2)− ι2+τ⟨I⟩2

(ι3+τ⟨I⟩2)
(ιζ

⟨I⟩
1 v1 + ζ

⟨I⟩
2 v2)∥2

∥ζ⟨I⟩1 v1 + ζ
⟨I⟩
2 v2∥2

=
∥(v1 + τ ⟨I⟩v2)− ι2+τ⟨I⟩2

(ι3+τ⟨I⟩2)
(ιv1 + τ ⟨I⟩v2)∥2

∥v1 + τ ⟨I⟩v2∥2
.

(93)

The worst convergence (i.e. an upper bound) is achieved when ι = τ ⟨I⟩. Hence, we write the upper bound on ω⟨I⟩ as
follows:

ω⟨I⟩ =
∥(v1 + τ ⟨I⟩v2)− ι2+τ⟨I⟩2

(ι3+τ⟨I⟩2)
(ιv1 + τ ⟨I⟩v2)∥2

∥v1 + τ ⟨I⟩v2∥2

≤
∥(v1 + ιv2)− ι2+ι2

(ι3+ι2) (ιv1 + ιv2)∥2
∥v1 + ιv2∥2

=
∥(v1 + ιv2)− 2ι2

ι2(1+ι) (ιv1 + ιv2)∥2
∥v1 + ιv2∥2

=
∥(v1 + ιv2)− 2ι

1+ι (v1 + v2)∥2
∥v1 + ιv2∥2

=
∥ 1−ιι+1v1 +

ι(ι−1)
ι+1 v2∥2

∥v1 + ιv2∥2

=
ι−1
ι+1∥v1 + ιv2∥2
∥v1 + ιv2∥2

=
ι− 1

ι+ 1
.

(94)

Hence,

∥β⟨I+1⟩ − β#∥2 ≤
(
ι− 1

ι+ 1

)
∥β⟨I⟩ − β#∥2. (95)

We denote ρSD := ι−1
ι+1 (which is a faster rate than ρGD), and write

∥β⟨I⟩ − β#∥2 = O(ρISD). (96)

This bound also holds for D > 2; the proof steps are similar (e.g. see Section 9.2 of Shewchuk et al. (1994)).

22

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

E.4.2. JACOBIAN CONVERGENCE

We now analyze the convergence rate of the Jacobian. Convergence studies in this context date back to the seminal work of
?. We drop the subscript θ when referring to (j, k)-entry of Aθ for ease of notation. Given matrix A, we have

∂λj = v⊤
j ∂Aθvj (97)

∂vj = (λjI−Aθ)
†∂Aθvj (98)

∂Aθ

∂Ajk
= Hjk, (99)

where † denotes pseudo inverse and H is a zero matrix except at the (j, k)-entry, which is 1. The above holds when the
eigenvalues and vectors are distinct. We denote the Jacobian error by B⟨I⟩ := J ⟨I⟩ − J# = ∂β⟨I⟩

∂θ − ∂β#

∂θ . Given the
expression β⟨I⟩ − β# =

∑
b ζ

⟨I⟩
b vb, we first focus on writing the Jacobian error with respect to Ajk, denoted by B

⟨I⟩
Ajk

=

∂e⟨I⟩

∂Ajk
. Then, we use this Jacobian error to find the bound on the Jacobian with respect to θ as B⟨I⟩ =

∑
jk

∂Ajk

∂θ
∂e⟨I⟩

∂Ajk
.

Gradient Descent For gradient descent, we start with the recursion below,

β⟨I+1⟩ − β# = (I− αAθ)(β
⟨I⟩ − β#). (100)

Then, we take the derivative with respect to Ajk,

B
⟨I+1⟩
Ajk

= (I− αAθ)B
⟨I⟩
Ajk

+
∂(I− αAθ)

∂Ajk
e⟨I⟩

= (I− αAθ)B
⟨I⟩
Ajk
− αHjke⟨I⟩.

(101)

We use the eigendecomposition of Aθ = VΣV⊤ (i.e. V is the eigenvectors of Aθ, and Σ is a diagonal matrix of A
eigenvalues.This leads to the bound

∥B⟨I+1⟩
Ajk

∥2 ≤ ∥I− αAθ∥2∥B⟨I⟩
Ajk
∥2 + ∥αHjke⟨I⟩∥2

≤ ρGD∥B⟨I⟩
Ajk
∥2 + ∥αHjk∥2∥e⟨I⟩∥2.

