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Abstract

High dimensional piecewise stationary graphical models represent a versatile class for modelling time
varying networks arising in diverse application areas, including biology, economics, and social sciences.
There has been recent work in offline detection and estimation of regime changes in the topology of sparse
graphical models. However, the online setting remains largely unexplored, despite its high relevance to
applications in sensor networks and other engineering monitoring systems, as well as financial markets.
To that end, this work introduces a novel scalable online algorithm for detecting an unknown number of
abrupt changes in the inverse covariance matrix of sparse Gaussian graphical models with small delay. The
proposed algorithm is based upon monitoring the conditional log-likelihood of all nodes in the network
and can be extended to a large class of continuous and discrete graphical models. We also investigate
asymptotic properties of our procedure under certain mild regularity conditions on the graph size, sparsity
level, number of samples, and pre- and post-changes in the topology of the network. Numerical works
on both synthetic and real data illustrate the good performance of the proposed methodology both in
terms of computational and statistical efficiency across numerous experimental settings.

Key words. Sequential change-point detection, Gaussian graphical models, Pseudo-likelihood, Mini-batch
update, Asymptotic analysis

1 Introduction
Recent technological advances in data mining have revolutionized the collection of complex and high-

resolution financial, biological and social data [31]. Characterizing and understanding the relationships
amongst a large number of variables poses novel methodological and technical challenges. Probabilistic
graphical models capture the conditional dependence structure between variables of interest [30] and thus
have become a standard tool for the aforementioned task. Further, Gaussian processes provide powerful mod-
els in many applications, which when combined with the computational advantages of estimating Gaussian
Graphical Models (GGM) has rendered them very popular in empirical work (see e.g., [7, 20]).

An undirected probabilistic graphical model comprises of p nodes (variables of interestX = [X1, . . . , Xp]
>)

{V1, . . . , Vp}, whose edges represent conditional dependence relationships amongst them; specifically, there
is an edge between Vi and Vj if they are conditionally dependent given all other variables (nodes). In GGMs,
X is a zero mean Gaussian random vector with covariance matrix Σ and in the precision matrix Ω := Σ−1,
an edge connects Vi and Vj if and only if Ωij 6= 0. In other words, the conditional dependency structure
and topology of a GGM can be uniquely encoded by Ω. Consequently, a rich literature has been developed
around estimating Ω in time invariant GGMs given n i.i.d zero mean observations X1, . . . ,Xn ∈ Rp from the
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network. When n > p the Maximum Likelihood estimator of Ω corresponds to the inverse of the empirical
covariance matrix of Σ, while in the case of n < p one needs to impose additional structural assumptions,
such as sparsity, on the underlying Ω (see [10] and references therein).

Despite voluminous research on estimating stationary graphical models, in various scenarios the under-
lying dependency structure dynamically evolves over time. Next, we discuss several real-world problems
centering around temporally evolving high-dimensional data with underlying network structure.

(a) Temporal fluctuations in functional connectivity (FC), which is referred to as dynamic-FC, has recently
received a lot of attention in resting-state blood-oxygen level-dependent functional magnetic resonance
imaging (rs-fMRI) [16, 19]. The dynamic-FC is commonly investigated using covariance matrix of FC
over consecutive windowed segments.

(b) The similarity pattern of streaming measurements in a large sensor network can be subject to abrupt
changes due to anomalous behaviour of an unknown subset of nodes. For instance, Kalitsis et al. [21]
studied the online detection of false data injection attacks in wide-area smart grid networks.

(c) Stock return time series occasionally exhibit radical changes associated with stochastic switching be-
tween high and low volatility regimes, financial crises or changes in government policy. Despite a rich
literature on regime-switching low-dimensional time series models [3, 4], there remains an incomplete
understanding of this idea for high dimensional financial network data. Note that there are a few re-
cent studies [1,5] on detecting multiple sudden changes in the dependency structure of S&P 500 stocks
returns for the period of 1982− 2000 and 2000− 2016 as a result of the stock market crash of October
1987 (known as Black Monday), beginning of the great recession on January 2008, and the bankruptcy
declaration day of Lehman Brothers Holdings Inc. on September 15, 2008.

Learning temporally evolving dependency structures across a large number of variables requires specifi-
cation of the mechanism that drives the underlying dynamics. A simple, analytically tractable and widely
applicable mechanism is given by assuming piecewise stationary dynamics subject to unknown break points.
This versatile model, which is known as the change-point model, has been extensively studied for low dimen-
sional time series during the last few decades; see for example, [2,6,17,22] and references therein. However,
there is significantly less work towards understanding the algorithmic and theoretical aspects of change-point
estimation for high-dimensional time series data.

Change-point detection algorithms are classified into two groups: offline and sequential (online). Given
the entire data set beforehand, the objective of offline algorithms is to spot the abrupt changes by scanning
through the available data. On the other hand, detection and collection of new samples run concurrently in
the sequential framework and the goal is to find sudden changes with the smallest delay after they occur.
Given independent observations in the high dimensional paradigm, [12,25] designed offline two sample-tests
for identifying a single change-points in the covariance matrix. In [14,23,24] maximizing a regularized pseudo-
likelihood with fused-lasso penalty has been proposed for estimating multiple structural breaks in the inverse
covariance matrix of high dimensional sparse GGMs. Roy et al. [28] introduced a two-step algorithm for
estimating a single abrupt change in the parameters of high dimensional sparse Markov random fields. Given
an estimate of sudden change, the parameters before and after the change-point are separately estimated by
maximizing an `1 penalized pseudo-likelihood function. A brute force search on a coarse grid is necessary
for updating the location of change-point in each step. Solely focusing on GGMs, Atchadé and Bybee [1]
proposed an approximate majorize-minimize (MM) algorithm for reducing the computational cost of brute
force search. Note that the `1 penalized loss maximization algorithms in [1, 28] are capable of estimating
a single change-point and extension to the case of multiple jumps requires binary segmentation. Note that
despite its relatively low computational cost, the binary segmentation is a greedy procedure that is not
guaranteed to maximize the log-likelihood function. Finally, Chen et al. [13] proposed a non-parametric
sequential algorithm for detecting sudden changes in the similarity graph of dependent random variables.

Motivated by applications in sensor networks and financial markets, we propose a novel sequential al-
gorithm for detecting sudden changes in sparse inverse covariance structure of high-dimensional GGMs and
investigate its theoretical and numerical properties. To the best of our knowledge, this constitutes the
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first attempt for addressing the problem of online detection of abrupt changes in high-dimensional and
sparse graphical models. The sequential change-point detection in an inverse covariance (precision) matrix
inevitably associates with two technical challenges. First, unlike the covariance matrix, the elements (or
eigenvalues) of the precision matrix cannot be easily characterized by the data, particularly in the “ large p,
small n” framework. Another challenge, which is a distinctive feature of high dimensional sequential detec-
tion, arises when the main concern is spotting sudden shifts with reasonable delay. In contrast to offline
high-dimensional change-point detection, the number of post-change observations is considerably smaller than
p. Therefore unlike penalized likelihood-based abrupt-change estimators in [1, 14, 23, 24, 28], the detection
procedure should be decoupled from estimating the post-change dependence structure of GGM.

Outline of online detection strategy. We conclude this section by presenting a concise and high-level
introduction to the proposed sequential detection algorithm. Let Gt = (V,Et) denote a zero-mean GGM
with p vertices and a time-varying precision matrix Ω(t). For each t, we observe a single realization of Gt,
which is represented by Xt = [Xt,1, . . . , Xt,p]

>. We conduct a statistical test to determine whether a jump
occurred at time t, i.e. Ω(t) 6= Ω(t+1). As detecting small changes can be challenging for complicated objects
such as Ω(t) (especially for large p), our study is hinged on two moderate and prevalent restrictive conditions.

(a) (Sparsity) For regulating the amount of conditional dependence in Gt, Ω(t) is assumed to be a sparse
matrix, for each t. Some type of sparsity assumption often holds in the aforementioned applied problems.

(b) (Detection delay) Many sequential decision rules rely on utilizing post-change features of the process.
We adopt a similar approach by allowing to observe w samples ahead before making a decision. Namely,
we raise an alarm at t by using two sources of information, w post-change observations (Xt+1, . . . ,Xt+w)
and pre-change features such as an `1-regularized estimate of Ω(t). In previous work on offline change-
point learning in sparse graphical models, the estimated jump is of order log p distant from the true
location of a change-point (e.g., Theorem 8 of [1] or Theorem 1 in [28]). So roughly speaking, w is an
online variant of the corresponding abrupt-change estimation error in offline approach.

Comparing the pre- and post-change conditional log-likelihood of all nodes is at the heart of our proposed
algorithm. We particularly show that −2 logP

(
Xts | Xts′ : s′ 6= s; Ω(t)

)
+log Ω

(t)
ss − log (2π) has a χ2

1 density.
However if a change occurs at time t, and lasted for at least w time points, i.e., Ω(t+w) = . . . = Ω(t+1) 6= Ω(t),
then

Π(t,w)
s :=

{
−2 logP

(
Xt+r,s | Xt+r,s′ : s′ 6= s; Ω(t)

)
+ log Ω(t)

ss − log (2π)
}w
r=1

,

is a set of i.i.d. random variables that are not centered around one. Indeed there are some nodes for which

β(t,w)
s := E

[
−2

w

w∑
r=1

logP
(
Xt+r,s | Xt+r,s′ : s′ 6= s; Ω(t)

)
+ log

(
Ω

(t)
ss

2π

)∣∣∣There is an abrupt-change at t

]
6= 1.

Therefore for a non-negative convex function f for which f (x) > 0 when x 6= 1 (its exact formulation will
be introduced in Section 2.1), after proper normalization

∑p
s=1 f(β

(t,w)
s ) concentrates around zero, if no

jump occurs at time t. Indeed, we utilize a suitable convex barrier f for designing a decision rule in order
to magnify any deviation from pre-change pseudo-likelihood function. The exact formulation of this idea
is postponed to Section 2.2. It is also noteworthy to mention that since the core building blocks of our
procedure are based upon comparing the pre- and post-change pseudo-likelihood of the data, we believe that
it can be extended to more generic Markov random fields.

We study the performance of our algorithm in two settings: fully known and unknown Ω(t). Although
the case of a fully known Ω(t) is not realistic, it provides insight in understanding our contribution, as well
as the intrinsic complexity of the underlying detection problem. When the pre-change precision matrix is
unknown, we require the change-points to be far from each other and the boundary point t = 0. In this
case, we first consistently estimate Ω(1) using any well-studied offline estimation algorithm such as QUIC
[18] in the burn-in period (t = 1, . . . , n0 for some large enough n0). Note that the first abrupt-change is
supposed to appear after n0. After obtaining an adequate quality estimate of Ω(1) in hand, we concurrently

3



run the detection test and update our pre-change precision matrix in a sequential fashion. Our asymptotic
analysis reveals that when both p and sample size grow in such a way that we can consistently estimate
the pre-change precision matrix of the GGM, the detection rate does not differ from the ideal case of a
fully-known pre-change dependence structure. In other words, the detection power of our online algorithm
is robust against small enough estimation errors, which is highly desirable for real applications.

The remainder of the paper is organized as follows: Section 2.1 rigorously formulates the online change-
point problem as a hypothesis testing procedure and introduce the required statistical ingredients for under-
standing the subsequent sections. Section 2.2 is devoted to presenting the proposed detection algorithm for
both fully known and unknown pre-change attributes of the GGM. Section 3 is reserved for investigating the
behaviour of proposed decision rule under both null (no-change at t) and alternative (sudden change at t)
hypotheses. In Section 4, we study asymptotic properties of our algorithm in the case of unknown pre-change
precision matrix (combination of online detection and estimation). Section 5 assesses the performance of
proposed algorithm by numerical experiments on synthetic and real data. Section 6 serves as the conclusion
and discusses future directions. We prove the main results of the paper in Section 7. Lastly, Appendices A
and B contain auxiliary technicalities which are essential for the results in Section 7.

