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Abstract. Exact-sparsity inducing prior distributions in Bayesian analysis typi-

cally lead to posterior distributions that are very challenging to handle by standard

Markov Chain Monte Carlo (MCMC) methods, particular in high-dimensional mod-

els with large number of parameters. We propose an approximation scheme for such

posterior distributions based on the forward-backward envelope of Patrinos et al.

(2014). We illustrate the method with a high-dimensional linear regression model,

where we that the derived approximation is within O(
√
γ) of the true posterior dis-

tribution in the β-metric, where γ > 0 is a user-controlled parameter that defines

the approximation.

1. Introduction

Successful handling of statistical models with large number of parameters from

limited data hinges on the ability to simultaneously solve two problems: (a) weeding

out non-significant variables, and (b) estimating the effect of the significant vari-

ables. The concept of sparsity has come to play a fundamental role in this endeavor.

In the Bayesian framework, sparsity is naturally built in the prior distribution us-

ing spike-and-slab priors (Mitchell and Beauchamp (1988); George and McCulloch

(1997)), which are mixtures of a point mass at the origin (the spike) and a continuous

density (the slab). We will refer to such priors as exact-sparsity inducing priors. A

number of recent works have established that these priors, with carefully chosen slab

densities, produce posterior distributions with optimal posterior contraction rates

(Castillo et al. (2015); Atchade (2017)). However, the flip side of such stellar sta-

tistical properties is the fact that these posterior distributions are computationally

difficult to handle, particularly in high-dimensional applications. Deriving tractable
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and scalable approximations for such distributions is therefore a problem of practical

importance.

In practice, exact-sparsity prior distributions are commonly used with Gaussian lin-

ear regression models and Gaussian slab densities by taking advantage of conjugacy

(George and McCulloch (1997); Bottolo and Richardson (2010); Yang et al. (2016)).

For general non-Gaussian models or non-Gaussian slab densities, several specialized

MCMC methods have been developed with mixed results. Reversible jump MCMC

algorithms (Chen et al. (2011); Ge et al. (2011)) work well in low-dimensional prob-

lems, but tend to mix poorly for high-dimensional problems as shown numerically

by Schreck et al. (2013). An alternative to reversible jump is the Metropoli-Hastings

framework of Gottardo and Raftery (2008). However, whether their algorithms can

successfully deal with high-dimensional problems remains to be explored. Another

recent development is the shrinkage-thresholding Metropolis adjusted Langevin algo-

rithm (STMaLa) of Schreck et al. (2013) – which can be seen as a special case of

the framework of Gottardo and Raftery (2008) – which we show below suffers as well

from poor mixing in large scale problems. Note also that the Laplace approximation,

one of the most standard approximation tool in Bayesian computation, cannot be

straightforwardly applied when the dimension of the space is as big as the sample size

(Shun and McCullagh (1995)). Variational Bayes approximations recently explored

by Ormerod et al. (2014) are promising alternatives, but remained to be fully explored

in high-dimensional settings.

1.1. Main contribution. We consider high-dimensional variable selection problems

with exact-sparsity inducing prior distributions, and derive an approximation of the

posterior distribution based on the forward-backward envelope of Patrinos et al.

(2014). The method works as long as the log-likelihood function is concave and

smooth (differentiable with Lipschitz derivative). The forward-backward envelope

is closely related to the Moreau envelope, a well-established regularization method

in optimization (Moreau (1965); Bauschke and Combettes (2011); Parikh and Boyd

(2013)). For several important examples of non-Gaussian slab densities, the resulting

approximation is easily explored by standard Markov Chain Monte Carlo (MCMC)

algorithms. An important advantage of our approach is that approximation errors

are easy to control mathematically, and can be used to carry out a detailed analysis

of the method, as we did below (see also the recent follow-up work Atchade and Bhat-

tacharyya (2018)). Several recent works have recognized the usefulness of the Moreau

regularization for Bayesian computation. Pereyra (2013) noted that a log-concave

density can be well approximated by its Moreau-Yosida approximation. However,

the framework developed by Pereyra (2013) does not handle the class of posterior
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distributions considered here. Another related work is the STMaLa of Schreck et al.

(2013) mentioned above, which implicitly uses the Moreau approximation to design

Metropolis-Hastings proposals.

If Π̌(·|z) denotes the posterior distribution of interest on Rd × {0, 1}d given data

z, we write Π̌γ(·|z) to denote the proposed forward-backward approximation, where

γ > 0 is a user-controlled parameter that defines the quality of the approximation. We

derive in Theorem 7 – under assumption H1 – an upper bound on the β-metric (see

Section 1.2 for precise definition) between Π̌(·|z) and Π̌γ(·|z). The main interest of the

approximation is that it is much easier to sample from Π̌γ compared to Π̌. In a recent

work (Atchade and Bhattacharyya (2018)) we provide an even stronger justification

for the proposed method by showing that Π̌γ (viewed as a pseudo-posterior distribu-

tion) contracts towards (δ?, θ?) at the same rate as the true posterior distribution Π̌,

as n, p→∞.

We illustrate the method using a linear regression model with a spike-and-slab

prior, where the slab is the elastic net density (Li and Lin (2010)) – which includes the

double exponential (Laplace) distribution as a special case. In this linear regression

example, our proposed methodology produces an approximation Π̌γ of this posterior

distribution, and we develop an efficient Markov Chain Monte Carlo algorithm to

sample from Π̌γ . We show that the approximation Π̌γ(·|z) is always a well-defined

probability measure provided that γ is chosen as in (22). Furthermore, we show in

Corollary 8 that the β-metric between Π̌(·|z) and Π̌γ(·|z) satisfies

dβ
(
Π̌(·|z), Π̌γ(·|z)

)
= O(

√
γ). (1)

We illustrate these results in a simulation study which shows that the method

performs well, and outperforms STMaLa for high-dimensional problems. A Matlab

implementation can be obtained from

http://dept.stat.lsa.umich.edu/∼ yvesa/Research.html.

The remainder of the paper is organized as follows. We close the introduction with

some notation that will be used throughout the paper. In Section 2, we first introduce

the class of posterior distributions of interest, followed in Section 3 by the basic idea

of the forward-backward approximation. In Section 4, we develop how the idea can

be applied to approximate the posterior distributions of interest. Section 5 details an

application to linear regression models. We close the paper with further discussion in

Section 6. All the proofs are gathered in Section 7.

1.2. Notation. Throughout the paper, d ≥ 1 is a given integer and Rd denotes the

d-dimensional Euclidean space equipped with its Borel sigma-algebra, its Euclidean

norm ‖ · ‖, and inner product 〈·, ·〉. We also use the norms ‖θ‖1
def
=
∑d

j=1 |θj |, and
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‖θ‖0 defined as the number of non-zero components of θ. The Lebesgue measure on

Rd is written as dx when there is no confusion.

We set ∆
def
= {0, 1}d. For δ ∈ ∆, µδ denote the product measure on Rd defined

as µδ(dθ)
def
=
∏d
j=1 νδj (dθj), where ν0(dz) is the Dirac mass at 0, and ν1(dz) is the

Lebesgue measure on R. Hence integration with respect to µδ sets to zero all the

components for which δj = 0, and integrates the remaining components using the

standard Lebesgue measure.

For θ, ϑ ∈ Rd, θ ·ϑ denotes the component-wise product: (θ ·ϑ)j = θjϑj , 1 ≤ j ≤ d.

For δ ∈ ∆, we shall write θδ to denote θ · δ, and we set

Rdδ
def
= {θδ, θ ∈ Rd} = {θ ∈ Rd : θj = 0 for δj = 0, j = 1, . . . , d}.

We will need ways to evaluate the distance between two probability measures. Let

(X, dX) be some arbitrary separable complete metric space equipped with its Borel

sigma-algebra. For any two probability measures µ1, µ2 on X, the β-distance between

µ1, µ2 is defined as

dβ(µ1, µ2)
def
= sup
‖f‖BL≤1

∣∣∣∣∫
X
f(x)µ1(dx)−

∫
X
f(x)µ2(dx)

∣∣∣∣ , (2)

where the supremum is taken over all measurable functions f : X → R such that

‖f‖BL
def
= ‖f‖∞ + ‖f‖L ≤ 1, where

‖f‖∞
def
= sup

x∈X
|f(x)|, and ‖f‖L

def
= sup

{
|f(x1)− f(x2)|

dX(x1, x2)
, x1, x2 ∈ X, x1 6= x2

}
.