(102)

Unrolling the recursion gives us
∥B⟨I⟩

Ajk
∥2 = O(IρIGD). (103)

Given B⟨I⟩ =
∑
jk

∂Ajk

∂θ B
⟨I⟩
Ajk

, for gradient descent, we have

∥B⟨I⟩∥2 = O(IρIGD). (104)

Steepest Descent For steepest descent, we analyze Jacobian convergence under two different scenarios: (a) the gradient
with respect to θ is not propagated through the adaptive step size α⟨I⟩, and (b) the gradient is propagated through α⟨I⟩ (i.e.
a more sophisticated scenario). In both of these scenarios, we show that the Jacobian converges at the same asymptotic rate.
We express the Jacobian error as

B
⟨I⟩
Ajk

=
∑
b

ζ
⟨I⟩
b

∂vb
∂Ajk

=
∑
b

ζ
⟨I⟩
b (λbI −Aθ)

†Hjkvb

=
∑
b

ζ
⟨I⟩
b (λbI −VΣV⊤)†Hjkvb

=
∑
b

ζ
⟨I⟩
b (VΛbV

⊤)Hjkvb

=
∑
b

∑
d

ζ
⟨I⟩
b (qbdvjdvbk)vd,

(105)

23

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

where Λb is a diagonal matrix with qbd :=
1

λb−λd
is its d-th diagonal entry, and 0 on b-th diagonal entry. We substitute this

expression into the Jacobian recursion,

B
⟨I+1⟩
∂Ajk

= (I− α⟨I⟩Aθ)B
⟨I⟩
Ajk

+
∂(I− α⟨I⟩Aθ)

∂Ajk
e⟨I⟩. (106)

Scenario (a).
B

⟨I+1⟩
Ajk

= (I− α⟨I⟩Aθ)B
⟨I⟩
Ajk
− α⟨I⟩Hjke⟨I⟩

= (I− α⟨I⟩Aθ)
∑
b

∑
d

ζ
⟨I⟩
b (qbdvjdvbk)vd − α⟨I⟩Hjke⟨I⟩

=
∑
b

∑
d

ζ
⟨I⟩
b (qbdvjdvbk)(I− α⟨I⟩Aθ)vd − α⟨I⟩Hjke⟨I⟩

=
∑
b

∑
d

ζ
⟨I⟩
b (qbdvjdvbk)(1− α⟨I⟩λd)vd − α⟨I⟩Hjke⟨I⟩

=
∑
b

∑
d

ζ
⟨I⟩
b (qbdvjdvbk)(1−

∑
o ζ

⟨I⟩2
o λ2

o∑
o ζ

⟨I⟩2
o λ3

o

λd)vd − α⟨I⟩Hjke⟨I⟩.

(107)

Similar to the analysis for the solver error, we consider the case when D = 2. We have

B
⟨I+1⟩
Ajk

=
∑
b

∑
d

ζ
⟨I⟩
b (qbdvjdvbk)vd(1−

∑
o ζ

⟨I⟩2
o λ2

o∑
o ζ

⟨I⟩2
o λ3

o

λd)− α⟨I⟩Hjke⟨I⟩

=
∑
b

∑
d

ζ
⟨I⟩
b (qbdvjdvbk)vd(1−

∑
o ζ

⟨I⟩2
o λ2

o∑
o ζ

⟨I⟩2
o λ3

o

λd)− α⟨I⟩Hjke⟨I⟩

=
∑
b

(
ζ
⟨I⟩
b (qb1vj1vbk)v1(1−

ζ
⟨I⟩2
1 λ2

1 + ζ
⟨I⟩2
2 λ2

2

ζ
⟨I⟩2
1 λ3

1 + ζ
⟨I⟩2
2 λ3

2

λ1) + ζ
⟨I⟩
b (qb2vj2vbk)v2(1−

ζ
⟨I⟩2
1 λ2

1 + ζ
⟨I⟩2
2 λ2

2

ζ
⟨I⟩2
1 λ3

1 + ζ
⟨I⟩2
2 λ3

2

λ2)