Notation. 1 (·), ∧ and ∨ successively refer to indicator function, minimum and maximum operators. We
use Im, 0m and 1m respectively denote the m-by-m identity matrix, all zeros column vector of length m, and
all ones column vector of length m. Sp×p++ stands for the set of strictly positive definite p × p matrices. For
two matrices of the same size M and M ′, 〈M,M ′〉 :=

∑
i,jMijM

′
ij denotes their usual inner product. For

M ∈ Rp×p and B1, B2 ⊂ {1, . . . , p}, MB1,B2 = [Mij : i ∈ B1, j ∈ B2] denote the sub-matrix of M associated
to (B1, B2)-block. diag (M) refers to the main diagonal entries of M . We use the following norms on
M ∈ Rm×n. ‖M‖2→2 represents the usual operator norm (largest singular value of M). For any 1 ≤ p ≤ ∞,
‖M‖`p stands for element-wise `p-norm of vectorized M . For any x > 0, Γ (x) denotes the Gamma function
at x and ψ(r) stands for the poly-gamma function of order r, which is defined by

ψ(r) (x) =
dr+1 log Γ (x)

dxr+1
, ∀ x > 0 and r = 0, 1, . . . .

For two non-negative sequences {am}∞m=1 and {bm}∞m=1, we write am . bm if there exists a bounded positive
scalar Cmax (depending on model parameters) such that lim supm→∞ am/bm ≤ Cmax. Moreover, am � bm
refers to the case that am . bm and am & bm. For a non-negative deterministic {am}∞m=1 and random
sequence {bm}∞m=1, we write bn = OP (an), if P (bm ≤ Cmaxam)→ 1, as m→∞, for some bounded positive
scalar Cmax (which may depend on model parameters). DKL (P1 ‖ P2) represents the Kullback–Leibler (KL)
divergence between two distributions P1 and P2. Lastly for a binary test statistic Ξ, the false alarm and
miss-detection probabilities are respectively defined by

PFA (Ξ) := P (Ξ = 1 | H0) , and PMD (Ξ) := P (Ξ = 0 | H1) .

2 Problem formulation and detection algorithm
We start by providing a rigorous formulation of the problem at hand and then introduce the detection

strategy initially for the case of a known precision matrix before the change point, which provides insight
into the technical aspects of the problem, followed by the real world setting of an unknown precision matrix
that needs to be estimated in an online fashion from the available data.

2.1 Background and setup
Let Gt = (V,Et) , t ∈ {1, . . . , T} be a time-varying undirected zero mean GGM with (fixed) node set V

of size p, where T denotes the number of observed independent samples. For any t ∈ {1, . . . , T}, we observe
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a single realization of Gt represented by Xt = [Xt,1, . . . , Xt,p]
>. In particular, Xt is a p-variate Gaussian

vector with density function

g
(
x; Ω(t)

)
= (2π)

−p/2
√

det Ω(t) exp

(
−x>Ω(t)x

2

)
, ∀ x ∈ Rp,

where Ω(t) denotes the symmetric positive definite precision matrix of Xt. Note that Et is fully identifiable
from the non-zero off-diagonal elements of Ω(t); namely

Et =
{

(α, α′) ∈ V × V : α 6= α′, Ω
(t)
α,α′ 6= 0

}
.

Adopting a piecewise constant model for Ω(t) is a popular approach to modelling multiple abrupt changes in
the dependency structure of Gt. Specifically, assume that there is a set D? ⊂ {1, . . . , T}, sorted in ascending
order and with t?0 = 1, such that

Ω(t) =

T∑
j=1

ΩjI
(
t?j ≤ t < t?j+1

)
, ∀ t ∈ {1, . . . , T} . (2.1)

In Eq. (2.1) D? stands for the collection of unknown change-points between 1 and T . As a consequence{
Xt : t?j ≤ t < t?j+1

}
are independent and identically distributed samples drawn from g (·; Ωj).

Detecting jumps in Ω(t) is equivalent to solving T separate hypothesis testing problems formulated by

H0,t : t /∈ D? vs. H1,t : t ∈ D?, ∀ t ∈ {1, . . . , T} . (2.2)

In an offline setting, we observe the entire set {Xt}Tt=1 prior to test any hypothesis in (2.2). Simply put, a
binary decision function Ξt (X1, . . . ,XT ) ∈ {0, 1} is designed for disambiguating H0,t from H1,t with false
alarm rate below some π0 ∈ (0, 1), for any t ∈ {1, . . . , T}. On the other hand, in the online regime, Ξt solely
depends on {Xi}t+wi=1 , for some pre-specified delay w. Henceforth, we focus exclusively on the online setting.

For better understanding the rationale behind our proposed detection algorithm, we make a succinct
overview of two key statistical concepts: KL-divergence and conditional log-likelihood of multivariate Gaus-
sian vectors. We first introduce an alternative formulation of the KL-divergence between underlying distribu-
tions under H0,t and H1,t. From a statistical viewpoint, the false alarm of Ξt, regardless of its complexity, is
not negligible when the KL-divergence between P (X1, . . . ,Xt+w | H0,t) and P (X1, . . . ,Xt+w | H1,t) is small.
For ease of presentation, we consider a simple scenario. Suppose that the inverse covariance matrix of Gt
switches from Ω1 to Ω2 at time t and it remains in the new regime until t+w, i.e. D? ∩{t, . . . , t+ w} = {t}.
For notational convenience let Ψ := Ω

−1/2
2 Ω1Ω

−1/2
2 and define f : (0,∞) 7→ [0,∞) by

f (x) := x− 1− log x, ∀ x > 0, (2.3)

Since {Xr}t+wr=1 independent and zero-mean random vectors under both H0,t and H1,t, the KL-divergence
between P (X1, . . . ,Xt+w | H1,t) and P (X1, . . . ,Xt+w | H0,t), which is denoted by D, can be written as

D =
∑

1≤r≤w

DKL

(
P (Xt+r | H1,t) ‖ P (Xt+r | H0,t)

)
= wDKL

(
P (Xt+1 | H1,t) ‖ P (Xt+1 | H0,t)

)
= w

[
tr
(
Ω−1

2 Ω1

)
− log

(
det Ω1

det Ω2

)
− p
]

= w
(

tr (Ψ)− log det Ψ− p
)

= w

p∑
j=1

f
(
λj (Ψ)

)
. (2.4)

The conditional log-likelihood of a GGM is another key component in the proposed detection algorithm.
It is known that for a Gaussian random vector X = [X1, . . . , Xp]

> ∼ N
(
0p,Σ = Ω−1

)
, the log-likelihood

function of Xs given X−s satisfies the following identity for any s ∈ {1, . . . , p}.

Zs := −2 logP (Xs|X−s)− log

(
2π

Ωss

)
= Ωss

Xs +
∑
t 6=s

XtΩst
Ωss

2

= Ωss

(∑p
t=1XtΩst

Ωss

)2

=
〈X,Ωs,:〉2

Ωss
. (2.5)
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Note that Zs represents the data dependent part of the conditional negative log-likelihood. Moreover,

var (〈X,Ω:,s〉) = Ωs,: cov (X) Ω:,s = Ωs,:Ω
−1Ω:,s =

(
ΩΩ−1Ω

)
ss

= Ωss.

That is, {Zs : s = 1 . . . , p} forms a class of dependent χ2
1 random variables.

2.2 Detection algorithm for a known pre-change precision matrix
Next, we introduce a novel online algorithm for detecting abrupt changes in Ω(t) with delay w; namely,

determine whether (t+ 1) ∈ D?, given {X1, . . . ,Xt, . . . ,Xt+w}. To gain insights into the nature of the prob-
lem, we first consider the oracle framework in which the pre-change precision matrix Ω(t) is fully known, that
allows us to solely focus on the detection procedure without having to estimate the pre-change parameters.
The setting of an unknown Ω(t) is addressed in Section 2.3.

As we discussed in Section 1, the proposed test statistic is motivated by employing a network based
pseudo-likelihood function. For any s ∈ {1, . . . , p}, define

Y (t,w)
s :=

1

wΩ
(t)
ss

w∑
r=1

〈Xt+r,Ω
(t)
:,s 〉2. (2.6)

Based on Eq. (2.5), Y (t,w)
s is indeed the empirical average of the (shifted) negative conditional log-likelihood

of node Vs given all the other nodes in Gt. When dealing with GGMs, Y (t,w)
s is a linear combination of w

independent quadratic forms of Gaussian random variables. Next, we investigate the distribution of Y (t,w)
s

under H0,t. In this case Ω(t) = Ω(t+1) = . . . = Ω(t+w). Thus, for any r ∈ {1, . . . , w}, 〈Xt+r,Ω
(t)
:,s 〉 is a

centered Gaussian random variable whose variance is given by

var
(
〈Xt+r,Ω

(t)
:,s 〉
)

= Ω(t)
s,: cov (Xt+r) Ω(t)

:,s = Ω(t)
s,:

[
Ω(t)

]−1

Ω(t)
:,s =

(
Ω(t)

[
Ω(t)

]−1

Ω(t)

)
ss

= Ω(t)
ss . (2.7)

Identity (2.7) reveals that when H0,t holds, then

〈Xt+r,Ω
(t)
:,s 〉√

Ω
(t)
ss

∼ N (0, 1) =⇒ wY (t,w)
s ∼ χ2

w, ∀ s ∈ {1, . . . , p} .

According to the strong law of large numbers, Y (t,w)
s concentrates around one with high probability for all

s = 1, . . . , p, as w increases. In contrast, under H1,t, whenever Ω(t) 6= Ω(t+1) = . . . = Ω(t+w), the expected
value of Y (t,w)

s is given by

E
(
Y (t,w)
s | H1,t

)
=

1

w

w∑
r=1

(
Ω(t)

[
Ω(t+1)

]−1
Ω(t)

)
ss

Ω
(t)
ss

=

(
Ω(t)

[
Ω(t+1)

]−1
Ω(t)

)
ss

Ω
(t)
ss

. (2.8)

Remark 2.1. Define Ψ(t) ∈ Sp×p++ by Ψ(t) :=
[
Ω(t)

]1/2 [
Ω(t+1)

]−1 [
Ω(t)

]1/2
. The formulation of KL-

divergence between multi-variate Gaussian densities in Eq. (2.4) shows that distinguishing H0,t and H1,t is
not possible when Ψ(t) = Ip. On the other hand, a careful comparison between Eq. (2.7) and (2.8) reveals
a slightly stronger condition for distinguishing H0,t from H1,t. Strictly speaking, conditional log-likelihood
terms can not differentiate null and alternative hypotheses, when diag

(
Ψ(t)

)
= 1p. In words, a test based

on the pseudo-likelihood function rules out the possibility of detecting abrupt changes at t+ 1 when

Ψ(t) 6= Ip, and Ψ(t)
ss = 1, ∀ s = 1, . . . , p.

Although this may seem a statistical drawback of using the pseudo-likelihood function for detection purposes,
we believe that such situations do not arise in many practical scenarios involving high-dimensional streaming
network data. Therefore for scalability purposes, it is still of great interest to design online change-point
detection algorithms based on the pseudo-likelihood function. Further, such an algorithm (unlike likelihood-
based detection algorithms) can be also applicable to more general Markov random field models.
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Next, we introduce our online detection algorithm. Recall function f from Eq. (2.3) and consider the
following test statistic.

Tt =

∑p
s=1 f

(
Y

(t,w)
s

)
− E

[∑p
s=1 f

(
Y

(t,w)
s

) ∣∣∣H0,t

]
std
[∑p

s=1 f
(
Y

(t,w)
s

) ∣∣∣H0,t

] .

For a pre-specified π0 ∈ (0, 1) (denoting the desirable false alarm rate) and a pre-determined critical value
ζπ0 , we design the following binary decision function

Ξt = 1 (Tt ≥ ζπ0
) , (2.9)

for selecting between H0,t and H1,t. Notice that we raise an abrupt change flag, whenever Ξt = 1. Namely,
Ω(t) = Ω(t+1) = . . . = Ω(t+w), as long as Tt is strictly less than ζπ0

.
Before looking closely into technical aspects of the proposed algorithm, we concisely explain the rationale

behind our approach. We argued that if the dependence structure of Gt does not vary at t+ 1, all random
variables Y (t,w)

s , s = 1, . . . , p lie in a neighborhood of one. We also selected a non-negative strongly convex
barrier function f , whose single root is at x = 1. Hence, f(Y

(t,w)
s ) lies around zero, for any s. In contrast,

when the network undergoes an abrupt change, Ef(Y
(t,w)
s ) is strictly positive for some nodes s ∈ {1, . . . , p}.

As a result, Tt exhibits relatively larger values under the alternative hypothesis. Finally, due to the convexity
of f , the deviation between H0,t and H1,t is more pronounced in Tt for stronger changes in Ω(t).

The first question that needs to be addressed is how to simply standardize
∑p
s=1 f(Y

(t,w)
s ) under H0,t.