It is well-known that this metric metricizes weak convergence (see e.g. Dudley

(2002) Theorem 11.3.3). If the supremum in (2) is replaced by the supremum over all

measurable functions f : X → R such that ‖f‖∞ ≤ 1 (resp. ‖f‖L ≤ 1) one obtains

the total variation metric dtv (resp. the Wasserstein metric dw with respect to the

metric dX).

On a referee’s suggestion, we list here all the variable selection posterior distri-

butions (and approximations thereof) that appear in the paper for easy reference.

Name Distribution

Exact spike-and-slab Π̌(δ, dθ|z) ∝ πδe−h(θ|δ)µδ(dθ)
FB approximation Π̌γ(δ, dθ|z) ∝ πδ(2πγ)

‖δ‖0
2 e−hγ(θ|δ)dθ

Weak spike-and-slab-1 Π̄γ(δ, dθ|z) ∝ πδ(2πγ)
‖δ‖0

2

{∏
j: δj=1 p(θj)

}
e−

1
2γ ‖θ−θδ‖

2
2e−`(θ)dθ

Weak spike-and-slab-2 Π̃γ(δ, dθ|z) ∝ πδ(2πγ)
‖δ‖0

2

{∏
j: δj=1 p(θj)

}
e−

1
2γ ‖θ−θδ‖

2
2e−`(θδ)dθ
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2. High-dimensional posterior distributions with sparse priors

Let z be a realization of some random variable Z with conditional distribution fθ,

given a parameter θ ∈ Rd. With a prior distribution Π on θ, the posterior distribution

for learning θ is

Π̌(dθ|z) =
fθ(z)Π(dθ)∫
Rd fθ(z)Π(dθ)

.

We consider a prior distribution Π on ∆× Rd of the form

Π(δ, dθ) = πδΠ(dθ|δ),

for a discrete distribution {πδ, δ ∈ ∆} on ∆, and a prior Π(·|δ) that is built as follows.

Given δ, the components of θ are independent, and for 1 ≤ j ≤ d,

θj |δ ∼

{
Dirac(0) if δj = 0

p(·) if δj = 1
, (3)

where Dirac(0) is the Dirac measure on R with full mass at 0, and p(·) is a positive

density on R. By the standard data-augmentation trick, we will take the variable δ

as part of the posterior distribution. As defined, the support of Π(·|δ) is Rdδ = {θ ∈
Rd : θj = 0 for δj = 0, 1 ≤ j ≤ d}, and Π(·|δ) has a density with respect to the

measure µδ defined in Section 1.2:

Π(dθ|δ) = e−P (θ|δ)µδ(dθ), where

P (θ|δ) def
=

{
−
∑

j: δj=1 log p(θj) if θ ∈ Rdδ
+∞ otherwise .

In the above formula, and throughout the paper, we convene that e−∞ = 0, and

0×∞ = 0. We also define

`(θ)
def
= − log fθ(z), and h(θ|δ) def

= `(θ) + P (θ|δ), θ ∈ Rd,

so that the posterior distribution writes

Π̌(δ, dθ|z) ∝ πδe−h(θ|δ)µδ(dθ). (4)

Monte Carlo simulation from this posterior distribution can be challenging. The

issue is related to the discrete-continuous mixture form of the spike-and-slab prior on

θ, which has the effect that any two distributions Π̌(δ, ·|z) and Π̌(δ′, ·|z) are mutually

singular for δ 6= δ′. As a result, if direct sampling from the conditional distribution of

θ|δ, z is not possible1, then sampling from (4) requires the use of specialized MCMC

methods (Green (1995); Gottardo and Raftery (2008); Chen et al. (2011); Schreck

1which is typically the case if the model or the slab prior is not Gaussian
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et al. (2013)). However these algorithms are typically difficult to design and tune,

particularly in high-dimensional settings.

3. The Moreau and the forward-backward envelopes

Our goal in this work is to develop a more tractable approximation to the posterior

distribution Π̌ in (4). However to make the ideas easy to follow, we start with some

general discussion of the Moreau and the forward-backward envelopes. Let h : Rd →
(−∞,+∞] be a convex, lower semi-continuous function that is not identically +∞,

and let µ be a sigma-finite measure on Rd. In the applications, µ will naturally be

taken as the Lebesgue measure on the domain of h (the domain of h is the set of

points x ∈ Rd such that h(x) < ∞). Assuming that Z
def
=
∫
Rd e

−h(x)µ(dx) < ∞, we

consider the probability measure

ν(dx) =
1

Z
e−h(x)µ(dx). (5)

To fix the ideas, the reader may think of the case where h is finite everywhere and µ

is the Lebesgue measure on Rd. In that case ν is the probability distribution on Rd

with density (1/Z)e−h(x). However our main interest is in the posterior distribution

(4) for which the slightly more general setting is needed.

Suppose that we are interested in drawing samples from ν. The lack of smoothness

of h, and the possibly complicated geometry of the support of ν can create difficulties

for standard MCMC algorithms. An approximation of ν can be formed using the

Moreau envelope of h defined for γ > 0 as

h̃γ(x) = min
u∈Rd

[
h(u) +

1

2γ
‖u− x‖2

]
, x ∈ Rd.

Under the assumptions imposed on h above, the function h̃γ is known to be well-

defined and finite everywhere. It is also convex, continuously differentiable with a

Lipschitz gradient, and h̃γ(x) ↑ h(x), as γ ↓ 0, for all x ∈ Rd. All these properties

are well-known and can be found in Bauschke and Combettes (2011) (Chapter 12).

Assuming that Z̃γ
def
=
∫
Rd e

−h̃γ(x)dx <∞, it seems natural to consider the probability

measure

ν̃γ(dx) =
1

Z̃γ
e−h̃γ(x)dx,

as an approximation of ν. To the best of our knowledge the idea of approximating the

probability measure ν by ν̃γ was first considered by Pereyra (2013), in the case where

the function h is finite everywhere and µ is the Lebesgue measure on Rd. We refer the

reader to that paper for a good discussion of the basic properties of ν̃γ , and how well

it approximates ν. In particular Pereyra (2013) showed that the smoothness of h̃γ can

be exploited to derive efficient gradient-based MCMC samplers for ν. An important
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limitation of the Moreau envelop approximation is that it is typically not available

in closed form, and its computation leads to a d-dimensional, possibly complicated

optimization problem.

In many problems the function h takes the particular form

h(x) = `(x) + P (x), x ∈ Rd

where ` is convex, finite everywhere and twice continuously differentiable, and P is

convex, not identically +∞ and lower semi-continuous. In such cases, one can approx-

imate ` around a given point x by its linear approximation u 7→ `(x)+ 〈∇`(x), u− x〉,
where ∇`(x) denote the gradient of ` at x. This approximation leads to the so-called

forward-backward envelope of h, defined for γ > 0 as

hγ(x)
def
= min

u∈Rd

[
`(x) + 〈∇`(x), u− x〉+ P (u) +

1

2γ
‖u− x‖2

]
, x ∈ Rd

= `(x) +−γ
2
‖∇`(x)‖2 + min

u∈Rd

[
P (u) +

1

2γ
‖u− x+ γ∇`(x)‖2

]
. (6)

Under the assumptions imposed on ` and P above, the function hγ is finite everywhere,

continuously differentiable, and hγ ≤ h. These properties can be found in Patrinos

et al. (2014) Theorem 2.2, but are easy to derive. For instance, the differentiability

follows from the expression (6), the twice differentiability of `, and the differentiability

of the Moreau envelop approximation of P . Notice however that hγ is no longer convex

in general. Assuming that Zγ
def
=
∫
Rd e

−hγ(x)dx <∞ it seems also natural to consider

the resulting approximation of ν defined as

νγ(dx) =
1

Zγ
e−hγ(x)dx.