)
− α⟨I⟩Hjke⟨I⟩

=
∑
b

(
ζ
⟨I⟩
b (qb1vj1vbk)v1(1−

ι2 + τ ⟨I⟩2

λ2(ι3 + τ ⟨I⟩2)
λ1) + ζ

⟨I⟩
b (qb2vj2vbk)v2(1−

ι2 + τ ⟨I⟩2

λ2(ι3 + τ ⟨I⟩2)
λ2)

)
− α⟨I⟩Hjke⟨I⟩

=
∑
b

(
ζ
⟨I⟩
b (qb1vj1vbk)v1(1−

ι2 + τ ⟨I⟩2

ι3 + τ ⟨I⟩2
ι) + ζ

⟨I⟩
b (qb2vj2vbk)v2(1−

ι2 + τ ⟨I⟩2

ι3 + τ ⟨I⟩2
)

)
− α⟨I⟩Hjke⟨I⟩.

(108)
Now, for the upper bound, we set ι = τ ⟨I⟩

∥B⟨I+1⟩
Ajk

∥2 = ∥
∑
b

(
ζ
⟨I⟩
b (qb1vj1vbk)v1(1−

ι2 + τ ⟨I⟩2

ι3 + τ ⟨I⟩2
ι) + ζ

⟨I⟩
b (qb2vj2vbk)v2(1−

ι2 + τ ⟨I⟩2

ι3 + τ ⟨I⟩2
)

)
− α⟨I⟩Hjke⟨I⟩∥2

≤ ∥
∑
b

(
ζ
⟨I⟩
b (qb1vj1vbk)v1(1−

ι2 + τ ⟨I⟩2

ι3 + τ ⟨I⟩2
ι) + ζ

⟨I⟩
b (qb2vj2vbk)v2(1−

ι2 + τ ⟨I⟩2

ι3 + τ2i
)

)
∥2 + ∥α⟨I⟩Hjke⟨I⟩∥2

≤ ∥
∑
b

(
ζ
⟨I⟩
b (qb1vj1vbk)v1(1−

2

1 + ι
ι) + ζ

⟨I⟩
b (qb2vj2vbk)v2(1−

2

1 + ι
)

)
∥2 + ∥α⟨I⟩Hjke⟨I⟩∥2

≤ ∥
∑
b

(
ζ
⟨I⟩
b (qb1vj1vbk)v1(

1− ι

ι+ 1
) + ζ

⟨I⟩
b (qb2vj2vbk)v2(

ι− 1

ι+ 1
)

)
∥2 + ∥αiHjke⟨I⟩∥2

= ∥ ι− 1

ι+ 1

∑
b

(
ζ
⟨I⟩
b (qb1vj1vbk)v1 + ζ

⟨I⟩
b (qb2vj2vbk)v2

)
∥2 + ∥α⟨I⟩Hjke⟨I⟩∥2

=
ι− 1

ι+ 1
∥B⟨I⟩

Ajk
∥2 + ∥α⟨I⟩Hjke⟨I⟩∥2.

(109)
Unrolling the recursion, we have

∥B⟨I⟩
Ajk
∥ = O(IρISD). (110)

24

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

Hence,
∥B⟨I⟩∥2 = O(IρISD). (111)

Scenario (b). In scenario (a), we have (I−α⟨I⟩Aθ)
∂Ajk

= −α⟨I⟩Hjk with bounded norm of α⟨I⟩. In scenario (b), we have

∂(I− α⟨I⟩Aθ)

∂Ajk
=

∂Aθ

∂Ajk

∂(I− α⟨I⟩Aθ)

∂Aθ
+

∂α⟨I⟩

∂Ajk

∂(I− α⟨I⟩Aθ)

∂α⟨I⟩ = −α⟨I⟩Hjk −Aθ
∂α⟨I⟩

∂Ajk
. (112)

This leads to the following,

B
⟨I+1⟩
Ajk

= (I− α⟨I⟩Aθ)B
⟨I⟩
Ajk
− (α⟨I⟩Hjk +A

∂α⟨I⟩

∂Ajk
)e⟨I⟩. (113)

It remains to be shown that the norm of A∂α⟨I⟩

∂Ajk
can be upper-bounded. Then, the Jacobian error is upper-bonded by the

same order of convergence as in scenario (a),

∥A∂α⟨I⟩

∂Ajk
∥2 ≤ ∥Aθ∥2∥

∂α⟨I⟩

∂Ajk
∥2 = λ1∥

∂α⟨I⟩

∂Ajk
∥2. (114)

We write α⟨I⟩ in terms of eigenvalues of Aθ (i.e. α⟨I⟩ =
∑

o ζ
⟨I⟩2
o λ2

o∑
b ζ

⟨I⟩2
b λ3

b

) and take the derivative, i.e.