Remark 2.2. One can easily justify that under H0,t, 〈Xt+r,Ω
(t)
:,s 〉/

√
Ω

(t)
ss , r = 1, . . . , w, form a set of i.i.d.

standard Gaussian random variables, for any s ∈ {1, . . . , p}. Thus, wY (t,w)
s has a chi-square density with w

degrees of freedom. Lemma A.3 states that

g1 (w) := E
[
f
(
Y (t,w)
s

) ∣∣∣H0,t

]
= log

(w
2

)
− ψ(0)

(w
2

)
,

g2 (w) := std
[
f
(
Y (t,w)
s

) ∣∣∣H0,t

]
=

√
ψ(1)

(w
2

)
− 2

w
, ∀ s = 1, . . . , p. (2.10)

So Tt can be rewritten in the following form.

Tt =

∑p
s=1 f

(
Y

(t,w)
s

)
− pg1 (w)

std
[∑p

s=1 f
(
Y

(t,w)
s

) ∣∣∣H0,t

] .
g1 (·) and g2 (·) are respectively exhibited in the left and right panels of Figure 1. It is obvious from Figure
1 that both g1 (w) and g2 (w) converge to zero, as w →∞. In particular, it is known that1

lim
w→∞

wg1 (w) = 1, and lim
w→∞

wg2 (w) =
√

2.

Next, we evaluate the denominator of Tt. To do so, we first define the partial correlation matrix of Gt,
denoted by R(t).

R(t) :=

 Ω
(t)
s1,s2√

Ω
(t)
s1,s1Ω

(t)
s2,s2

p
s1,s2=1

∈ Rp×p.

Straightforward calculations show that for standard Gaussian random variables Z1 and Z2 with correlation
r, cov

(
Z2

1 , Z
2
2

)
= 2r2. This fact together with the linearity property of the covariance function imply that

cov
(
Y (t,w)
s1 , Y (t,w)

s2 | H0,t

)
=

2

w

(
R(t)
s1,s2

)2

, ∀ s1, s2 ∈ {1 . . . , p} . (2.11)

1We refer the reader to 5.11.2 of https://dlmf.nist.gov/5.11 and 5.15.8 of https://dlmf.nist.gov/5.15
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Figure 1: black dots in the left and right panels respectively exhibit g1 (w) and g2 (w) for w ∈ {1, . . . , 20}.

Simply put, R(t) encodes the dependence between conditional log-likelihood functions in Gt. Now employing
the second identity in Eq. (2.10) yields

var

[
p∑
s=1

f
(
Y (t,w)
s

) ∣∣∣H0,t

]
= g2

2 (w)

p∑
s1,s2=1

corr
[
f
(
Y (t,w)
s1

)
, f
(
Y (t,w)
s2

) ∣∣∣H0,t

]
.

Finding a closed form expression for the correlation between f(Y
(t,w)
s1 ) and f(Y

(t,w)
s2 ), under H0,t, demands

algebraically cumbersome manipulations. However, it is not too difficult to see that it only depends on R(t)
s1,s2

and w. Namely, there exists hw : [−1, 1] 7→ [−1, 1] such that

corr
[
f
(
Y (t,w)
s1

)
, f
(
Y (t,w)
s2

) ∣∣∣H0,t

]
= hw

(
R(t)
s1,s2

)
. (2.12)

Remark 2.3. We employ numerical techniques for approximating hw. Figure 2 displays hw for different
values of w. The plot in the right panel in Figure 2 depicts that hw (r) ≈ r4 for w ≥ 10. In Lemma A.2, we
rigorously substantiate this observation by introducing a uniform upper bound on

∣∣hw (r)− r4
∣∣. Specifically,

we show that

• hw passes the origin and hw (1) = hw (−1) = 1.

• As w →∞, maxr∈[−1,1]

∣∣hw (r)− r4
∣∣ = O

(
w−1

)
.

Approximating hw (r) with r4 offers the following numerically convenient proxy for Tt for large enough w.

Tt =

∑p
s=1

[
f
(
Y

(t,w)
s

)
− g1 (w)

]
g2 (w)

√∑p
s1,s2=1 hw

(
R

(t)
s1,s2

) ≈
∑p
s=1

[
f
(
Y

(t,w)
s

)
− g1 (w)

]
g2 (w)

∥∥R(t)
∥∥2

`4

. (2.13)

In summary, when Ω(t) is fully known, we propose the following sequential test for detecting a sudden
change at time t+ 1.

Ξt = 1


∑p
s=1

[
f
(
Y

(t,w)
s

)
− g1 (w)

]
g2 (w)

√∑p
s1,s2=1 hw

(
R

(t)
s1,s2

) ≥ ζπ0

 (2.14)
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Figure 2: hw (x) versus x and x4 sign (x) for w = 1, 5, 10 and 20.

2.3 Detection algorithm: Unknown pre-change precision matrix
The precision matrix is usually unknown before the change-point and needs to be estimated from the

data. In this case, Tt is approximated by plugging into Eq. (2.13) a positive definite estimate of Ω(t).
Specifically, let Ω̂(t) be an estimate of Ω(t). Then, the partial correlation matrix R(t) can be estimated by

R̂(t) =

 Ω̂
(t)
ij√

Ω̂
(t)
ii Ω̂

(t)
jj

p
i,j=1

.

Moreover for any s ∈ {1, . . . , p}, we can estimate Y (t,w)
s (recall it from Eq. (2.6)) in the following way.

Ŷ (t,w)
s :=

1

wΩ̂
(t)
ss

w∑
r=1

〈Xt+r, Ω̂
(t)
:,s 〉2.

When we have access to R̂(t) and
{
Ŷ

(t,w)
s

}p
s=1

, we propose to estimate Tt and Ξt by

T̂t =

∑p
s=1

[
f
(
Ŷ

(t,w)
s

)
− g1 (w)

]
g2 (w)

√∑p
s1,s2=1 hw

(
R̂

(t)
s1,s2

) , Ξ̂t = 1
(
T̂t ≥ ζπ0

)
. (2.15)

As seen in Eq. (2.15), the key to approximating Tt is the availability of a good estimate of Ω(t), which
is a challenging task, especially in settings where consecutive change-points are close to each other. Thus,
adequate separation in time between two consecutive change-points should be present for obtaining a good
approximation of the proposed test statistic. The following assumption formalizes this notion. Recall that
t?j denotes the location of j-th change-point and for notational consistency, we choose t?0 = 1.

Assumption 2.1. For each j ∈ N, there exists a large enough nj ∈ N (depending on p, w and the sparsity
pattern of network between j-th and (j − 1)-th abrupt changes) such that∣∣t?j − t?j−1

∣∣ > nj , ∀ j ≥ 1.
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Note that Assumption 2.1 generalizes the boundary condition for the offline single change-point estimation
problem (see Assumption 2 in [28]). For the time being, selection of nj is postponed for later sections. We
refer to the first nj samples after t?j as the burn-in period. We also assume that there exists a fixed, bounded
window size n0 such that nj = n0 for any j ≥ 1.

We first provide the intuition behind the algorithm. Detecting each change-point goes through two
phases: warm-up and detection-estimation cycle. For simplicity, we only focus on detecting the first abrupt
change (located at t?1). Note that for each t ≤ t?1, Ω(t) = Ω(1).

(a) (warm-up) We estimate Ω(1), which is denoted by Ω̂(1), using X1, . . . ,Xn0
.

(b) For any t > n0, as long as Ξ̂t = 0, we use Xt for updating Ω̂(1). In contrast, if Ξ̂t = 1 (an abrupt change
at t), then we wait for Xt+1, . . . ,Xt+n0

for estimating the post-change inverse covariance matrix.

Next, we describe our approach to updating the estimated pre-change precision matrix in phase (b).
Again for simplicity, we only focus on updating Ω(1).

Updating Ω(1). A mini-batch procedure is used for updating Ω(1), wherein we first obtain B (a pre-
determined block size) new samples and subsequently a new estimate at time t = n + kB (k ∈ N) by
employing X1, . . . ,Xn0+kB ; the parameter k tracks the number of size-B batches before the first abrupt
change. Throughout this paper, we employ the CLIME algorithm [11] or alternatively the QUIC estima-
tor [18] for estimating Ω(1), since both enjoy desirable theoretical and numerical properties. The detailed
pseudocode of this proposed procedure is presented in Algorithm 1.

Algorithm 1 Online detection with batch update of pre-change precision matrix
Input: n0, w,B, ζπ0

and tuning parameter τ
Initialization Set D̂ = ∅ and b = 0. Given X1, . . . ,Xn0

, obtain Ω(1) by CLIME or QUIC with tuning
parameter τ . Also set t̂last = 0, where t̂last denotes the estimated location of the last change-point.
Iterate For t = (n0 + 1) , . . . , T

Set Ξt = 1
(
T̂t ≥ ζπ0

)
.

If Ξt = 0 (no change-point)

b← b+ 1 and t← t+ 1.

If b = B (Update pre-change precision matrix)

Obtain Ω̂(t) using the CLIME or QUIC methods to X1+t̂last
, . . . ,Xt−1,Xt.

b← 0.

Else

Ω̂(t) = Ω̂(t−1)

Else

t̂last = t and D̂ ← D̂ ∪
{
t̂last

}
.

Given Xt, . . . ,Xt+n0−1, estimate post-change precision matrix using CLIME or QUIC
methods.

t← t+ n0 and b← 0.

Output: D̂
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3 Asymptotic analysis of Ξt for a fully known Ω(t)

Next, we establish large-sample properties of the proposed test Ξt introduced in Eq. (2.14), under both
the null and alternative hypotheses. The section addresses the following three issues:

• Choosing the critical value of the test, ζπ0 , for a fixed false alarm probability π0 ∈ (0, 1).

• Investigating the false alarm and detection power of Ξt for large sparse graphs.

• Introducing the key concepts for the asymptotic analysis of the algorithm in the realistic case of an
unknown pre-change precision matrix.

We present the obtained results in two sub-sections. Section 3.1 studies the distribution of Tt (recall its
formulation from Eq. (2.13)) under the null hypothesis H0,t and introduces a simple way of choosing the
critical value ζπ0 . In Section 3.2, we investigate the statistical power of Tt for detecting small changes in the
structure of Ω(t). We start by defining the set of well-behaved precision matrices.

Definition 3.1. Let M and αmin be two bounded and strictly positive scalars. Define Cp×p++ (αmin,M) by

Cp×p++ (αmin,M) =
{
A ∈ Sp×p++ : ‖A‖1→1 ≤M, λmin (A) ≥ αmin

}
.

For theoretical purposes, throughout this section both pre- and post-change precision matrices are as-
sumed to belong to Cp×p++ (αmin,M) for some bounded scalars M and αmin. Namely, although an abrupt
change may affect the topology of the network, the post-change precision matrix is still well-behaved, ex-
hibiting a bounded condition number and a sparse edge set.

3.1 Distribution of Tt under H0,t

Precise evaluation of null distribution is extremely challenging, due to the complex nature of Tt. There-
fore, for approximating ζπ0

, especially for large networks, we inevitably focus on finding the asymptotic null
distribution of Tt. Let dmax and d̄ respectively denote the maximum and average degree of Gt. Namely

dmax := max
s1=1,...,p

∣∣∣{s2 : Ω(t)
s1,s2 6= 0

}∣∣∣ , and d̄ :=
1

p

p∑
s1=1

|{s2 : Ωs1,s2 6= 0}| .

For brevity, the dependence of p and t in dmax and d̄ are dropped. Throughout the remainder of the paper,
asymptotic regime refers to the scenario that p, and possibly dmax and d̄, tend to infinity.

Assumption 3.1. The following conditions hold in the asymptotic regime.

(a) Ω(t) ∈ Cp×p++ (αmin,M) for some fixed, bounded and strictly positive scalars M and αmin.

(b) d̄dmax grows slower than √p, i.e., lim supp→∞
dmaxd̄√

p = 0.

Next, we present the first main result of this section.

Theorem 3.1. Suppose that there is no change-point between t and t+w, i.e. Ω(t) = Ω(t+1) = . . . = Ω(t+w).
If Ω(t) satisfies Assumption 3.1, then

Tt
d→ N (0, 1) .