The main advantage of hγ over h̃γ is that in many problems of interest hγ is available

in closed form, whereas h̃γ is not. Furthermore, if the function P is separable, then

the computation of hγ leads to d separate one-dimensional optimization problems

the solution of which can be easily parallelized. However, the price to pay for the

computational convenience is that hγ may not be convex, and it is a less accurate

approximation of h. Indeed, by the convexity of `, we have `(u) ≥ `(x)+〈∇`(x), u− x〉
for all u ∈ Rd. Hence hγ(x) ≤ h̃γ(x) ≤ h(x) for all x ∈ Rd. But as we will see, the

pointwise convergence hγ ↑ h, as γ ↓ 0 still holds. Figure 1 gives an illustrative

example of the differences between hγ and h̃γ and how both functions approximate

h. For this example, hγ is available explicitly (using (6) and soft-thresholding), and

h̃γ is obtained by numerical optimization for each value of x.

Since hγ converges pointwise to h as γ ↓ 0, it seems natural to expect that νγ

approaches ν for small γ. If the function h is finite everywhere, one can easily show
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Figure 1. Figure showing the function h(x) = −ax + log(1 + eax) + b|x|
for a = 0.8, b = 0.5 (blue/solid line), and the approximations hγ and h̃γ

(hγ ≤ h̃γ), for γ ∈ {5, 1, 0.1}. For γ = 0.1, the curves of hγ and h̃γ are

almost undistinguishable on the figure.

(see Proposition 1 below) that indeed, νγ converges to ν in the total variation metric,

as γ ↓ 0. However this result is no longer true when the domain of h has zero Rd-
Lebesgue measure. In this latter case, we will show that the convergence of νγ occurs

only weakly, or in the Wasserstein metric.

Proposition 1. Suppose µ in (5) is the Lebesgue measure on Rd, h = ` + P is

convex, finite everywhere, and hγ(x) ↑ h(x) for all x ∈ Rd. Suppose also that there

exists γ0 > 0 such that Zγ0 <∞. Then for all γ ∈ (0, γ0], νγ is well-defined, and

dtv(νγ , ν) ≤ 2

(
1− Z

Zγ

)
↓ 0, as γ ↓ 0.

Proof. See Section 7.1. �

Remark 2. (1) Notice that Proposition 1 can also be applied to ν̃γ by taking

` ≡ 0.

(2) We show in Lemma 2 in the Appendix that if ` is finite everywhere and differ-

entiable, and P is finite everywhere, convex with a nonempty subdifferential

at x for all x ∈ Rd, then hγ ↑ h, as required in the proposition.

If the domain of h has Rd-Lebesgue measure 0, then ν and νγ are then automat-

ically mutually singular and Proposition 1 cannot hold. The following toy example

illustrates this case.

Example 3. Suppose that we take Rd = R, ` ≡ 0, and we take P (x) = 0 if x = 0,

and P (x) = +∞ if x 6= 0. In that case e−h(x) = 1 if x = 0, and e−h(x) = 0 if x 6= 0.

Let µ = δ0 be the point mass probability measure at 0. Hence ν = δ0. For γ > 0,
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hγ(x) = h̃γ(x) = x2/(2γ), x ∈ R. Hence νγ is the normal distribution N(0, γ). It

follows that dtv(νγ , ν) = 2, for all γ > 0. But for any Lipschitz function f : R → R
with Lipschitz constant 1,

|νγ(f)− ν(f)| = |νγ(f)− f(0)| ≤ E(|Zγ |) =

√
2γ

π
,

where Zγ ∼ N(0, γ). By taking f = | · |, it can be easily seen that dw(νγ , ν) =
√

2γ
π .

Hence νγ converges in the Wasserstein metric to ν, but not in total variation. And

the convergence rate is O(
√
γ).

Remark 4. The fact that we only have convergence in the Wasserstein metric implies

that one needs to be cautious about the fact that not all probabilities ν(A) are well

approximated by νγ(A). For instance, in Example 3, if A = [0, a) for some a > 0,

then ν(A) = 1, whereas limγ↓0 νγ(A) = 0.

In the next section we will use the approximating measure νγ introduced above to

approximate the posterior distribution (4). We will see that the situation is similar

to the one in Example 3, and as in that example we will show that the approximation

converges weakly to the posterior distribution Π̌, and the convergence rate of of order

O(
√
γ).

4. The forward-backward approximation of the posterior distribution

(4)

In this section, we return to the posterior distribution (4) defined in Section 2. And

we make the following assumptions on the functions ` and P .

H1. (1) The function θ 7→ `(θ) is finite everywhere, convex, and twice continu-

ously differentiable.

(2) For all δ ∈ ∆, the function θ 7→ P (θ|δ) is convex, lower semi-continuous, not

identically +∞, and admits a sub-gradient g(θ|δ) at θ, for all θ ∈ Rdδ .

Remark 5. (1) The convexity assumption on ` is fundamental and delineates

the type of problems to which the proposed approximation could be easily

applied. Extension beyond this set up is possible, but will require fundamen-

tally different techniques.

(2) The convexity of P (·|δ) boils down to the log-concavity of the density p in the

prior (3). Most of the sparsity promoting prior densities used in practice are

log-concave.
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Given δ ∈ ∆, we consider the forward-backward envelope of h(·|δ) defined as

hγ(θ|δ) def
= min

u∈Rd

[
`(θ) + 〈∇`(θ), u− θ〉+ P (u|δ) +

1

2γ
‖u− θ‖2

]
, θ ∈ Rd, (7)

for some parameter γ > 0. Using hγ , we propose to approximate the posterior

distribution Π̌ in (4) by

Π̌γ(δ, dθ|z) ∝ πδ (2πγ)
‖δ‖0
2 e−hγ(θ|δ)dθ, (8)

that we call the forward-backward approximation of Π̌. In the expression (8), π

denotes the irrational number. The function hγ(·|δ) is available in closed form when-

ever the Moreau envelope of P (·|δ) has a closed form expression. More specifically,

for δ ∈ ∆, and for γ > 0, we define the Moreau envelope of P as

Pγ(θ|δ) def
= min

u∈Rd

[
P (u|δ) +

1

2γ
‖u− θ‖2

]
, θ ∈ Rd, (9)

and its associated proximal map as

Proxγ(θ|δ) def
= Argmin u∈Rd

[
P (u|δ) +

1

2γ
‖u− θ‖2

]
, θ ∈ Rd.

From the definition of Pγ and Proxγ , we see that hγ can be alternatively written as

hγ(θ|δ) = `(θ)− γ

2
‖∇`(θ)‖2 + Pγ (θ − γ∇`(θ)|δ) (10)

= `(θ) + 〈∇`(θ), Jγ(θ|δ)− θ〉+ P (Jγ(θ|δ)|δ)

+
1

2γ
‖Jγ(θ|δ)− θ‖2, (11)

where

Jγ(θ| δ) def
= Proxγ (θ − γ∇`(θ)|δ) .

For γ > 0, θ ∈ Rd, let sγ(θ) ∈ Rd be such that

(sγ(θ))j
def
= Argmin u∈R

[
− log p(u) +

1

2γ
(u− θj)2

]
, 1 ≤ j ≤ d.

Then it is easy to check that Proxγ(θ|δ) = δ · sγ(θ). Hence by Equation (11), we

see that hγ(·|δ) is computable is closed form if the map sγ (the proximal map of the

negative log-prior) is easy to compute. Although this limits the applicability of the

method, there are several priors commonly used for which this holds, including the

Gaussian prior, the Laplace prior and more generally the elastic-net prior given by

p(u) ∝ exp

(
−αλ1|u| − (1− α)λ2

u2

2

)
,
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as well as the generalized double Pareto of Armagan et al. (2013), and the (improper)

prior distribution that arises from the MCP of Zhang (2010), given respectively by

p(u) =
1

2λ

(
1 +
|u|
αλ

)−(α+1)

, and p(u) = exp

(
−λ
∫ |u|

0

(
1− t

αλ

)
+

dt

)
.

For more general prior distributions for which the proximal map is intractable, nu-

merical solvers may be considered, particularly since the components of sγ(θ) can be

computed in parallel.