∂α⟨I⟩

∂Ajk
=

(∑
o 2ζ

⟨I⟩2
o λov

⊤
o H

jkvo

)(∑
b ζ

⟨I⟩2
b λ3

b

)
−
(∑

o ζ
⟨I⟩2
o λ2

o

)(∑
b 3ζ

⟨I⟩2
b λ2

bv
⊤
b H

jkvb

)
(
∑
m ζ

⟨I⟩2
m λ3

m)2
. (115)

Given the above, there exist a constant that bounds the norm of this derivative. We denote this constant by ∥∂α
⟨I⟩

∂Ajk
∥2 ≤Mαdiv .

F. Additional Experimental Details
F.1. Parameter Recovery for Noisy AR Models

F.1.1. FORM OF PRIOR PRECISION Γθ

From (26), let us define z≤P := {z1, . . . , zP }, z>P := {zP+1, . . . , zD} and w := {wP+1, . . . , wD}. Then,[
I 0
H L

] [
z≤P
z>P

]
=

[
z≤P
w

]
, (116)

where H ∈ R(D−P)×P and L ∈ R(D−P)×(D−P) such that

H :=

−ϕP −ϕP−1 . . . −ϕ1

0 −ϕP . . . −ϕ2

0 0 . . .
...

0 0 . . . −ϕP
0 0 . . . 0
...

...
...

...
0 0 . . . 0

L :=

1 0 0 . . . 0
−ϕ1 1 0 . . . 0

...
...

... . . .
...

−ϕP−1 −ϕP−2 −ϕP−3 . . . 0
−ϕP −ϕP−1 −ϕP−2 . . . 0

...
...

...
...

...
0 0 0 . . . 1

. (117)

Observe that
[
z≤P
z>P

]
is a multivariate Gaussian with mean 0 and inverse-covariance Γθ (i.e. our object of interest). Similarly,[

z≤P
w

]
is also a multivariate Gaussian with mean 0 and inverse-covariance

[
Q−1

ϕ 0

0 σ−2I

]
. Let Q−1

ϕ = σ−2D for some

matrix D. The change-of-variables formula for probability distributions then tells us that

Γθ =

[
I 0
H L

]⊤ [
Q−1

ϕ 0

0 κ−1I

] [
I 0
H L

]
=

1

κ

[
I 0
H L

]⊤ [
D 0
0 I

] [
I 0
H L

]
. (118)

25

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

(Note that change-of-variables also tells us that log detΓθ = log detD− T log κ, which we need to compute the term cθ.)

? show that for a stationary AR process, we have D = L⊤
PLP −H⊤

PHP , where HP ∈ RP×P is the first P rows of H and
LP ∈ RP×P is the top-left P × P block of L.

Next, let D be factorized as RR⊤ = D, which we can obtain through Cholesky decomposition. This implies that
Γθ = X⊤X, where

X :=
1√
κ

[
R 0
H L

]
. (119)

We can verify that X is a lower triangular and banded matrix with P + 1 non-zero bands below the diagonal. Similarly X⊤

is an upper triangular and banded matrix with P + 1 non-zero bands above the diagonal. It follows that Γθ has 2P + 1
non-zero bands. In turn, this implies that Aθ in (6) also has 2P + 1 non-zero bands (since the other part of the sum is a
diagonal matrix).