According to Theorem 3.1, Tt converges in distribution to a standard Gaussian random variable under
certain asymptotic regularity conditions. Thus, PFA (Ξt) is guaranteed to remain below π0, if we choose

ζπ0
= Qπ0

where Qx stands for the inverse Gaussian Q-function at x, i.e.
∫∞
Qx

(2π)
− 1

2 exp
(
−u2/2

)
du = x.
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Figure 3: Histogram and kernel density estimator of Tt for different scenarios regarding (p, dmax, w). The
condition number of Ω(t) equals to 2.05, 2.02, 2.08, and 1.24 from left to right and top to bottom, respectively.

A close look at Tt in Eq. (2.13) reveals that Tt is a standardized linear combination of non-Gaussian
components

{
f(Y

(t,w)
s ) : s = 1, . . . , p

}
. Further, as discussed in Section 2.2 (see Eq. (2.11)), the random

variables Y (t,w)
s1 and Y (t,w)

s2 are independent if there is no edge between s1 and s2 at time t, i.e. Ω
(t)
s1,s2 = 0.

Therefore, Tt can be viewed as a linear combination of components in a sparse, stationary non-Gaussian
random field. We expect the central limit theorem to hold for Tt (as p → ∞), since it is formed from a
finite range random field. Lemma 2 in [8], which provides a sufficient condition for asymptotic normality of
a sequence of random variables, is a critical tool for obtaining the asymptotic distribution of Tt. Note that
we adapt the proof of Theorem 3.3.1 in [15] to the case of growing dmax and d̄ for verifying the sufficient
condition in Lemma 2 in [8].

Figure 3 depicts the histogram of Tt and its kernel density estimate for different values of p, w and dmax

for 104 independent replicates. In each case, Ω(t) is constructed in the following way: We first generate
a matrix U ∈ Rp×p with dmax non-zero entries in each row. Non-zero elements of U are independently
generated from a uniform distribution on (−1, 1). We then choose the symmetric positive definite Ω(t) by

Ω(t) ← U + U> + 1.5dmaxIp,

Ω(t) ← Ω(t)

λmin

(
Ω(t)

) .
Thus, in each case d̄ = dmax and αmin = 1. It is apparent from Figure 3 that Tt has approximately a
standard Gaussian density for all four cases. It is also obvious that the skewness in the histograms decays
as p increases.

Remark 3.1. The condition (b) in Assumption 3.1 restricts the growth rate of d̄dmax. For instance, it is
asymptotically violated for star network topologies, i.e. a tree with a single hub node and p − 1 leaves of
length one. One can easily verify that for star networks dmax = p and d̄ = p−1 (2 (p− 1) + p) ≈ 3. Therefore,

dmaxd̄√
p
� √p→∞.
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Such graphs are prevalent in centralized sensor or computer networks. Note that d̄ = O (1) in many applied
problems, even for star networks. So roughly speaking, Assumption 3.1 holds whenever dmax = o

(√
p
)
, as

p → ∞. Namely, Ω̂(t) can have a finite number of local hub nodes, whose degrees grow slower than √p.
Extensive numerical work presented in Section 5 aims to understand whether condition (b) in Assumption
3.1 is an artifact of our asymptotic analysis or reflects a shortcoming of the proposed algorithm.

3.2 Distribution of Tt under H1,t

Next, we study the detection power of Ξt, under the asymptotic regime of Assumption 3.1.

Assumption 3.2. The following conditions are imposed on the change-point location and post-change
precision matrix.

(a) Ω(t) 6= Ω(t+1) and Ω(t+1) = . . . ,= Ω(t+w).

(b) Ω(t+1) ∈ Cp×p++ (αmin,M) for some M,αmin ∈ (0,∞).

For brevity, define ∆ = [∆s : s = 1, . . . , p]
> ∈ Rp by

∆s :=

[
Ω(t)

(
Ω(t+1)

)−1
Ω(t)

]
ss

Ω
(t)
ss

− 1, ∀ s = 1, . . . , p, (3.1)

with ∆ encoding the (relative) amount of sudden change in the network. For instance, if Ω(t) = Ω(t+1), then
all entries of ∆ are zero and ‖∆‖`2 is small if the dependence structure of GGM experiences a weak change
at time t. Further, define Ψ̄p by

Ψ̄p :=
1

p

p∑
s=1

f (1 + ∆s) .

Note that Ψ̄p is well-defined as mins=1,...,p ∆s > −1. Ψ̄p roughly quantifies the average relative change at
time t. We now present the key result of this section.

Theorem 3.2. Suppose that Assumptions 3.1 and 3.2 hold. Further, assume that π0, π1 ≤ 1
2 . Consider Ξt

with the critical value ζπ0 = Qπ0 . Then, Ξt satisfies the following condition in the asymptotic regime

PFA (Ξt) ≤ π0, and PMD (Ξt) ≤ π1,

as long as

Ψ̄p ≥
4

w

√
1

p

[
log

(
1

2π0

)
+ log

(
1

2π1

)]
. (3.2)

Remark 3.2. Theorem 3.2 confirms that detection of changes in the dependence structure of a GGM
becomes relatively easier as p grows. The intuition behind Eq. (3.2) is that in large GGMs, borrowing
information across different edges improves the detection power. Another intuitive aspect of the asymptotic
result in Eq. (3.2) is the capacity of recognizing weaker change-points for larger delay w. Increasing w
provides more information about the post-change dependence structure of the GGM. We also draw the
reader’s attention to the different asymptotic behavior of p and w in Eq. (3.2). Recall the formulation of
Ξt from Eq. (2.14). We discussed in Remark 2.2 that the standard deviation of f(Y

(t,w)
s ), s = 1, . . . , p,

decays at rate w−1 (instead of w−1/2), as w grows. Simply put, the proposed convex barrier function f
plays a critical role in Tt, as it introduces a test statistic with very small variance under both the null and
alternative hypotheses. Therefore, the detection capability of Ξt rapidly increases with w.
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Remark 3.3. In the offline setting with a single change point located at t?, it has been shown in [1,28] that
t? can be estimated with order log p accuracy, i.e.

∣∣t̂− t?∣∣ = O (log p). In the online framework, w (detection
delay) plays the role of the estimation error in the change-point location. So in practical scenarios, one can
choose w = O (log p). For this case the detection rate (3.2) can be rewritten as follows

Ψ̄p ≥ 4

√
− log (2π0)− log (2π1)

p log2 p
.

Next, we explore different settings in light of Theorem 3.2..

(a) Uniform change in Ω(t): Assume that there is some β ≥ 1 such that −Ω(t+1) + β−1Ω(t) is strictly
positive definite. So the change-point affects all the eigenvalues of Ω(t). Namely, the network is subject
to a dense abrupt change in the spectral domain. In this case for all s ∈ {1, . . . , p}, ∆s admits

1 + ∆s =

[
Ω(t)

(
Ω(t+1)

)−1
Ω(t)

]
ss

Ω
(t)
ss

≥

[
Ω(t)

(
β−1Ω(t)

)−1
Ω(t)

]
ss

Ω
(t)
ss

= β.

Hence Ψ̄p ≥ f (β) and so the condition (3.2) holds, whenever

f (β) ≥ 4

√
− log (2π0)− log (2π1)

pw2
.

(b) Rank-r change in Ω(t): Let Ω(t) = UΛU> be the eigen-decomposition of Ω(t), i.e., UU> = U>U = Ip and
Λ is a diagonal matrix with diag (Λ) = [λ1, . . . , λp]. For simplicity, also assume that diag

(
Ω(t)

)
= 1p.

We assume that only top r eigenvalues of Ω(t) are impacted by the abrupt change at t. Particularly,
Ω(t+1) can be decomposed in the following way.

Ω(t+1) = U

λ1 (1 + β1)
. . .

λp (1 + βp)

U> s.t. βr+1 = . . . = βp = 0.

We also assume that mini=1,...,r βi ≥ βmin for some strictly positive βmin. Roughly speaking βmin can
not be so large as Ω(t+1) ∈ Cp×p++ (αmin,M). Due to the convexity of f , Ψ̄p can be controlled from below
by f (

∑p
s=1 (1 + ∆s) /p). Lastly, we obtain a sharp upper bound on

∑p
s=1 (1 + ∆s). Observe that

1

p

p∑
s=1

(1 + ∆s) =

p∑
s=1

[
Ω(t)

(
Ω(t+1)

)−1
Ω(t)

]
ss

pΩ
(t)
ss

=
1

p
tr

(
Ω(t)

(
Ω(t+1)

)−1

Ω(t)

)
=

p∑
s=1

λ2
s

pλs (1 + βs)

=

p∑
s=1

λs
p (1 + βs)

=
1

p

p∑
s=1

λs −
1

p

r∑
s=1

λsβs
1 + βs

(a)
= 1− 1

p

r∑
s=1

λsβs
1 + βs

≤ 1− βmin

1 + βmin

∑r
s=1 λs
p

.

Notice that identity (a) is implied from the fact that all diagonal entries of Ω(t) equal to one. So,

Ψ̄p ≥ f

(
p∑
s=1

1 + ∆s

p

)
≥ f

(
1− βmin

1 + βmin

∑r
s=1 λs
p

)
.

In summary, the condition (3.2) holds, as long as

f

(
1− βmin

1 + βmin

∑r
s=1 λs
p

)
≥ 4

√
− log (2π0)− log (2π1)

pw2
.

It is noteworthy that for small enough βmin, βmin

1+βmin

∑r
s=1 λs
p has the same asymptotic behavior as βminr

p .
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(c) Small relative change: In this case, Ω(t+1) = Ω(t) + Θ for a positive semi-definite matrix Θ satisfying∥∥∥∥(Ω(t)
)− 1

2

Θ
(

Ω(t)
)− 1

2

∥∥∥∥
2→2

≤ ξ < 1,

for a ξ ∈ [0, 1). One can verify the following fact for any positive semi-definite A with ‖A‖2→2 ≤ ξ.(
I − (ξ + 1)

−1
A
)
− (Ip +A)

−1 ∈ Sp×p++ .

Using this fact we control 1 + ∆s from above, ∀ s = 1, . . . , p. Choose A =
(
Ω(t)

)− 1
2 Θ

(
Ω(t)

)− 1
2 , then

1 + ∆s =

[
Ω(t)

(
Ω(t) + Θ

)−1
Ω(t)

]
ss

Ω
(t)
ss

=

[(
Ω(t)

) 1
2 (Ip +A)

−1 (
Ω(t)

) 1
2

]
ss

Ω
(t)
ss

≤ 1−

[(
Ω(t)

) 1
2 A

(
Ω(t)

) 1
2

]
ss

(1 + ξ) Ω
(t)
ss

= 1− Θss

(1 + ξ) Ω
(t)
ss

< 1.

Since f is a decreasing, convex function in (0, 1], we have

Ψ̄p =
1

p

p∑
s=1

f (1 + ∆s) ≥ f

(
p∑
s=1

1 + ∆s

p

)
≥ f

(
1− 1

(1 + ξ) p

p∑
s=1

Θss

Ω
(t)
ss

)
.

Therefore Ξt has the desirable properties, if

f

(
1− 1

(1 + ξ) p

p∑
s=1

Θss

Ω
(t)
ss

)
≥ 4

√
− log (2π0)− log (2π1)

pw2
.

Lastly note that p−1
∑p
s=1

Θss
Ω

(t)
ss

encodes the mean relative change in the conditional variance of all nodes.

(d) Localized change: In this example, we consider a setting that the change-point only affects a single node
and the edges connected to it. Let Θ := Ω(t+1) − Ω(t) and suppose that diag

(
Ω(t)

)
= 1p. The abrupt

change being trapped in some s ∈ {1, . . . , p} and its neighbors means that

Θ = ve>s + esv
> = [v es]

[
e>s
v>

]
,

for s-th coordinate unit vector es ∈ Rp and a v ∈ Rp such that for any u ∈ {1, . . . , p}, vu = 0 if Ω
(t)
su = 0.

For simplicity define β := ‖v‖`2 , U := [v es] ∈ Rp×2, and V := [es v] ∈ Rp×2. Analogously to parts
(a)− (c), our goal is to study the asymptotic behavior of Ψ̄p for growing p. We only consider the case
that β = O (1) when p→∞. Using Woodbury ’s matrix identity yields

∆u =

[
Ω(t)

(
Ω(t) + UV >

)−1
Ω(t)

]
uu

Ω
(t)
uu

− 1 =

[
U

(
I2 + V >

(
Ω(t)

)−1

U

)−1

V >

]
uu

, ∀ u = 1, . . . , p.