Remark 6. Since Proxγ(θ|δ) = δ ·sγ(θ), and given (7), it is easily seen that in Π̌γ , the

δj ’s are conditionally independent Bernoulli random variables given θ. And given δ,

one can use various MCMC algorithms, including gradient-based MCMC algorithms

to update θ. Hence the proposed approximation produces a distribution that is easy

to explore by MCMC compared to Π̌. A detailed discussion of MCMC implementation

in the linear regression setting is deferred to Section 5.2.

4.1. Connection with spike-and-slab priors. Another widely used approximation

to the exact-sparsity prior is the prior obtained by replacing the point-mass at 0 by

a Gaussian distribution with mean 0 and a small variance γ (George and McCulloch

(1997); Ishwaran and Rao (2005); Rockova and George (2014); Narisetty and He

(2014)). This leads to the following model.

δ ∼ {πδ}, θj |δ ∼

{
N(0, γ) if δj = 0

p(·) if δj = 1
, 1 ≤ j ≤ d, and Z|δ, θ ∼ fθ, (12)

for some constant γ > 0. Notice that given (δ, θ), we draw Z from fθ. The resulting

posterior distribution is

Π̄γ(δ, dθ|z) ∝ πδ

 ∏
j: δj=1

p(θj)


 ∏
j: δj=0

1√
2πγ

e
−
θ2j
2γ

 e−`(θ)dθ. (13)

Just like Π̌γ (see Remark 6), one can easily construct MCMC algorithms to sample

from Π̄γ . Indeed, given θ, the components of δ are independent Bernoulli; and given δ,

we can update θ relatively easily by MCMC, depending on the choice of p. However,

since (12) does not actively explore sparse models, one expects Π̄γ to under-perform

the exact-sparsity posterior Π̌.

Another possible approximation of the sparsity-inducing spike-and-slab prior is

obtained by enforcing sparsity in model (12):

δ ∼ {πδ}, θj |δ ∼

{
N(0, γ) if δj = 0

p(·) if δj = 1
, 1 ≤ j ≤ d, and Z|δ, θ ∼ fθδ . (14)
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Notice that in (14) given (δ, θ), we draw Z from fθδ , with a sparse parameter θδ. The

posterior distribution thus defined is

Π̃γ(δ, dθ|z) ∝ πδ

 ∏
j: δj=1

p(θj)


 ∏
j: δj=0

1√
2πγ

e
−
θ2j
2γ

 e−`(θδ)dθ. (15)

The distribution Π̃γ clearly seems a much better approximation to Π̌ than Π̄γ . And

we show in Corollary 8 below that in the linear regression problem that Π̌γ is very

close to Π̃γ , since

dw(Π̃γ , Π̌) ≈
√
dγ, and dtv(Π̌γ , Π̃γ) = O(dγ),

where dw (resp. dtv) denotes the Wasserstein metric (resp. the total variation metric).

Hence for the purpose of approximating Π̌, Π̃γ and Π̌γ are roughly equivalent when

γ is small, since the two are within O(γ) of each other and within O(
√
γ) of Π̌. More

broadly, the main feature of our proposed method is that its variational nature leads

to a good mathematical control of its approximation errors, and this makes a detailed

analysis of Π̌γ possible, as we do below (and also as in Atchade and Bhattacharyya

(2018)).

4.2. Approximation bounds. We will now derive a result that bounds the β-

distance between Π̌γ and Π̌. We recall that Π̃γ denotes the posterior distribution

defined in (15). We define

%γ(z)
def
= log

∫
erγ(δ,θ)Π̃γ(dδ, dθ|z), (16)

where

rγ(δ, θ)
def
= 〈∇`(θ)−∇`(θδ), θ − θδ)〉+

γ

2
‖δ · ∇`(θ) + δ · g (θδ|δ) ‖2.

For simplicity, we shall omit the dependence of rγ(δ, θ) on z (same with `(θ) and

∇`(θ)). We note that by the convexity of `, rγ(δ, θ) ≥ 0. Hence %γ(z) ≥ 0.

Theorem 7. Assume H1, for some fixed data z.

(1) For any γ > 0, we have

dw
(

Π̃γ(·|z), Π̌(·|z)
)
≤
√
γd.

(2) Suppose that there exists γ0 > 0 such that Π̌γ0(·|z) is well-defined. Then for

all γ ∈ (0, γ0], Π̌γ(·|z) is well-defined and

dtv

(
Π̌γ(·|z), Π̃γ(·|z)

)
≤ 2

(
1− e−%γ(z)

)
.

Proof. See Section 7.2. �
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Combining the two parts of the theorem yields for all γ ∈ (0, γ0]

dβ
(
Π̌γ(·|z), Π̌(·|z)

)
≤
√
γd+ 2

(
1− e−%γ(z)

)
. (17)

Notice that 1 − e−x ≤ x for all x ≥ 0. Therefore, the convergence to zero of

dβ
(
Π̌γ(·|z), Π̌(·|z)

)
would follow if the term %γ(z) converges to 0 as γ → 0. We

show how to obtain such result below. To save space we focus on the linear regression

model, although more general result is possible along similar lines.

5. Application to Bayesian linear regression with sparse priors

As an application we consider a high-dimensional linear regression problem, with

dependent variable z ∈ Rn, and design matrix X ∈ Rn×d. The variance term σ2 is

assumed known. The negative-log-likelihood function ` for this problem can be taken

as

`(θ) =
1

2σ2
‖z −Xθ‖2, θ ∈ Rd.

We will set up the prior distribution of θ using δ ∈ ∆, and using an auxiliary variable

φ
def
= (q, λ1, λ2), where q ∈ (0, 1) is a sparsity parameter, and λ1 > 0, λ2 > 0 are regu-

larization parameters. Given φ, we assume that the components of δ are independent

and identically distributed, with distribution Ber(q). Hence πδ = q‖δ‖0(1− q)d−‖δ‖0 .

Given φ and δ, the components of θ are independent, and for 1 ≤ j ≤ d,

θj |δ, φ ∼

{
Dirac(0) if δj = 0

EN
(
λ1
σ2 ,

λ2
σ2

)
if δj = 1

,

where Dirac(0) is the Dirac measure on R with full mass at 0, and EN(λ1/σ
2, λ2/σ

2)

is the (elastic-net) distribution with density given by

1

Z(φ)
exp

(
−αλ1

σ2
|x| − (1− α)

λ2

2σ2
x2

)
, x ∈ R, (18)

for a parameter α ∈ [0, 1], assumed known. We recover the Gaussian prior N(0, σ
2

λ2
)

by setting α = 0, and we recover the Laplace (double-exponential) prior Laplace(λ1
σ2 )

by setting α = 1. The normalizing constant Z(φ) can be written as

Z(φ) =

 σ
√

2π
(1−α)λ2

erfcx

(
αλ1

σ
√

2(1−α)λ2

)
if α ∈ [0, 1)

2σ2

λ1
if α = 1

,

where erfcx(x) is the scaled complementary error function, which can be written as

erfcx(x) = 2ex
2
Φ(−
√

2x), where Φ is the cdf of standard normal distribution. The

prior density (18) is a reparametrization of the elastic-net (Zou and Hastie (2005))

prior used by Li and Lin (2010). Notice that α = 1 makes λ2 inactive, and setting
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α = 0 makes λ1 inactive. With this parametrization of elastic net prior (18), the

proximal function Proxγ(θ|δ) can be computed as

Proxγ(θ|δ) = δ · sγ(θ),

where

(sγ(θ))j =
sign(θj)

(
|θj | − αγ λ1σ2

)
+

1 + γ λ2
σ2 (1− α)

, (19)

and for x ∈ R, x+
def
= max(x, 0), sign(x) is the sign of x. In the next result, we derive

an approximation bound. For a matrix A, let λmax(A) denote its largest eigenvalue.