F.1.2. KALMAN SMOOTHER IMPLEMENTATION OF EXACT-GRADIENT EM

Observe that one can easily write (26) as a state-space model by defining the state

sd :=

 zd
...

zd+P−1

 (120)

for d = 1, . . . , D. Then, the noisy AR model of (26) is equivalent to the following state-space model:

s1 ∼ N (0,Qϕ) (121)
sd = Fsd−1 + vd, vd ∼ N (0,V) (122)

yd = c⊤sd + wd, wd ∼ N (0,W) (123)

for

F :=

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
ϕP ϕP−1 ϕP−2 . . . ϕ1

 , V :=

0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0
0 0 0 . . . κ

 , c :=

1
0
0
...
0

 , W = λ. (124)

The Kalman smoother can be used to obtain the distributions p(sd|y) for all d, which we can then convert into our posterior
of interest p(zd|y). Kalman will require D steps with complexity O(P 3) each because the state size is P . We then follow
Bishop & Nasrabadi (2006), Chapter 13.3.2 to compute the EM objective (5) using the Kalman smoother outputs.

F.1.3. EXPERIMENTAL SETTINGS

It is not straightforward to directly optimize ϕ over the space of stationary noisy AR processes. Thus, we parameterize
ϕ := f(γ), where γ ∈ [−1, 1]P are partial auto-correlations and f is the transformation defined by ?. Gradient descent is
performed over γ, log κ and log λ. For each algorithm (i.e. gradient EM, probabilistic unrolling), we perform 200 iterations
of gradient descent with the Adam optimizer and learning rate 0.1.

Each ground-truth value γ⋆p is randomly initialized between [−1, 1]. Similarly, κ⋆ and λ⋆ are randomly initialized between
[0.1, 10] (in log-space).

F.1.4. COMPARISON WITH VAES

To provide another baseline of comparison for probabilistic unrolling, we fit the model in (26) using a variational auto-
encoder (VAE) (Kingma & Welling, 2013). The decoder of the VAE is the generative model in (26), and the encoder of

26

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

the VAE is a black-box deep neural network. To tune the VAE, we search over different architectures (i.e. 1, 2, 3, 4 layer
models), different activations (i.e. ReLU, Sigmoid, Tanh, LeakyReLU) and adjust weights for the different parts of the VAE
loss (i.e. the weight β in β-VAE (?)).

However, we find that VAEs perform poorly in parameter recovery for the noisy AR model. In Table 2, we observe that
probabilistic unrolling (like EM) estimates all the true parameters {ϕ⋆, κ⋆, λ⋆} to within 1% error for D = 30,000 time
points. On the other hand, the (optimally-tuned) VAE obtains 41.5± 14.1% error for ϕ, 215.93± 223.5% error for κ, and
37.9± 23.75% error for λ. We hypothesize that this poor performance is due to the VAE’s biased objective in comparison
to EM (and PU), which suffers from mean-field’s inability to model covariance in the latent posterior; this is especially
detrimental for this problem, because there is a lot of rich covariance structure across time.

F.2. Bayesian Compressed Sensing of Sparse Signals

F.2.1. WOODBURY MATRIX IDENTITY FOR EXACT-GRADIENT EM

The Woodbury matrix identity is a property from linear algebra that allows us to compute Σθ for Bayesian compressed
sensing by inverting a M ×M matrix instead of a D×D one. Since typically M < D in compressed sensing, this can lead
to computational savings in time from a practical standpoint (but perhaps not an asymptotic one, because M often needs to
grow linearly with D in compressed sensing applications). Note that it does not lead to computational savings in space,
because the full matrix Σθ is still computed in the end.

Instead of computing Σθ through (7), we equivalently have

Σθ = Γ−1
θ − Γ−1

θ Φ⊤
θ Ω

⊤(ΩΨ−1
θ Ω⊤ +ΩΦθΓ

−1
θ Φ⊤

θ Ω
⊤)−1ΩΦθΓ

−1
θ . (125)

Note that for Bayesian compressed sensing, both Γ−1
θ and Ψ−1

θ can be cheaply computed, because these are both diagonal
matrices.

F.2.2. EXPERIMENTAL SETTINGS

The NIST dataset is accessed at https://www.nist.gov/srd/nist-special-database-19.

We scale all raw image pixels in NIST from [0, 255] to the range [0, 1]. We add independent, pixel-wise Gaussian noise to
the undersampled 2D Fourier transform with standard deviation σ = 0.01. During model fitting, we use the Adam optimizer
with learning rate 1.0. We optimize the parameters α, β in log-space. Each component of logα is initialized as randomly
drawn from N (0, 1). The value log β is initialized as 0.