Observe that if Ω
(t)
su = 0, then the u-th row of U and V are filled with zeros. So ∆u = 0 and f (1 + ∆u) =

0. On the other hand for neighbors of s, we have

|∆u| ≤
‖Uu,:‖`2 ‖Vu,:‖`2

λmin

(
I2 + V >

(
Ω(t)

)−1
U
) =

‖Uu,:‖2`2
λmin

(
I2 + V >

(
Ω(t)

)−1
U
)
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Since the smallest eigenvalue of Ω(t+1) = Ω(t) +UV > is greater than αmin > 0 and its largest eigenvalue
is less than M , one can find a bounded positive scalar Cmin depending on M and αmin, such that

λmin

(
I2 + V >

(
Ω(t)

)−1

U

)
≥
√
Cmin =⇒ |∆u| ≤

‖Uu,:‖2`2√
Cmin

.

Thus, as p → ∞, all ∆u terms remain in a small neighborhood of zero, since ‖U‖2`2 = 1 + β2 = O (1).
By applying a Second order Taylor expansion of f near one, we get

f (1 + ∆u) ≤ Cmax∆2
u, ∀ u = 1, . . . , p,

for some bounded positive scalar Cmax. Thus, some straightforward algebraic derivations lead to

Ψ̄p =
1

p

p∑
u=1

f (1 + ∆u) ≤ Cmax

p

p∑
u=1

∆2
u ≤

Cmax

pCmin

p∑
s=1

‖Uu,:‖4`2 �
1

p

p∑
s=1

‖Uu,:‖4`2 ≤
‖U‖4`2
p
� 1

p
(3.3)

Comparing Eq. (3.3) with the sufficient detectability condition in Eq. (3.2) reveals that the considered
localized change can not be detected with small error.

We conclude this section by relaxing condition (b) in Assumption 3.2. Choose w+ ∈ N strictly smaller
than w. The following result introduces a sufficient condition on Ψ̄p for detecting the change point at time
t− := t− (w − w+). Notice that the next w samples at time t− satisfy

Ω(t−) = . . . = Ω(t) 6= Ω(t+1) = . . . = Ω(t+w+). (3.4)

In words, we observe w+ post-change samples, which is equivalent to having a detection delay of w+.

Theorem 3.3. Suppose that Assumption 3.1, constraint (a) in Assumption 3.2, and condition (3.4) hold.
Choose π0, π1 ≤ 1

2 and consider Ξt− with the critical value ζπ0
= Qπ0

. Then, asymptotically

PFA

(
Ξt−

)
≤ π0, and PMD

(
Ξt−

)
≤ π1,

whenever

Ψ̄p ≥
4

w+

√
1

p

[
log

(
1

2π0

)
+ log

(
1

2π1

)]
.

Due to space considerations, the proof of Theorem 3.3 is omitted since it follows along the lines of the
proof of Theorem 3.2, with slightly more involved calculations.

4 Asymptotic analysis of Ξt: unknown Ω(t)

As discussed in Section 2.3, the pre-change precision matrix needs to be estimated from the observed
samples. Our developed theoretical approach for studying Ξ̂t (and its associated test statistic T̂t) relies on
a large-sample sharp bound on the estimation error of the precision matrix. Specifically, we need operator
and Frobenius norm convergence rates in terms of p, dmax of the network, and sample size. Because of space
constraints, the non-asymptotic analysis of estimating sparse precision matrices is beyond the scope of this
paper. Consequently, we only employ off-the-shelf theoretical results for this task. For instance, we heavily
use Theorems 1 and 4 of [11] for studying Algorithm 2.3 with the CLIME estimator.

In Section 2.3, we qualitatively stated that separation of consecutive change-points is needed to guarantee
the consistency of Algorithm 2.3. The following condition formalizes this notion.

Assumption 4.1. There exists a bounded large enough scalar C (depending on αmin and M) such that∣∣t?j − t?j−1

∣∣ ≥ N := Cpdmax log2 p (w ∨ log p) , ∀ j ≥ 1.
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Next, we establish the null distribution of T̂t in Algorithm 2.3 (with the CLIME estimator).

Theorem 4.1. Suppose that there is no change-point between t − N and t + w, i.e. Ω(t−N+1) = . . . =
Ω(t) = . . . = Ω(t+w). Note that the condition is viable when Assumption 4.1 holds. Further, suppose that
Assumption 3.1 holds for Ω(t); then, asymptotically

T̂t
d→ N (0, 1) ,

According to Theorem 4.1, if Assumption 4.1 holds, then the null distribution of T̂t has the same asymp-
totic behavior as that of Tt (with a fully-known pre-change precision matrix). Roughly speaking, the null
distribution of Tt remains almost intact, given large enough separation of consecutive change-point locations.
Hence, if the critical value ζπ0

is chosen by Qπ0
, then PFA(Ξ̂t) is ensured to be less than π0, in the asymptotic

regime. We conduct a simple simulation study for verifying Theorem 4.1. Figure 4 depicts the histogram
and associated kernel density estimate of T̂t for four scenarios of (p, w, dmax). In each panel, the histogram
summarizes 104 independent replicates based on the same pre-change true and estimated precision matrices.
For constructing each histogram, we use the CLIME procedure with N = dpdmax log pe for estimating the
pre-change precision matrix. The scikit-learn implementation of the graphical lasso with the coordinate de-
scent optimization algorithm is utilized for estimating Ω(t). Finally, note that the regularization parameters
are chosen as 0.01, 0.01, 0.01, and 0.005 from left to right and top to bottom panels, respectively.

Remark 4.1. The CLIME estimator requires O (pdmax log p) samples for consistently estimating Ω(t), in the
Frobenius norm (see Theorem 4 of [11]), which is slightly weaker than the sufficient condition on the interval
between two successive change-point in Assumption 4.1. Moreover, according to Theorem 8 of Atchadé et
al. [1], estimating the location of change point with order log p error in a s-sparse GGM requires O (s log p)
samples. Setting w = log p in Assumption 4.1 leads to a slightly stronger condition on N in the online
framework. In particular, we require N = pdmax log3 p observations before the change-point.

Remark 4.2. Notice that N is an increasing function of w in Assumption 4.1, which may seem counter-
intuitive at first glance. This observation can be spelled out by noting that the var (Tt) decays as order
w−2, under the null hypothesis. Simply put as w increases, even a slight bias introduced by the CLIME
estimator can change the null distribution of Tt (because of its very small variance). In contrast, Theorem
3.2 suggests that increasing w improves the power of our proposed test. Therefore, a suitable value for w
is affected by the trade-off between the false alarm and miss-detection rates of Ξ̂t. Hence, we posit that
selecting w = O (log p) is a reasonable choice in practical settings.

Next, we study the detection rate of Ξ̂t under Assumption 4.1. The following result shows that under
the same conditions of Theorem 3.2 and if Assumption 4.1 holds, then Ξ̂t enjoys the same detection power
as Ξt.

Theorem 4.2. Suppose that Assumptions 3.1 and 3.2 hold. Further, assume that π0, π1 ≤ 1
2 . Consider Ξ̂t

with the critical value ζπ0 = Qπ0 . Then, Ξ̂t satisfies the following condition asymptotically

PFA

(
Ξ̂t

)
≤ π0, and PMD

(
Ξ̂t

)
≤ π1,

provided that Assumption 4.1 is satisfied and

Ψ̄p ≥
4

w

√
1

p

[
log

(
1

2π0

)
+ log

(
1

2π1

)]
.

In summary, given a good estimate of Ω(t), for large networks the false alarm and miss-detection rates
of the proposed test are not affected by the estimation error. Namely, our detection algorithm is robust
against small estimation error, which is highly desirable in applications. It is worth mentioning that under
Assumption 4.1, the detection power of Ξt− (recall its formulation from Eq. (3.4) and Theorem 3.3 ) is not
also affected by the estimation error of the pre-change precision matrix.
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Figure 4: Histogram and kernel density estimator of T̂t for different scenarios regarding (p, d, w). In each
panel, Ω(t) is estimated by the graphical LASSO with N = dpdmax log pe. The regularization parameters are
chosen as 0.01, 0.01, 0.01, and 0.005 from left to right and top to bottom, respectively.

5 Numerical studies
The next set of numerical experiments aims to:

(a) Corroborate the developed asymptotic theory for Ξt and Ξ̂t in Sections 3 and 4.

(b) Understand the impact of issues absent in the asymptotic analysis, such as the length of the burn-in
period and update window, on PFA and PMD of Algorithm 2.3.

(c) Assess the capabilities of our proposed method on real-world applications through sequential detection
of structural changes in the S&P 500 over the period 2000− 2016.

In Section 5.1, we evaluate the detection power of Ξt (known pre-change precision matrix) for the three
different scenarios introduced in Section 3.2: uniform, rank-r and localized abrupt changes. Section 5.2
gauges the performance of Ξ̂t in Algorithm 2.3. Lastly, Section 5.3 is devoted to experiments with S&P
500 data. Throughout this section, the false alarm rate is set to π0 = 0.01 and thus the critical value is
ζπ0

= 2.3263. Further,
{
Gt ∼ N

(
0p,Ω

(t)
)

: t = 1, . . . , T
}
denotes a time-evolving zero-mean GGM of size

p, observed on a time horizon of size T . The Ω(t) is always normalized to be a correlation matrix. In other
words, Ω(t) = R(t), where R(t) denotes the associated partial correlation matrix to Ω(t).

5.1 Performance evaluation of Ξt

The time horizon is set to T = 500 and a single change point occurs at t? = 250. We use ΩBC and ΩAC

for referring the before and after-change precision matrix of Gt, respectively. Namely

Ω(t) = ΩBC1{t≤t?} + ΩAC1{t>t?}, ∀ t ∈ {1, . . . , T} .

Remark 5.1. Given p and d, we generate a sparse random matrix U ∈ Rp×p with exactly d independent
standard Gaussian entries per row. The locations of non-zero elements in each row are selected uniformly at
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random (without replacement). We then generate H ∈ Rp×p via

H :=
UU>

‖UU>‖`∞

where H is a non-negative definite symmetric matrix whose entries lie in [−1, 1]. Note that when d � p,
distinct rows of U have non-overlapping support with high probability. This fact ensures the sparsity of H in
our synthetic simulation studies. In practice H is near singular when d

p � 1. So for controlling the condition
number of ΩBC, we choose

ΩBC ←− H + λ0Ip,

for some properly chosen λ0 > 0.

The first experiment assesses the performance of Ξt for detecting a uniform change across the entire
network. In this setting, we select λ0 = 0.1 and ΩAC = (1 + β) ΩBC. Note that pβ encodes the strength
of change-point in the whole network. Our objective is to evaluate the sensitivity of false alarm and miss-
detection to p, β, d, and delay w. For any fixed tuple (p, w, β, d), π0 and π1 are estimated based on 100
replicates of the network. In particular for the i-th replication, false alarm and miss-detection rates are
respectively estimated by

π̂0,i =
1

t? − w

t?−w∑
t=1

Ξit, and π̂1,i =
1

T − w − t?
T−w∑
t=t?

(
1− Ξit

)
, (5.1)

where
{

Ξit
}T
i=1

represents the sequence of binary decisions in {1, . . . , T}. The final estimates π̂0 and π̂1 are
successively obtained by computing the sample mean of {π̂0,i}100

i=1 and {π̂1,i}100
i=1.

Figure 5 depicts log10 π̂0 and log10 π̂1 as a function of p, w, β, and d̄. It is apparent from Figure 5 that
π̂0 lies in a small neighborhood of π0 = 0.01 in all scenarios. However, π̂1 rapidly decays with an increase in
signal-to-noise-ratio (SNR), w and network size p, which is in accordance with Theorem 3.2. For instance,
as can be seen in the left-bottom panel in Figure 5, when p = 800 and w = 15, the average mis-detection
probability is around 1%. On the other hand, when the change point uniformly affects all nodes, for fixed
values of β, p, and w, the detection power does not clearly depend on the sparsity structure of the network
(which is encoded by d̄), which is again an expected finding based on part (a) of Remark 3.3.

In the next experiment, we focus on a low-rank sudden change in the spectrum of {Gt}Tt=1. Consider the
spectral representation of ΩBC given by

ΩBC =

p∑
i=1

λi,BCviv
>
i , where 〈vj1 , vj2〉 = 1{j1=j2},∀ j1, j2 ∈ {1, . . . , p} .

Here we assume that {λi,BC : i = 1, . . . , p} has a non-increasing order. In this setting, the top r eigenvalues
of ΩBC are affected by abrupt change, without any impact on the eigenvectors. Particularly, we choose ΩAC

in the following way:

ΩAC =

r∑
i=1

λi,BC (1 + β) viv
>
i +

p∑
i=r+1

λi,BC (1 + β) viv
>
i .