Corollary 8. Suppose that (1− α)λ2 ≤ λmax(X
′X), and suppose that γ > 0 satisfies

4γ

σ2
λmax(X

′X) ≤ 1. (20)

Then for all z ∈ Rn, Π̌γ(·|z) is a well-defined probability measure on ∆× Rd, and

dβ
(
Π̌γ(·|z), Π̌(·|z)

)
≤
√
γd+ 2

(
1− e−%γ(z)

)
,

where %γ(z) satisfies

%γ(z) ≤ 3γ

2

(
αλ1

σ2

)2

d+
3γ

σ2
λmax(X

′X)

[
d (3 + logZ(φ)) +

‖z‖2

2σ2

]
. (21)

Proof. See Section 7.3. �

The bound in (20) provides some guidelines for choosing γ, as it suggests that one

can choose γ as

γ = min

(
1

d
,

γ0σ
2

λmax(X ′X)

)
, γ0 ∈ (0, 1/4]. (22)

As we show in the simulations setting γ0 ∈ (0.1, 1/4] works well. We cautious against

setting γ0 overly small, since in that case the mixing time of the MCMC sampler

proposed below to sample from Π̌γ increases.

5.1. Dealing with the hyper-parameter φ. We use a fully Bayesian approach for

selecting the hyper-parameter φ = (q, λ1, λ2). We assume independent priors such

that q ∼ Beta(1, du) for some constant u > 1, λ1 ∼ U(a,M), and λ2 ∼ U(a,M) for

some small positive constant a (we use a = 10−5 in the simulations), and for a large

positive constant M such that (1− α)M ≤ λmax(X
′X).

5.2. Markov Chain Monte Carlo. We propose a Metropolized-Gibbs strategy in

order to draw samples from Π̌γ .
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5.2.1. Updating δ. Given θ and φ, it is easy to see that hγ(θ|δ) depends on δj only

through the expression

δj

[
(∇`(θ))jdj + logZ(φ) +

αλ1|dj |+ 0.5(1− α)λ2d
2
j

σ2
+
d2
j − 2θjdj

2γ

]
,

where dj is the j-th component of sγ(θ − γ∇`(θ);λ1/σ
2, λ2/σ

2). Hence, we update

jointly and independently the δj by setting δj = 1 with probability er/(1 + er), where

r = log
q

1− q
+

1

2
log(2πγ)

−

[
(∇`(θ))jdj + logZ(φ) +

αλ1|dj |+ 0.5(1− α)λ2d
2
j

σ2
+
d2
j − 2θjdj

2γ

]
.

5.2.2. Updating θ. Given δ and φ, we update the components of θ using a mix of an in-

dependence Metropolis sampler, and a gradient-based Metropolis-Hastings algorithm.

The function θ 7→ hγ(θ|δ) is differentiable and its gradient is given by

∇θhγ(θ|δ) =
1

γ

(
Id − γ∇(2)`(θ)

)
(θ − Jγ(θ|δ, φ)) .

To avoid dealing with second order derivatives, and since γ is typically small, we

approximate Id − γ∇(2)`(θ) by Id. This implies that we can approximate ∇θhγ(θ|δ)
by

Gγ(θ|δ) def
=

1

γ
(θ − Jγ(θ|δ)) , and Ḡγ(θ|δ) def

=
c

c ∨ ‖Gγ(θ|δ)‖
Gγ(θ|δ), (23)

for a positive constant c. The function Ḡγ is introduced for further stability, in the

spirit of the truncated Metropolis adjusted Langevin algorithm (see e.g. Atchadé

(2006)). Hence, given δ and φ, and given the non-selected components of θ we update

each selected components of θ (one component at the time) using a gradient-based

Metropolis-Hastings algorithm where the drift function is given by the corresponding

components of Ḡγ . As in Atchadé (2006) we adaptively tune the variance of the

proposal distribution (we use the same value for all components) to automatically

yield a 60% acceptance probability. This update is similar to the proximal MaLa of

Pereyra (2013).

However, when δj = 0, the corresponding component of Gγ(θ|δ) is θj/γ and is

typically very large and not very informative (particularly for γ small). To deal

with this, we use the following strategy. We update the components θj for which

δj = 1 – one component at the time – using the gradient-based algorithm outlined

above. Then, we group together all the components for which δj = 0 and we update

them jointly using an independence Metropolis sampler. The proposal density of the

Independence Metropolis sampler is built by approximating Jγ(θ|δ) by Proxγ(θ −
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γ∇`(θ · δ)|δ) in hγ . This approximation comes from the fact that for γ ≈ 0, Jγ(θ|δ) =

Proxγ(θ− γ∇`(θ)|δ) ≈ Proxγ(θ− γ∇`(θ · δ)|δ). The resulting proposal density is the

density of the Gaussian distribution

N
( γ
σ2

ΣX ′δcX [Proxγ (θ − γ∇`(θ · δ)|δ)− δ · θ] , γΣ
)
,

where Σ
def
=
(
I‖δc‖ −

γ

σ2
X ′δcXδc

)−1
,

where δc
def
= 1 − δ, and for any δ ∈ ∆, Xδ ∈ Rn×‖δ‖ denotes the sub-matrix of X

obtained by selecting the columns for which δj = 1. Notice that under the assumption

γ ≤ σ2

4λmax(X′X) , the matrix Σ is always positive definite. We found this independence

sampler to be extremely efficient, with an acceptance probability typically above 90%.

5.2.3. Updating φ = (q, λ1, λ2). We update q ∼ Beta(‖δ‖1 + 1, d + du − ‖δ‖1), and

we update (λ1, λ2) jointly using a Random Walk Metropolis algorithm with Gaussian

proposal. For improved mixing, we adaptively tune the scale parameter of the pro-

posal density to give an acceptance probability of 30% (for more details on adaptive

MCMC, see for instance Atchadé et al. (2011) and the reference therein).

5.3. Simulation results and comparison with STMaLa. We illustrate the method

with a simulated data example. All the computations in this example were done using

Matlab 7.14 on a 2.8 GHz Quad-Core Mac Pro with 24 GB of 1066 DDR3 Ram.

We set n = 200, p = 500 and we generate the design matrix X by simulating the

rows of X independently from a Gaussian distribution with correlation ρ|j−i| between

components i and j. We set ρ = 0.9. Using X, we general the outcome z = Xθ?+σε,

with σ = 1 that we assume known. We build θ? by randomly selecting 10 components

that we fill with draws from the uniform distribution εU(v/2, 3v/2), where ε = ±1

with probability 1/2, all other components being set to zero. We consider two cases

for v: v = 1 (SCENARIO 1), and v =
√

log(d)/n ≈ 0.18 (SCENARIO 2).

We set γ = γ0σ
2/λmax(X

′X) as prescribed by (22) with two choices of γ0: γ0 = 0.25,

and γ0 = 0.01.

We compare these two samplers to the STMaLa sampler of Schreck et al. (2013).

In our notations, the target posterior distribution of STMaLa is

πδ exp

(
− 1

2σ2
‖z −Xθ‖22

) d∏
j=1

(
1 +

θ2
j

2aK

)−a− 1
2

µδ(dθ),

for positive hyper-parameters a,K, where πδ = q‖δ‖0(1 − q)d−‖δ‖0 The comparison

is slightly tricky because STMaLa uses a different prior, namely a scale-mixture of

Gaussian as slab density. However, we expect both posterior distribution on (δ, θ) to
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be close, and we expect the true value (δ?, θ?) to be close to the center of both dis-

tributions. For the STMaLa, we use the Matlab code provided online by the authors,

with the default setting. Unlike our approach, this sampler requires the true value

of the sparsity parameter q, which we provide. We also edit their code to return the

summary statistics presented below.

We evaluate the mixing of these samplers by computing the following two metrics

along the MCMC iterations: the relative error and the F -score (to evaluate structure

recovery), defined respectively as

E(k) =
‖θ(k) − θ?‖
‖θ?‖

, and F (k) =
2× SEN(k)PREC(k)

SEN(k) + PREC(k)
,

where

SEN(k) =

∑d
j=1 1{|δ(k)j |>0}1{|δ?,j |>0}∑d

j=1 1{|δ?,j |>0}
, PREC(k) =

∑d
j=1 1{|δ(k)j |>0}1{|δ?,j |>0}∑d

j=1 1{|δ(k)j |>0}

. (24)

In stationarity we expect values of E(k) (resp. F (k)) to be close to zero (resp. one).