For probabilistic unrolling, we use the preconditioned conjugate gradient algorithm. The preconditioner we employ is the
diagonal preconditioner M introduced in Lin et al. (2022b) for sparse Bayesian learning; M−1 is a diagonal matrix with
diagonal m, where

mj :=
1

αj + β
. (126)

F.2.3. SAMPLE IMAGES

In Figure 3, we provide sample images of the true signal z̃(n), its 15% undersampled and noisy Fourier transform
measurement ỹ(n), and a reconstruction provided by probabilistic unrolling µ(n).

F.2.4. RESULTS BREAKDOWN BY DIGIT TYPE

Table 5 presents a breakdown of the compressed sensing results by digit type. The average is given in Table 3.

F.2.5. SUPER-EFFICIENCY OF NETWORK GRADIENT

In Figure 4, we empirically show that the network gradient (17) converges faster to the Monte Carlo gradient (10) than the
output gradient (16) for our preconditioned conjugate gradient solver.

27

https://www.nist.gov/srd/nist-special-database-19

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

Figure 3. From left to right: the true signal, the Fourier measurement, and the probabilistic unrolling reconstruction.

Table 5. Compressed sensing results broken down by digit type.

Digit Type r(µEM, z̃) r(µPU, z̃) EM Time PU Time

0 3.89% 4.01 % 1475 s 21 s
1 4.76% 4.31 % 1483 s 21 s
2 4.61% 4.43 % 1473 s 21 s
3 3.96% 3.90 % 1508 s 21 s
4 7.20% 8.56 % 1485 s 21 s
5 5.22% 4.88 % 1494 s 21 s
6 4.17% 3.94 % 1510 s 21 s
7 4.67% 4.59 % 1467 s 21 s
8 4.27% 4.08 % 1468 s 21 s
9 4.83% 4.46 % 1448 s 21 s

0 10 20 30 40
Number of Unrolled Iterations

10 14

10 10

10 6

10 2

102

Gr
ad

ie
nt

 E
rro

r

Output Gradient
Network Gradient

Figure 4. Gradient convergence as a function of iterations I .

F.3. Collaborative Filtering through Factor Analysis

F.3.1. EXPERIMENTAL SETTINGS

The MovieLens datasets are accessed at https://grouplens.org/datasets/movielens/.

We follow the general experimental setup of Sedhain et al. (2015). For each dataset, we perform a 90%-10% train-test
split of the ratings data. We then set aside 10% of the training set as a validation set. Both models (gradient EM and
probabilistic unrolling) are trained with the Adam optimizer, learning rate 0.001, and a user mini-batch size of 25 (with
gradient accumulation over four mini-batches for an overall batch size of 100). For the ML-1M dataset, we train the model
for 20 epochs and evaluate the model on the validation set every 500 gradient steps. For the ML-10 M and ML-25 M
datasets, we train the model for 5 epochs and evaluate the model on the validation set every 2,000 gradient steps. The
checkpoint with the best validation set RMSE is used for final evaluation on the test set.

28

https://grouplens.org/datasets/movielens/

Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models

During training, we only train on users with at least one rating in the training set. Thus, there may be users in the
validation/test sets that do not appear during training. Following Sedhain et al. (2015), we always predict a rating of 3 for
these users. All other model rating predictions are clipped to be in the range [1.0, 5.0] before evaluation of RMSE.

F.3.2. COMPARISON WITH VAES

Similar to Appendix F.1.4, we report results for a VAE baseline on the collaborative filtering task. Searching over architectural
options, we find that the best-performing architecture had a two-layer encoder with 3,000 units in the hidden layer and
ReLU activations. However, even with our extensive tuning, we observe that VAEs generally perform worse and have higher
computational costs in comparison to probabilistic unrolling. The VAE obtains 0.8849 RMSE (compared to 0.8436 for PU)
on MovieLens 1-m and 0.8366 RMSE (compared to 0.7796 for PU) on MovieLens 10-m. The VAE also has approximately
1.5x the time cost and 2x the memory cost of PU (due to the separate inference encoder network).

29