The dependency of π̂0 and π̂1 (over 100 independent replicates) on β, r, w, and d̄ is presented in Figure 6.
Analogous to the uniform change framework, the miss-detection rate rapidly decays with β, r, and w. For
example, with window size w = 15, Ξt is capable of detecting 20% change (β = 0.2) in half of the eigenvalues
with 99% percent accuracy (π̂1 ≈ 0.01). Further, based on the bottom-left panel in Figure 6, the proposed
algorithm is more powerful for denser graphs (large average degree).

In the sequel, we appraise the detection performance of Ξt for uniform change in star graphs. Recall
that the developed asymptotic theory in Section 3 can not be extended to star graphs, as dmax grows
faster than √p. For modeling star graphs, the following scheme is used for constructing ΩBC. Let u =

19



200 400 600 800 1000
p

−2.0

−1.5

−1.0

−0.5

β = 0.2, w = 15 and d̄ = 25.09

log10 π̂0

log10 π̂1

8 10 12 14 16 18
w

−2.0

−1.5

−1.0

−0.5

β = 0.2, p = 800 and d̄ =25.58

log10 π̂0

log10 π̂1

5 20 35 50 65 80

d̄

−2.1

−2.0

−1.9

β = 0.2, p = 1000 and w = 15

log10 π̂0

log10 π̂1

0.05 0.10 0.15 0.20

β

−2.0

−1.5

−1.0

−0.5

0.0

w = 15, p = 800 and d̄ = 94.93

log10 π̂0

log10 π̂1

Figure 5: log10 π̂0 and log10 π̂1 for Ξt (fully known pre-change attributes) in a uniform change scenario. The
four plots present π̂0 and π̂1 for different p, w, d̄, and β, respectively from left to right and top to bottom.
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Figure 7: log10 π̂0 and log10 π̂1 for Ξt (fully known pre-change attributes) for uniform change in star graph.
From left to right, π̂0 and π̂1 are plotted against p, w, and β, respectively.

[0, u1, . . . , up−1]
> ∈ Rp be a standard Gaussian vector padded with a zero in its first position and also define

e1 = [1, 0, . . . , 0]
> ∈ Rp. The pre-change precision matrix is given by

ΩBC = 1.1Ip +
e1u
> + ue>1
p ‖u‖`∞

.

Note that ΩBC encodes a star network whose root is set as the first node (s = 1). Despite lack of asymptotic
analysis, Figure 7 shows that the false alarm rate is still around 0.01, particularly for large graphs. Moreover,
the variation of π̂1 in terms of w, p, and β is analogous to that in preceding simulation studies.

5.2 Sensitivity of Ξ̂t to the burn-in and update periods
Next, we numerically examine the sensitivity of Ξ̂t to three choice parameters: burn-in period, precision

matrix update frequency, and the frequency of updating the regularization parameter (model selection). The
burn-in period n0 refers to the number of samples used for computing an initial estimate of the post-change
precision matrix (with the premise that the first change-point occurs at t = 0). We assume that the distance
between two consecutive change-points is greater than n0. Since increasing n0 reduces the bias and variance
of the estimated precision matrix, it can provide an effective barrier against random fluctuations in Ξ̂t time
series and reduces the false alarm rate. On the other hand, an unnecessary increase in n0 can affect the
applicability of the proposed detection algorithm in real world scenarios.

False alarms are costly as the algorithm needs to wait for a new burn-in window which in turn may lead
to missing a true forthcoming sudden change. Strictly speaking, suppose that n0 = 500 and the algorithm
raises a false alarm at t = 1000, while the true change-point is located at t = 1250. Thus, detecting this
sudden change with a delay less than 250 is infeasible. One practical solution that guards against false
alarms, which comes at the price of slightly increasing the detection delay, is to declare an abrupt change at
time t, whenever

Ξ̂t+r ≥ ζπ0 , ∀ r = 0, . . . , ι− 1.

In other words, we suggest to wait for ι successive flags before entering a new burn-in period. Our synthetic
simulation studies show that ι = 5 is a proper choice and so throughout this section we fix ι = 5.

Another choice parameter, which has direct impact on the computational complexity of the online de-
tection algorithm, is how often to update the estimated pre-change precision matrix. Let B denote a pre-
specified block size of recent observations. After the burn-in period and until identifying a new change-point,
the precision matrix is updated once every B new samples. In our simulation studies, we exploit the QUIC
method (see Algorithm 1 in [18]) for the estimating pre-change precision matrix because of its smaller error
and faster convergence comparing to the graphical lasso. The QUIC algorithm takes advantage of the second
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order approximation of the Gaussian log-likelihood for solving the following optimization problem.

Ω̂τ = min
Ω∈Sp×p++

{
− log det Ω + 〈Ω, 1

n

n∑
i=1

ZiZ
>
i 〉+ τ ‖Ω‖`1

}
,

in which Zi are i.i.d. draws from a zero mean Gaussian vector with precision matrix Ω?. Proper choice of
τ is essential for controlling the sparsity of the solution and avoiding over-fitting. The optimal value of τ is
chosen on a grid of size 20 to minimize the Bayesian information criterion (BIC) score. In particular, when
t̂last stands for the last detected abrupt change before t and n := t − t̂last, then we optimize the BIC score
over the following grid (for finding the best i ∈ {0, . . . , 19}).

G :=

{
10(−1+j/10)

√
log p

n
: j = 0, . . . , 19

}
.

Namely, we assume that τ = τ0
√
n−1 log p as n increases and the BIC procedure aims to choose the best

τ0. Note that the relationship between τ and n is justified by our asymptotic understanding of the QUIC
algorithm. Evaluating the BIC score over G is a heavy computational burden for large graphs. On the other
hand, when B is considerably smaller than p, tuning the optimal j for each update cycle may provide a
negligible improvement in the detection accuracy. So for accelerating the whole procedure, we propose to
conduct a BIC model selection once every κ times of updating the precision matrix. Thus, we update the
optimal value of j after getting κB new samples, where κ−1 refers to the frequency of conducting BIC model
selection.

We now have all the required ingredients for describing our numerical experiments. Our objective is to
assess the sensitivity of Algorithm 2.3 to n0, B, and κ. In all experiments, we choose p = 100, π0 = 0.01 and
w = 20. Moreover three abrupt changes occur at {3000, 6000, 9000} in T = 104 samples. For each choice
of parameters (n0, B, κ), we employ Algorithm 2.3 on 50 replications of the non-stationary GGM generated
from the following procedure. In order to have a fair comparison, all experiments are conducted on the same
50 replications. We denote by Ω0,Ω1,Ω2, and Ω3 the precision matrix of the network in the following four
periods {1, . . . , 2999}, {3000, . . . , 5999}, {6000, . . . , 8999}, and {9000, . . . , 10000}. In each replicate, Ω0 is
independently generated with the same procedure as in Remark 5.1 with p = 100, d = 20 and λ0 = 0.1. The
first change point uniformly affects all nodes with β = 0.2, i.e. Ω1 = (1 + β) Ω0. The second abrupt change
only impacts the top r = 50 eigenvalues without changing the eigenvectors. Specifically,

Ω2 =

r∑
i=1

λiβviv
>
i + Ω0, with β = 0.4,

in which {vi ∈ Rp}pi=1 are orthonormal eigenvectors of Ω1 whose associated eigenvalues are sorted in a non-
increasing order. For the last change point, we randomly generate a new precision matrix with the same
distribution as Ω0. In this case, possibly all entries, eigenvalues, and eigenvectors are affected by the change-
point. Roughly speaking, the sudden change signal is more visible compared to the previous ones. So for
each replicate, we have access to a multivariate Gaussian time series of length T = 104 of p = 100 vertices.

The first simulation study aims to assess the sensitivity of Algorithm 2.3 to the burn-in period n0. We set
B = 50 and κ = 4 for all experiments, while varying n0 in the set {1100, 1300, 1500, 1700, 1900, 2100}. Note
that in all the following experiments, T̂t is filled with NA if t is in the burn-in period. Table 1 summarizes
the median and interquartile range (IQR) of the detection delays for the three aforementioned type of change
points, as well as average number of false alarms. According to Table 1 given enough samples in the burn-
in period for estimating pre-change precision matrix, increasing n0 has negligible impact on the detection
delay. However, larger values of n0 can guard T̂t against false alarms. Moreover Figure 8 exhibits the average
sample path of T̂t time series (over 50 experiments and after skipping the missing values) for each choice of
n0. Figure 8 shows that the change points randomly affecting all the nodes are easier to detect than uniform
or low rank breaks, which corroborates the summary results in Table 1.
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Figure 8: Average sample path of T̂t for different values of n0.

n0 = 1100 n0 = 1300 n0 = 1500 n0 = 1700 n0 = 1900 n0 = 2100

Uniform Change Median delay 53.5 51 54 54 52.5 51
IQR of delay 48.75 48.75 52.25 51.25 48.75 48.75

Low rank Change Median delay 33 32.5 32 32.5 33 33
IQR of delay 13.25 14.5 12 11.75 13.25 13.25

Random Change Median delay 4 4 4 4 4 4
IQR of delay 0.75 0.75 0.75 0.75 0.75 0.75

Average number of false alarms 0.12 0.06 0.08 0.04 0.00 0.00

Table 1: The median and IQR of detection delay, and average number of false alarams for different values
of n0 over 50 independent experiments.

In the second experiment, we evaluate the robustness of false alarm and miss detection rates to variations
of κ. Recall that for a fixed mini-batch size B and given n samples in the pre-change regime, the precision
matrix is estimated using the QUIC algorithm with regularization parameter τ0

√
n−1 log p, where τ0 is

updated after getting κB new samples. We fix B = 50, and choose (n0, κ) pair from {1500, 2000}×{1, 2, 3, 4}
(8 different cases). The median and IQR of detection delay, as well as average number of false alarms
(computed from 50 independent experiment) are given in Table 2 for each (n0, κ). It can be seen that
variations in κ barely affects the detection delay and false alarm rate.

(1500, 1) (1500, 2) (1500, 3) (1500, 4) (2000, 1) (2000, 2) (2000, 3) (2000, 4)

Uniform Change Median delay 54 54 54 54 52.5 52.5 52.5 52.5
IQR of delay 52.25 52.25 52.5 52.25 48 48 48.5 48

Low rank Change Median delay 33 33 33 32 33 33 32 31
IQR of delay 13.5 13.25 13.25 12 13.5 13.25 13.25 12

Random Change Median delay 4 4 4 4 4 4 4 4
IQR of delay 0 0.75 0.75 0.75 0.75 1 1 1

Average number of false alarms 0.08 0.08 0.08 0.08 0.00 0.00 0.00 0.00

Table 2: The median and IQR of detection delay, and average number of false alarams for different values
of (n0, κ) over 50 independent experiments.
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Lastly, we study the role of increasing the min-batch size B on the performance of T̂t. Note that we
use the same data set as in the two previous simulation studies. We fix κ = 4 for all the experiments and
consider 8 different scenarios for (n0, B) in {1100, 1500} × {5, 10, 20, 40}. Table 3 summarizes the median
and IQR of detection delay, and average number of false alarms. Similar to Table 2, examining the columns
of Table 3 shows that if provided with an adequate quality initial estimate of the precision matrix in the
burn-in period, increasing B exhibits a small impact on the detection performance of T̂t. Roughly speaking,
when B is small, the estimated precision matrix (and consequently the detection procedure) slightly changes
after an update.

(1100, 5) (1100, 10) (1100, 20) (1100, 40) (1500, 5) (1500, 10) (1500, 20) (1500, 40)

Uniform Change Median delay 54.5 54.5 53.5 52.5 54.5 54.5 54.5 54.5
IQR of delay 50.5 50.5 50.75 48.75 52.75 52.75 52.25 52.25

Low rank Change Median delay 33 33 32.5 32.5 33 33 32.5 32.5
IQR of delay 13.5 16.75 16 13.25 16.75 16.75 16 13.25

Random Change Median delay 4 4 4 4 4 4 4 4
IQR of delay 0 0 0 0.75 0.75 0 0 0.75

Average number of false alarms 0.12 0.12 0.12 0.14 0.08 0.08 0.08 0.08

Table 3: The median and IQR of detection delay, and average number of false alarams for different values
of (n0, B) over 50 independent experiments.