In the absence of a better metric, we will graphically access the mixing time of the

samplers by looking at how quickly the sequence E(k) (resp. F (k)) converges towards

zero (resp. one). In order to account for the computing time, and for better compar-

ison, we plot these metrics, not as function of the iterations k, but as function of the

computing time needed to reach iteration k. For further stability in the comparison,

we repeat all the samplers 30 times and average the two metrics and the computing

times over these 30 replications.

All the chains are initialized by setting all components of θ(0) (and δ(0)) to zero.

We run the samplers for a number of iterations that depends on θ?. In SCENARIO

1, we run the newly proposed sampler for 10, 000, and we run STMaLa for 120, 000

iterations. In SCENARIO 2, we run our proposed sampler for 40, 000, and we run

STMaLa for 250, 000 iterations.

Figure 2 and 3 present the results. First, we observe that that γ0 = 0.25 mixes

significantly better than γ0 = 0.01. We notice also that Π̌γ approximates (θ?, δ?)

only slightly better when γ0 = 0.01 compared to γ0 = 0.25. Overall, we found that

γ0 ∈ (0.1, 0.25) produces a very good approximation.

We also look at the usual sample path mixing of the proposed sampler by plotting

the trace plot, histogram, and the autocorrelation plot from a single run of the sampler

(Figure 4). Here, we consider only SCENARIO 1, and we modify the true parameter θ?

to have one significant but small component. All other parameters are as above. We

look at the MCMC output {θ(k)
j , k ≥ 0}, for one component j for which δj = 0, for
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Figure 2. Relative error and structure recovery as function of time

in SCENARIO 1. Based on 30 MCMC replications. The curves are

sub-sampled to improve the readability of the figure.
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Figure 3. Relative error and structure recovery as function of time

in SCENARIO 2. Based on 30 MCMC replications. The curves are

sub-sampled to improve the readability of the figure.

the weakly significant component, and for one significantly large component. From

this sample path perspective, the plots suggest that the proposed MCMC sampler

has a good mixing, except in the second case where the marginal distribution of the

parameter is a bi-modal distribution and the sampler needs to switch between the

two modes.
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Figure 4. Trace plot, histogram, and autocorrelation plot, from one

MCMC run, using γ0 = 0.25. Top row: a strongly significant compo-

nent j; middle row: non-significant component; bottom row: a weakly

significant component.

5.4. Empirical Bayes implementation and further experimentation. A lim-

itation of the methodology is that σ2 is assumed known, which is rarely the case

in practice. We explore by simulation an empirical Bayes solution whereby σ2 is

estimated from data. Following Reid et al. (2013) we estimate σ2 by

σ̂2
n =

1

n− ŝλn

n∑
i=1

(
yi − xiβ̂λn

)2
,

where β̂λ is the lasso estimate at regularization level λ, and λn is selected by 10-

fold cross-validation, and where ŝλn is the number of non-zeros components of β̂λn .

In the cross-validation, we choose λn as the value of λ that minimizes the MSE.

This leads to the empirical Bayes Moreau envelop posterior approximation that we

denote Π̌γ(·|z, σ̂2
n). We do a simulation study using a semi-real dataset to compare

the distributions Π̌γ(·|z, σ̂2
n) and Π̌γ(·|z) (with the true value of σ2 set to one). We

use the colon dataset (Buhlmann and Mandozzi (2014)) downloaded from

http://stat.ethz.ch/~dettling/bagboost.html. The data gives microarray gene

expression levels for 2, 000 genes for n = 62 patients in a colon cancer study. We
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randomly select a subset of p = 1, 000 variables to form a design matrix X ∈ R62×1,000.

Following Buhlmann and Mandozzi (2014), we normalize each column of X to have

mean zero and variance unity. We simulate a sparse signal vector θ? ∈ Rp with

s = 5 non-zeros components, and where the non-zeros components are drawn from

U(−v− 1,−v)∪ (v, v+ 1). We consider two scenarios: v = 1 and v = 3. Using X and

θ?, we generate z = Xθ? + σε, with σ = 1, and ε ∼ N(0, In).

We set γ as in (22) with γ0 = 0.25. We evaluate the samplers along the same

metrics E and F . We average the results over 30 replications2 of the samplers, where

each sampler is run for 50, 000 iterations. The result is presented on Table 1. We

notice that the recoery of θ? is poor in both cases when v = 1. When the signal

is strong (v = 3), the empirical Bayes posterior distribution performs well, but as

expected, under-performs the posterior distribution with known variance.

Weak signal (v = 1) Strong signal (v = 3)

EB True σ EB True σ

Relative error (in %) 97.3 91.7 12.4 9.4

F -score ( in %) 14.5 25.1 79.6 88.5

Table 1. Table showing the posterior estimates (N − B)−1
∑N
k=B+1 E(k),

and (N − B)−1
∑N
k=B+1 F (k), averaged over 30 MCMC replications, each

MCMC run is 5× 104 iterations.

6. Further Discussion

We have proposed a forward-backward approximation for spike-and-slab posterior

distributions. The methodology can be applied more broadly to statistical models

with smooth and concave log-likelihood functions, and for several classes of slab den-

sities. Several theoretical issues remain. One interesting problem that we did not

directly address concerns the mixing properties of the proposed MCMC algorithms,

and the trade-off inherent to the methodology between good approximation proper-

ties of Π̌γ , and good mixing of gradient-based MCMC simulation from Π̌γ . Another

potentially interesting direction of research is the idea of treating Π̌γ itself as a quasi-

posterior distribution, and investigating directly its posterior contraction properties.

7. Proof of the main results

For convenience, we introduce the product space Θ̄
def
= ∆ × Rd that we implicitly

equip with the metric dΘ̄(θ̄1, θ̄2)
def
=
√
‖δ1 − δ2‖20 + ‖θ1 − θ2‖2, θ̄j = (δj , θj), j = 1, 2.

2here only X and θ? are kept fixed. For each replication, the dataset z is re-simulated, and σ2
n is

re-estimated.
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7.1. Proof of Proposition 1. For all x ∈ Rd, and γ ∈ (0, γ0], e−h(x) ≤ e−hγ(x) ≤
e−hγ0 (x). Hence Z ≤ Zγ ≤ Zγ0 <∞. Since µ is the Lebesgue measure on Rd, we shall

write it as dx. For any bounded measurable function f : Rd → R, we have

|Πγ(f)−Π(f)| ≤ 1

Zγ

∣∣∣∣∫
Rd
f(x)

(
e−hγ(x) − e−h(x)

)
dx

∣∣∣∣
+

(Zγ − Z)

ZγZ

∫
Rd
|f(x)|e−h(x)dx

≤ 2‖f‖∞
Zγ

∫
Rd

(
e−hγ(x) − e−h(x)

)
dx

= 2‖f‖∞
(

1− Z

Zγ

)
.

The fact that Zγ → Z as γ ↓ 0, follows from Lebesgue’s monotone convergence applied

to e−hγ0 − e−hγ .

7.2. Proof of Theorem 7. We work on the product space Θ̄ = ∆× Rd introduced

above. Throughout the proof, we assume that z is fixed, and at times we write Π̌(·|z)
simply as Π̌. Same for Π̃γ(·|z) and Π̌γ(·|z).

We prove the theorem in two steps. First in Lemma 9, we bound the Wasserstein

distance between the distributions Π̃γ and Π̌ by showing that for all γ > 0,

dw(Π̃γ , Π̌) ≤
√
γd. (25)

Then in Lemma 11 we bound the total variation distance between Π̌γ and Π̃γ by

showing that for all γ ∈ (0, γ0],

dtv(Π̃γ , Π̌γ) ≤ 2
(

1− e−%γ(z)
)
. (26)

It is clear from their definitions that both the Wasserstein metric and the total vari-

ation metric are upper bounds for the metrix β, and the Theorem 7 follows by com-

bining (25) and (26). The proof of Lemma 11 relies on a comparison result between

the functions h and hγ established in Lemma 10 that is also of independent interest.

Lemma 9. Let Π̃γ be the probability measure defined in (15). For all γ > 0,√
2

π

√
γd

(
1− 1

d
E(‖η‖0)

)
≤ dw(Π̃γ , Π̌) ≤

√
dγ. (27)

Proof. For all δ ∈ ∆, and γ > 0, by integrating out the non-selected components we

have (
1

2πγ

) d−‖δ‖1
2

∫
Rd
e
− 1

2γ
‖θ−θδ‖2e−h(θδ|δ)dθ =

∫
Rd
e−h(θ|δ)µδ(dθ).
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This implies that the distributions Π̌(·|z) and Π̃γ(·|z) have the same normalizing

constant given by

C =
∑
δ∈∆

πδC(δ), where C(δ)
def
=

∫
Rd
e−h(θ|δ)µδ(dθ). (28)

Using this notation, we can write

Π̌(δ, dθ|z) =
πδC(δ)

C
Π̌(dθ|δ, z), where Π̌(dθ|δ, z) def

=
1

C(δ)
e−h(θ|δ)µδ(dθ),

and and

Π̃γ(δ, dθ|z) =
πδC(δ)

C
Π̃γ(dθ|δ, z),

where Π̃γ(dθ|δ, z) def
=

1

C(δ)
e−h(θδ|δ)

(
1

2πγ

) d−‖δ‖1
2

e
− 1

2γ
‖θ−θδ‖2dθ.

We build the following coupling of Π̌ and Π̃γ . First we generate η ∈ ∆ from the

distribution δ 7→ πδC(δ)
C , and we generate ϑ̌|η ∼ Π̌(dθ|η, z). Hence clearly, (η, ϑ̌) ∼ Π̌.

Given (η, ϑ̌), we generate ϑ̃ as follows. If ηj = 1, we set ϑ̃j = ϑ̌j . Otherwise we

generate independently Zj ∼ N(0, 1), and set ϑ̃j =
√
γZj . It is also easy to check

that (η, ϑ̃) ∼ Π̃γ .

For any Lipschitz function on Θ̄ with Lipschitz constant less of equal to 1, we have∣∣∣∣∫ f(δ, θ)Π̃γ(dδ, dθ)−
∫
f(δ, θ)Π̌(dδ, dθ)

∣∣∣∣ =
∣∣∣E [f(η, ϑ̃)− f(η, ϑ̌)

]∣∣∣
≤ E

[
‖ϑ̃− ϑ̌‖

]
≤
√
dγ

√
1− 1

d
E(‖η‖0) ≤

√
dγ,

and this proves the upper bound. For the lower bound, consider the function f0(δ, θ) =
1√
d

∑d
j=1 |θj |. It is Lipschitz with Lipschitz constant 1. Hence

dw(Π̃γ , Π̌) ≥
∣∣∣E [f0(η, ϑ̃)− f0(η, ϑ̌)

]∣∣∣ =

√
γ

d
E

 ∑
j: ηj=0

|Zj |


=

√
2

π

√
γd

(
1− 1

d
E(‖η‖0)

)
,

and the result is proved. �

Lemma 10. Assume H1 and fix δ ∈ ∆. For all θ ∈ Rd,

h(θδ|δ) +
1

2γ
‖θ − θδ‖2 ≥ hγ(θ|δ) ≥ h(θδ|δ) +

1

2γ
‖θ − θδ‖2 − rγ(θ, δ), (29)

with

rγ(δ, θ)
def
= 〈∇`(θ)−∇`(θδ), θ − θδ)〉+

γ

2
‖δ · ∇`(θ) + δ · g (θδ|δ) ‖2,
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and where g(θδ|δ) denotes a sub-gradient of P (·|δ) at θδ. It follows in particular that

for all θ ∈ Rd, hγ(θ|δ) ↑ h(θ|δ), as γ ↓ 0.

Proof. From the definition we have

hγ(θ|δ) = min
u∈Rd

[
`(θ) + 〈∇`(θ), u− θ〉+ P (u|δ) +

1

2γ
‖u− θ‖2

]
≤ `(θ) + 〈∇`(θ), θδ − θ〉+ P (θδ|δ) +

1

2γ
‖θ − θδ‖2.

By convexity of `, `(θ) + 〈∇`(θ), θδ − θ〉 ≤ `(θδ), which proves the first inequality in

(29). To prove the second inequality, we start by using again the convexity of ` to

write for all θ ∈ Rd,
`(θ) ≥ `(θδ) + 〈∇`(θδ), θ − θδ〉 .

Hence for all θ ∈ Rd, adding 〈∇`(θ), Jγ(θ|δ)− θ〉 on both sides and rearranging, we

get

`(θ) + 〈∇`(θ), Jγ(θ|δ)− θ〉 ≥ `(θδ) + 〈∇`(θδ)−∇`(θ), θ − θδ〉

+ 〈∇`(θ), Jγ(θ|δ)− θδ〉 , (30)

where we recall that Jγ(θ|δ) = Proxγ(θ − γ∇`(θ)|δ). By H1, P (·|δ) is convex, and if

g(θδ|δ) denotes a sub-gradient of P (·|δ) at θδ, we have

P (Jγ(θ|δ)|δ) ≥ P (θδ|δ) + 〈g (θδ|δ) , Jγ(θ|δ)− θδ〉 . (31)

(30)-(31) together with the expression (11) of hγ from the main paper imply that

hγ(θ|δ) ≥ h(θδ|δ)− 〈∇`(θ)−∇`(θδ), θ − θδ〉

+ 〈∇`(θ) + g (θδ|δ) , Jγ(θ|δ)− θδ〉+
1

2γ
‖θ − Jγ(θ|δ)‖2.

Since Jγ(θ|δ) ∈ Rdδ , we can split ‖θ−Jγ(θ|δ)‖2 as ‖θ− θδ‖2 + ‖θδ−Jγ(θ|δ)‖2. We use

this in the last inequality to conclude that

hγ(θ|δ) ≥ h(θδ|δ) +
1

2γ
‖θ − θδ‖2 − 〈∇`(θ)−∇`(θδ), θ − θδ〉

+ 〈∇`(θ) + g (θδ|δ) , Jγ(θ|δ)− θδ〉+
1

2γ
‖Jγ(θ|δ)− θδ‖2

≥ h(θδ|δ) +
1

2γ
‖θ − θδ‖2 − 〈∇`(θ)−∇`(θδ), θ − θδ〉

−γ
2
‖δ · ∇`(θ) + δ · g (θδ|δ) ‖2,

as claimed. In the last inequality, the δ appearing in front of ∇`(θ) + g(θ|δ) comes

from the fact that Jγ(θ|δ)− θδ ∈ Rdδ .
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It is obvious from its definition that hγ(θ|δ) is non-decreasing as γ ↓ 0. If θ /∈ Rdδ ,
then ‖θ − θ · δ‖ > 0, and then both extreme sides of (29) converges to +∞ = h(θ|δ)
as γ ↓ 0. If θ ∈ Rdδ , then ‖θ − θ · δ‖ = 0 and both extreme sides of (29) converges to

h(θ · δ|δ) = h(θ|δ) as γ ↓ 0. �

Lemma 11. Assume H1. Suppose that there exists γ0 > 0 such that Π̌γ0(·|z) is

well-defined. Then for all γ ∈ (0, γ0], Π̌γ(·|z) is well-defined and

dtv(Π̌γ , Π̃γ) ≤ 2
(

1− e−%γ(z)
)
, (32)

where %γ(z) is as defined in (16).

Proof. For all γ > 0, we define

Cγ(δ)
def
=

∫
Rd
e−hγ(θ|δ)dθ, and Cγ =

∑
δ

πδ(2πγ)
‖δ‖0
2 Cγ(δ).

The term Cγ is the normalizing constant of Π̌γ . The function hγ is nondecreasing as

γ ↓ 0. Hence, if Cγ0 <∞, then Cγ <∞ for all γ ∈ (0, γ0], which guarantees that Π̌γ

is well-defined for all γ ∈ (0, γ0]. For the remaining of the proof, we fix γ ∈ (0, γ0].