5.3 Real data experiment
We assess the performance of Ξ̂t in a real-world scenario. The objective is to estimate the time location of

abrupt changes in the dependency structure of S&P 500 daily close price data for the period from 2000-01-01
to 2016-03-03 (total of 3814 trading days). Note that the S&P 500 data do not fit into the formulation of
time evolving GGMs with independent observations for two main reasons. First, the list of securities in S&P
500 pool evolves over time. For example Alphabet Inc. Class C (with ticker symbol GOOG) entered the
list on 2006-04-03. For circumventing the first issue, we follow the cleaning procedure from [1] and select a
fixed list of 436 ticker symbols from 2004-02-06 to 2016-03-03, consisting of 3039 trading days. The second
technical challenge is that the daily close price of each ticker typically exhibits strong temporal dependence
with non-Gaussian marginal distribution. The geometric Brownian motion (GBM) is a versatile and popular
tool for modeling daily stock prices in mathematical finance (see e.g., Chapter 10 of [27]). Note that under
the GBM model, the daily log-return time series can be well approximated by a Gaussian random walk.
In other words, a high-dimensional GGM with 436 vertices provides a good working model for the daily
log-returns of S&P 500 components.

We choose n0 = 200, w = 22 (corresponding to the number of trading days in a month), π0 = 0.05, κ = 2,
and B = 10. We also employ the same estimation and model selection approach as in Section 5.2. For each
experiment, we conduct our sequential detection algorithm on a network of 100 randomly chosen tickers, i.e.,
p = 100. We also set Ξ̂t = 1 for t in the burn-in period. The solid black curve and cyan interval in Figure
9, respectively exhibits the sample average and standard deviation of Ξ̂t over 300 independent experiments.
Note that for each t, the proximity of the average Ξ̂t (over 300 experiments) to one implies that t is close to
a sudden change in most of the experiments. So roughly speaking the solid dark curve captures the strength
of nearest change-point.

It becomes apparent from Figure 9 that the first cluster of change-points starts in the last few months
of 2008 and lasts for one and half years, which successfully captures the 17-month bear market period from
October 2007 to March 2009 (when the S&P 500 index lost approximately 50% of its value). The beginning
of the Great Recession in December 2007 and the bankruptcy filing of Lehman Brothers Holdings Inc. on
September 15, 2008 are two notable events during this bear market. Another visible change-point in Figure
9 takes place in late 2010, which can represent the end of bear market in 2009. Our detection algorithm finds
the third change-point starting around September 2011, in most of the 300 experiments. The new regime
likely corresponds to a sharp drop in stock prices during August 2011 affecting the performance of stock
exchanges across the United States, Europe, East Asia, and the Middle East. The fall of stock market in
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Figure 9: Confidence bound around Ξ̂t for 300 random subsets of S&P 500 with 100 stocks, and average
return volatility.

August 2011 was due to fears of contagion of the European sovereign debt crisis to Spain and Italy. The
proposed algorithm spots the last change-point in Fall 2014. Note that from September 18 to October 14 of
2014, the S&P 500 experienced a remarkable decline of 7.4% due to market jitters over the rapid spread of the
Ebola virus beyond Africa, fears of a global economic slowdown, Hong Kong protests (umbrella revolution),
and the first U.S. strikes against ISIS in Syria.

In the sequel, we introduce a tangible interpretation of the change-points identified in terms of the average
volatility of all tickers (nodes in the S&P 500 graphical model). For each node s, let {Xt,s}Tt=1 stand for the
daily log-return of s. We approximate the volatility of {Xt,s}Tt=1 using

Vt,s = std (Xs,t, . . . , Xs,t+w) ,∀ t = 1, . . . , T − w.

The dashed blue line in Figure 9 represents the sample average of {Vt,s}ps=1, which is a proxy for the return
volatility index in the S&P 500 pool. Note that based on Figure 9, all detected change-points are closely
related to periods of relatively high values in the return volatility index.

6 Future directions
We studied the problem of scalable sequential detection of abrupt changes in the precision matrix of

high-dimensional sparse GGMs. The objective is to detect a regime-change with maximum delay of w, while
keeping the false alarm rate below some pre-specified threshold δ. The proposed test T̂t (in Algorithm 2.3)
uses a convex barrier function, which is motivated by the formulation of KL-divergence between two zero
mean multivariate Gaussian vectors, for comparing the conditional log-likelihood of all nodes before and after
a sudden-change. We also established asymptotic performance guarantees of the algorithm under certain
regularity conditions on p, w, sample size, and pre- and post-change structure of the graph.

Despite recent progress on scalable offline detection of change-points in the dependence structure of
graphical models in the “ large p, small n” framework, there is still a lot of work to be undertaken in the
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online setting and this study constitutes a first step in that direction. We conclude this section by addressing
several potential extensions of Algorithm 2.3 as topics of future investigation.

(a) Extending the applicability of T̂t to non-Gaussian random fields having a closed-form conditional log-
likelihood, such as Ising models, is straightforward. However the asymptotic analysis of the associated
T̂t with Ising models is more technically challenging, since Y (t,w)

s : s = 1, . . . , p (in Eq. (2.6)) is not a
set of χ2

w random variables under the null hypothesis.

(b) The pre-change precision matrix can be sequentially updated after receiving a new observation by
regularized dual averaging (RDA) procedure [32] instead of using a mini-batch scheme in Algorithm 2.3.
To the best of our knowledge, the consistency of RDA is formulated in terms of the regret function, unlike
`2 or operator norm consistency of the CLIME or QUIC mini-batch updates. It is worth mentioning
that an RDA-based sequential change-point detection was beyond the scope of this paper, as our core
asymptotic focus was on online detection, rather than developing `2 or operator norm estimation rate
of the online update for the pre-change precision matrix.

(c) From a statistical standpoint, investigating optimal choices for the barrier function f , as well as the
minimax lower bound on separability between H0,t and H1,t constitute interesting subjects of future
research.

(d) We pointed out in part (d) of Remark 3.3 that T̂t is not capable of detecting regime-shifts affecting a
small sub-graph of the network. When a sudden-change is confined to a subset of nodes B ⊂ {1, . . . , p},
f
(
Y (t,w)s

)
concentrates around zero for all nodes s not directly connected to B, i.e. Ω

(t)
su = 0, ∀u ∈ B.

In other words, the SNR is reduced in T̂t by considering all nodes unaffected by the change-point. In
this case scanning through a set of potential candidates for B can improve the detection power. Strictly
speaking if B is known to belong a class of clusters C, then this idea can be formulated as the following.

T̂ ′t = max
B∈C

∑
s∈B

[
f
(
Ŷ

(t,w)
s

)
− g1 (w)

]
g2 (w)

√∑p
s1,s2∈B hw

(
R̂

(t)
s1,s2

) .
Obtaining the distribution of T̂ ′t under the null and the alternative hypotheses is a challenging analytic
task and relies on extreme value theory for dependent random variables, which is beyond the scope of
this manuscript.

7 Proofs
Proof of Theorem 3.1. Recall from Eq. (2.6) and Eq. (2.13) that

Y (t,w)
s :=

1

wΩ
(t)
ss

w∑
r=1

〈Xt+r,Ω
(t)
:,s 〉2,

Tt =

∑p
s=1

[
f
(
Y

(t,w)
s

)
− g1 (w)

]
g2 (w)

√∑p
s1,s2=1 hw

(
R

(t)
s1,s2

) .
The proof leverages the well-known Stein’s result (see e.g. [29] or Lemma 2 in [8]) saying that a sequence
of L2 integrable random variables ηn converges in distribution to a standard normal random variable as
n→∞, if

E
[
(jν − ηn) ejνηn

]
→ 0, ∀ ν ∈ R. (7.1)

So we just need to show that E (jν − Tt) ejνTt converges to zero (as p→∞), for any ν ∈ R. We use a similar
technique as in the proof of Theorem 3.3.1 in [15]. Note that we cannot directly utilize the result in [15], as

26



both d̄ and dmax can grow with p. We only consider the case of w = 1 and the proof can be extended to any
w > 1. However, we still keep w as superscript for notational consistency. We introduce new notation for
compactness and transparency of algebraic derivations. For any s ∈ {1, . . . , p}, define

f̄
(
Y (t,w)
s

)
:= f

(
Y (t,w)
s

)
− g1 (w) , σ2

p,w := g2
2 (w)

p∑
s1,s2=1

hw

(
R(t)
s1,s2

)
,

ξs :=

p∑
l=1

f̄
(
Y

(t,w)
l

)
1 (Rs,l 6= 0) , ξcs :=

p∑
l=1

f̄
(
Y

(t,w)
l

)
1 (Rs,l = 0) . (7.2)

Here R stands for the partial correlation matrix of the network. Notice that with the new notation, we have

Tt =
1

σp,w

p∑
s=1

f̄
(
Y (t,w)
s

)
, and ξu + ξcu =

p∑
u=1

f̄
(
Y (t,w)
u

)
= σp,wTt, ∀ u = 1, . . . , p. (7.3)

Since R is a correlation matrix, then

σ2
p,w ≥ g2

2 (w)

p∑
s=1

hw (Rss) = g2
2 (w)

p∑
s=1

hw (1) = g2
2 (w) p ⇒ σp,w ≥ g2 (w)

√
p. (7.4)

Our idea is to decompose (jν − Tt) ejνTt into 3 terms with diminishing expected value. For any ν ∈ R, define

A1 :=
1

σp,w
ejνTt

p∑
s=1

f̄
(
Y (t,w)
s

)[
1− jν

σp,w
ξs − exp

(
−jνξs
σp,w

)]
,

A2 := jνejνTt

1− σ−2
p,w

p∑
s,l=1

f̄
(
Y (t,w)
s

)
f̄
(
Y

(t,w)
l

)
1 (Rs,l 6= 0)

 = jνejνTt

[
1− σ−2

p,w

p∑
s=1

f̄
(
Y (t,w)
s

)
ξs

]
,

A3 := σ−1
p,w

p∑
s=1

(
f̄
(
Y (t,w)
s

)
ejνξ

c
s/σp,w

)
.

We obtain a new formulation for A1 +A3 using Eq. (7.3), which shows that (jν − Tt) ejνTt = A2−(A1 +A3).

A1 +A3 =
ejνTt

σp,w

p∑
s=1

f̄
(
Y (t,w)
s

)
− jνejνTt

σ2
p,w

p∑
s=1

f̄
(
Y (t,w)
s

)
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1

σp,w
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)
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)
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We first show that EA3 = 0. There is a zero mean Gaussian random vector Z ∈ Rp such that

Y (t,w)
s = Z2

s , ∀ s ∈ {1, . . . , p} , and cov (Z) = R.

So for any s, Y (t,w)
s is independent of

{
Y

(t,w)
v : Rvs = 0

}
, implying the independence of f̄

(
Y

(t,w)
s

)
and ξcs.

Therefore,

EA3 = σ−1
p,w

p∑
s=1

E
(
f̄
(
Y (t,w)
s

)
ejνξ

c
s/σp,w

)
= σ−1

p,w

p∑
s=1
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(
f̄
(
Y (t,w)
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)
, ejνξ

c
s/σp,w

)
= 0.
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Thus E
[
(jν − Tt) ejνTt

]
= EA2−EA1. Next, we show that E |A1| and E |A2| tend to zero. We first deal with

E |A2|. Due to the Cauchy-Schwartz inequality, we only show that ‖A2‖2 goes to zero. It is known from Eq.
7.4 that σp,w ≥ g2 (w)

√
p. A lower bound on σp,w gives an alternative asymptotic representation for ‖A2‖2.

‖A2‖22 = ν2E


∣∣∣∣∣∣
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p2g4
2 (w)
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∑
Rs2,l2 6=0
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[
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(
Y (t,w)
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)
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(
Y

(t,w)
l1

)
, f̄
(
Y (t,w)
s2

)
f̄
(
Y

(t,w)
l2

) ]
(7.5)

We break the summation in Eq. (7.5) into two parts. We interchangeably use B1 and B2 instead of (s1, l1)
and (s2, l2), respectively. Define

C1 := {B1, B2 : Rs1,l1 , Rs2,l2 6= 0, There is no edge between B1 and B2} ,
C2 := {B1, B2 : Rs1,l1 , Rs2,l2 6= 0, There is an edge between B1 and B2} .

Proposition B.1 states that∑
B1,B2∈C1

cov
[
f̄
(
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)
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Y
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)
, f̄
(
Y (t,w)
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)
f̄
(
Y

(t,w)
l2

) ]
= 0.