To derive the total variation majoration, we start with a bound on Cγ . Using the

second inequality of (29), we write

(2πγ)−d/2Cγ =
∑
δ

πδ

(
1

2πγ

) d−‖δ‖0
2

∫
Rd
e−hγ(θ|δ)dθ

≤
∑
δ

πδ

(
1

2πγ

) d−‖δ‖0
2

∫
Rd
erγ(δ,θ)e

− 1
2γ
‖θ−θδ‖2e−h(θδ|δ)dθ.

where

rγ(δ, θ) = 〈∇`(θ)−∇`(θδ), θ − θδ)〉+
γ

2
‖δ · ∇`(θ) + δ · g (θδ|δ) ‖2.

We recall from the proof of Lemma 9 that the normalizing constant of Π̃γ is given by

C =
∑
δ∈∆

πδ

(
1

2πγ

) d−‖δ‖1
2

∫
Rd
e
− 1

2γ
‖θ−θδ‖2e−h(θδ|δ)dθ =

∑
δ∈∆

πδ

∫
Rd
e−h(θ|δ)µδ(dθ).

In view of the last inequality, and the definitions of Π̃γ , C, and %γ , we get

(2πγ)−d/2Cγ
C

≤ e%γ(z). (33)

The total variation bound between Π̃γ(δ, dθ|z) and Π̌γ(δ, dθ|z) now follows from a

comparison of the two measures. Indeed, Using the first inequality of (29), and for
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γ ∈ (0, γ0], we deduce that

Π̌γ(δ, dθ|z) =
1

Cγ
πδ

(
1

2πγ

)− ‖δ‖0
2

e−hγ(θ|δ)dθ

≥ 1

Cγ
πδ

(
1

2πγ

)− ‖δ‖0
2

e
− 1

2γ
‖θ−θδ‖2e−h(θδ|δ)dθ

=
C

(2πγ)−
d
2 Cγ

Π̃γ(δ, dθ|z)

≥ e−%γ(z)Π̃γ(δ, dθ|z), (34)

using (33). By a standard coupling argument (see e.g. Lindvall (1992) Equation 5.1),

the minorization (34) implies (32). �

7.3. Proof of Corollary 8. The function ` is clearly convex and ∇`(θ) = − 1
σ2X

′(z−
Xθ). Hence H1(1) holds. The elastic-net density in (18) is log-concave and contin-

uous, which implies that P (·|δ) is convex and lower semi-continuous for any given

δ. Furthermore, For θ ∈ Rdδ , sign(θ) is a subgradient of x 7→ ‖x‖1 at θ. Hence

g(θ|δ) def
= αλ1

σ2 sign(θ) + (1−α)λ2
σ2 θ is a subgradient of P (·|δ) at θ ∈ Rdδ . Hence H1 holds,

and the conclusion of Theorem 7 applies. From its definition, we have

e%γ(z) =

∑
δ∈∆ πδ

(
1

2πγ

) d−‖δ‖0
2 ∫

Rd e
rγ(δ,θ)e

− 1
2γ
‖θ−θδ‖2e−h(θδ|δ)dθ∑

δ∈∆

(
1

2πγ

) d−‖δ‖0
2 ∫

Rd e
− 1

2γ
‖θ−θδ‖2e−h(θδ|δ)dθ

.

From the expression of ∇`, we have

‖∇`(θ2)−∇`(θ1)‖ ≤ L1‖θ − θ2‖. (35)

with L1
def
= λmax(X

′X)/σ2. Furthermore, for all δ ∈ ∆ and θ ∈ Rdδ ,

‖δ · ∇`(θ)‖2 =
1

σ4
(z −Xθ)′XδX

′
δ(z −Xθ) ≤ 2L1

1

2σ2
‖z −Xθ‖2 = 2L1`(θ). (36)

From the expression of g(·|δ), we have

‖g(θ|δ)‖2 ≤
(
αλ1

σ2

)2

‖δ‖0 +
2(1− α)λ2

σ2

[
α
λ1

σ2
‖θ‖1 + (1− α)

λ2

2σ2
‖θ‖2

]
≤ c(δ) + 2L1P (θ|δ), θ ∈ Rdδ (37)

where c(δ)
def
=
(
αλ1
σ2

)2
‖δ‖0, and using the assumption (1−α)λ2 ≤ λmax(X

′X). Using

(35-37), we have

rγ(δ, θ) ≤ L1

(
1 +

3γ

2
L1

)
‖θ − θδ‖2 + 3γL1`(θδ) +

3γ

2
c(δ) + 3γL1P (θδ|δ). (38)
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We set hγ
def
= 1− 2γL1

(
1 + 3γ

2 L1

)
, and a

def
= 3L1. Then (38) gives

∫
Rd
erδ(δ,θ)e

− 1
2γ
‖θ−θδ‖2eh(θδ|δ)dθ ≤ e

3γ
2
c(δ)

×
∫
Rd
e
−hγ

2γ
‖θ−θδ‖2e−(1−γa)`(θδ)−(1−γa)P (θδ|δ)dθ. (39)

Notice that the integral on the right-side of (39) can be factorized as the product

of two integrals, with one integral taken over the components for which δj = 0, and

the other taken over the components for which δj = 1. We introduce some notation

to do this rigorously. Fix δ ∈ ∆, and s = ‖δ‖0. For a given function f : Rd → R, we

define f [s] : Rs → R as f [s](u) = f(uδ), where uδ ∈ Rd, and uδi = 0 if δi = 0, and

uδj = u∑j
k=1 δk

if δj = 1. With this notation, and for 4γL1 ≤ 1 (which implies that

hγ > 0), the integral on the right-hand side of (39) is equal to(
2πγ

hγ

) d−s
2
∫
Rs
e−(1−γa)`[s](u)−(1−γa)P [s](u|δ)du.

A similar calculation on the denominator of e%γ(z) gives∫
Rd
e
− 1

2γ
‖θ−θδ‖2e−h(θδ|δ)dθ = (2πγ)

d−s
2

∫
Rs
e−`

[s](u)−P [s](u|δ)du.

We conclude that

e%γ(z) ≤

∑
δ∈∆ πδe

3γ
2
c(δ)
(

1
hγ

) d−s
2 ∫

Rs e
−(1−γa)`[s](u)−(1−γa)P [s](u|δ)du∑

δ∈∆ πδ
∫
Rs e

−`[s](u)−P [s](u|δ)du
, (40)

For 4γL1 ≤ 1, and using the inequality log(1 − 2x − 3x2) ≥ −6x, valid for all

x ∈ [0, 1/4], we have(
1

hγ

) d−s
2

= exp

[
−d− s

2
log
(
1− 2γL1 − 3γ2L2

1

)]
≤ e3dγL1 . (41)

Fix u0 ∈ Rs, arbitrary. Since γ > 0 is taken such that 4γL1 ≤ 1, we see that

γa = 3γL1 ≤ 3/4. Then by the convexity of `[s] we have

(1− γa)`[s](u) = −γa`[s](u0) + (1− γa)`[s](u) + γa`[s](u0)

≥ −γa`[s](u0) + `[s] (γau0 + (1− γa)u) .

Similarly, by the convexity of P [s](·|δ),

(1− γa)P [s](u|δ) ≥ −γaP [s](u0|δ) + P [s] (γau0 + (1− γa)u|δ) .
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Using these last two inequalities, and the change of variable (1 − γa)u + γau0 = w,

we conclude that∫
Rs
e−(1−γa)`[s](u)−(1−γa)P [s](u|δ)du

≤ eγa(`[s](u0)+P [s](u0|δ)) (1− γa)−s
∫
Rs
e−`

[s](u)−P [s](u|δ)du.

Setting R(z)
def
= maxδ∈∆ infu∈Rs

[
`[s](u) + P [s](u|δ)

]
, and using the inequality log(1−

3x) ≥ −6x, x ∈ [0, 1/4] we obtain,∫
Rs
e−(1−γa1)¯̀(u)−(1−γa2)P̄ (u)du ≤ eγaR(z)e6dγL2

∫
Rs
e−

¯̀(s)(u)−P̄ (s)(u|δ)du.

It follows from this last inequality, (41) and (40) that

%γ(z) ≤ 3γ

2
max
δ∈∆

c(δ) + 3γL1 (3d+R(z))

≤ 3γ

2

(
αλ1

σ2

)2

d+
3γ

σ2
λmax(X

′X)

[
d (3 + logZ(φ)) +

‖z‖2

2σ2

]
,

as claimed.

�
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