So we can simplify the upper bound on ‖A2‖2 in Eq. (7.5) as follows.
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We discussed in Section that wg2 (w) is uniformly bounded from below on N. Namely, infw∈N |wg2 (w)| > 0.
So Eq. (7.6) can be simplified as the following.

‖A2‖22 ≤
(
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p

)2
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w4
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We now control the covariance between f̄
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)
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from above. Choose
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Since
{
Y

(t,w)
s : s = 1, . . . , p

}
form a set of identically distributed random variables, then∥∥∥f̄ (Y (t,w)

1

)∥∥∥
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4
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Let M0 (w) stands for the forth moment of wf̄
(
Y

(t,w)
1

)
. We substantiated the uniform boundedness of

M0 (w) in Lemma A.4. So substituting Eq. (7.8) into Eq. (7.7) leads to

(E |A2|)2 ≤ ‖A2‖22 .

(
|ν|
p

)2

|C2|M0 (w) �
(
|ν|
p

)2

|C2| . (7.9)

Claim 1. |C2| ≤ 8sd2
max = 8pd̄d2

max

Proof of Claim 1. Consider an arbitrary pair (s1, l1) , (s2, l2) ∈ C2. There is a direct edge between s1 and
l1 as Rs1,l1 6= 0. Similarly, there should be an edge connecting s2 and l2. A direct connection between
(s1, l1), (s2, l2), means that four vertices (s1, l1, s2, l2) form a path of length less 1, 2, or 3. Let mi denotes
the number of distinct paths of length i in Gt. Then

|C2| ≤ 4 (m1 +m2 +m3) .

Since each node in network is connected to at most dmax other nodes, one can easily verify that m1 = s and

mi =

p∑
s=1

(
ds
2

)
di−2

max ≤
p∑
s=1

d2
s

2
di−2

max ≤
1

2
di−1

max

p∑
s=1

ds =
s

2
di−1

max.

Thus |C2| ≤ 2s
(
2 + dmax + d2

max

)
≤ 8sd2

max = 8pd̄d2
max

Replacing the upper bound on |C2| in Claim 1 into Eq. (7.9) shows that

E |A2| ≤ |ν|

√
8d̄d2

max

p
.

Now we find sufficient condition under which E |A1| → 0. Observe that

|A1| = σ−1
p,w

∣∣∣∣∣
p∑
s=1

f̄
(
Y (t,w)
s

)(
1− jνξs

σp,w
− e−jνξs/σp,w

)∣∣∣∣∣ ≤ σ−1
p,w

p∑
s=1

∣∣∣f̄ (Y (t,w)
s

)∣∣∣ ∣∣∣∣1− jνξs
σp,w

− e−jνξs/σp,w
∣∣∣∣

(a)

≤ 1

2σp,w

p∑
s=1

∣∣∣f̄ (Y (t,w)
s

)∣∣∣ ( νξs
σp,w

)2

=
ν2

2σ3
p

p∑
s=1

ξ2
s

∣∣∣f̄ (Y (t,w)
s

)∣∣∣ . (7.10)

The inequality (a) is implied form the fact that
∣∣e−jy + jy − 1

∣∣ ≤ y2/2 for any y ∈ R. We can further
simplify the upper bound on E |A1| by using Holder’s inequality with p = 3 and q = 3/2.

E |A1| ≤
ν2

2σ3
p

p∑
s=1

Eξ2
s

∣∣∣f̄ (Y (t,w)
s

)∣∣∣ ≤ ν2

2σ3
p

p∑
s=1

(
E |ξs|3

) 2
3

(
E
∣∣∣f̄ (Y (t,w)

s

)∣∣∣3) 1
3

. (7.11)

We previously argued in Eq. (7.4) that σp,w ≥
√
pg2 (w) & w

√
p. This fact is crucial for transforming Eq.

(7.11) into a desirable form.

E |A1| . ν2p
3
2

p∑
s=1

(
E |wξs|3

) 2
3

(
E
∣∣∣wf̄ (Y (t,w)

s

)∣∣∣3) 1
3

= ν2p−
3
2

p∑
s=1

‖wξs‖23
∥∥∥wf̄ (Y (t,w)

s

)∥∥∥
3

(b)

. ν2p−
3
2

p∑
s=1

‖wξs‖23 . (7.12)
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Here inequality (b) is obvious implication of Lemma A.4. We finally control ‖wξs‖3 from above. Again by
using Holder’s inequality with p = 3, q = 3/2 and Lemma A.4, we get

‖wξs‖33 = E

∣∣∣∣∣
p∑
l=1

wf̄
(
Y

(t,w)
l

)
1{Rsl 6=0}

∣∣∣∣∣
3
 ≤ d2

s

p∑
l=1

E
(∣∣∣wf̄ (Y (t,w)

l

)∣∣∣3)1{Rsl 6=0}

≤ d3
s max
l=1,...,p

E
(∣∣∣wf̄ (Y (t,w)

l

)∣∣∣3) . d3
s. (7.13)

We finally substitute Eq. (7.13) into Eq. (7.13).

E |A1| . ν2p−
3
2

p∑
s=1

d2
s ≤ ν2p−

3
2

p∑
s=1

dsdmax = ν2p−
3
2 pd̄dmax = ν2 d̄dmax√

p
.

Therefore E |A1| and E |A2| simultaneously tend to zero (for any fixed ν ∈ R) whenever√
d̄d2

max

p
∨ d̄dmax√

p
=
d̄dmax√

p
→ 0,

which exactly coincides with Assumption 3.1.

Proof of Theorem 3.2. Let Qη denotes (1− η) quantile of N (0, 1) distribution, for any η ∈ (0, 1). We prove
that

P (Tt ≥ Qπ0
| H1,t) ≥ 1− π1.

Let µp,w and σ2
p,w respectively stand for the mean and variance of Tt under alternative hypothesis. Obviously

P (Tt ≥ Qπ0 | H1,t) = P
(
Tt − µp,w
σp,w

≥ Qπ0
− µp,w
σp,w

| H1,t

)
. (7.14)

Since smallest eigenvalue of Ω(t+1) is greater than αmin and its `1-operator norm is bounded above by M ,
we can show that (Tt − µp,w) /σp,w has asymptotically a standard Gaussian distribution by employing exact
same techniques as in the proof of Theorem 3.1. So the desirable condition in Eq. (7.14) is satisfied if we
can introduce a sufficient condition under which

Qπ0
− µp,w
σp,w

≤ −Qπ1
, or equivalently

µp,w
σp,w

(
1− Qπ0

µp,w

)
≥ Qπ1

. (7.15)

The inequality (7.15) trivially holds if we can prove that

µp,w ≥ 2Qπ0
, and µp,w ≥ 2σp,wQπ1

. (7.16)

Recall ∆ from Eq. (3.1) and define

Ψ̄p :=
1

p

p∑
s=1

f (1 + ∆s) , Ψ̄′p :=
1

p

p∑
s=1

∆2
s.

We first note that all terms ∆s, s = 1, . . . , p are uniformly bounded, because for any s ∈ {1, . . . , p}

∆s =
1

Ω
(t)
ss

Ω(t)
s,:

(
Ω(t+1)

)−1

Ω(t)
:,s − 1 ≤

∥∥∥Ω
(t)
:,s

∥∥∥2

`2

λmin

(
Ω(t+1)

)
Ω

(t)
ss

− 1 ≤

∥∥∥Ω
(t)
:,s

∥∥∥2

`2

λmin

(
Ω(t+1)

)
λmin

(
Ω(t)

) − 1 ≤ M2

α2
min

− 1.
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So we can find a bounded scalar C (depending on M2

α2
min
− 1) such that

∆2
s ≤ Cf (1 + ∆s) , ∀ s = 1, . . . , p =⇒ Ψ̄′p ≤ CΨ̄p.

We now have required tools for introducing a sufficient condition that guarantees two inequalities in Eq.
(7.16). We begin by obtaining a sharp lower bound on µp,w. Recall Tt from Eq. (2.13). Using the first part
of Lemma A.7 yields

µp,w = E (Tt | H1,t) =

∑p
s=1 f (1 + ∆s)

g2 (w)
√∑p

s1,s2=1 hw (Rs1,s2)

(a)
� pwΨ̄p√∑p

s1,s2=1 hw (Rs1,s2)
. (7.17)

Notice that (a) in above equation holds since g2 (w) ≥ c0w for some universal constant c0 > 0. Moreover, it
is easy to verify the existence of a bounded constant C1 (M,αmin) for which

p∑
s1,s2=1

hw (Rs1,s2) ≤ C1 (M,αmin) p.

Thus µp,w in Eq. (7.17) satisfies µp,w & w
√
pΨ̄p. So the first desired condition in Eq. (7.16) holds if

Ψ̄p ≥ C2 (M,αmin)
Qπ0

w
√
p
, (7.18)

for some bounded constant C2 (M,αmin). We now focus on finding a sharp lower bound on σp,w.

Claim 1. σ2
p,w ≤ C3 (M,αmin)

(
1 ∨ w√

p Ψ̄p

)
for a bounded scalar C3 (M,αmin).

Proof of Claim 1.

If Claim 1 holds true, then the second condition in Eq. (7.16) is satisfied when

w
√
pΨ̄p ≥ C4 (M,αmin)Qπ1

(
1 ∨

√
w
√
p

Ψ̄p

)
, (7.19)

for some C4 (M,αmin) <∞. It is easy to show that condition (7.19) is equivalent to the following relationship.

Ψ̄ ≥ C5 (M,αmin)
Qπ1

w
√
p

(
1 +

Qπ1

p

)
. (7.20)

Finally notice that if π1 ≤ p−ξ for some fixed positive scalar ξ, then

Qπ1

p
= O

(
log p

p

)
→ 0.

So combining Eq. (7.18) and (7.20) terminates the proof.

Proof of Theorem 4.1. Under Assumption 3.1 and, nt, p, and possibly w, d̄, dmax asymptotically grow in such
a way that

d̄dmax√
p
→ 0, and

pdmax log2 p

n
(w ∨ log p)→ 0. (7.21)

All the statements regarding probabilistic convergence results in the proof are restricted to large p and nt
framework described in Eq. (7.21). According to Theorem 3.1, Tt converges in distribution to a standard
Gaussian random variable. Therefore, we only require to show that

∣∣∣T̂t − Tt∣∣∣ converges to zero, in probability.
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Recall σp,w and f̄ (·) from Eq. (7.2) and define σ̂p,w (stands for estimated σp,w ) by

σ̂2
p,w := g2

2 (w)

p∑
s1,s2=1

hw

(
R̂(t)
s1,s2

)
.

Using triangle inequality leads to∣∣∣T̂t − Tt∣∣∣ =

∣∣∣∣∣ 1

σ̂p,w

p∑
s=1

f̄
(
Ŷ (t,w)
s

)
− 1

σp,w

p∑
s=1

f̄
(
Y (t,w)
s

)∣∣∣∣∣
≤ 1

σp,w

∣∣∣∣∣
p∑
s=1

f̄
(
Ŷ (t,w)
s

)
− f̄

(
Y (t,w)
s

)∣∣∣∣∣+

∣∣∣∣ 1

σ̂p,w
− 1

σp,w

∣∣∣∣
∣∣∣∣∣
p∑
s=1

f̄
(
Y (t,w)
s

)∣∣∣∣∣
=

1

σp,w

∣∣∣∣∣
p∑
s=1

f̄
(
Ŷ (t,w)
s

)
− f̄

(
Y (t,w)
s

)∣∣∣∣∣+

∣∣∣∣(σp,wσ̂p,w
− 1

)
Tt

∣∣∣∣ . (7.22)

The following facts provides a simpler upper bound on
∣∣∣T̂t − Tt∣∣∣.

• σp,w is (obviously) greater than g2 (w)
√
p.

• Based upon Theorem 3.1, Tt converges in distribution to a standard Gaussian random variable. There-
fore, in the asymptotic regime

P
(
|Tt| ≥ 4

√
log p

)
≤ p−1.

Applying these facts on inequality (7.22) yields

P


∣∣∣T̂t − Tt∣∣∣

4
≤

∣∣∣∣∣∣
p∑
s=1

f̄
(
Ŷ

(t,w)
s

)
− f̄

(
Y

(t,w)
s

)
g2 (w)

√
p

∣∣∣∣∣∣+

∣∣∣∣σp,wσ̂p,w
− 1

∣∣∣∣√log p

 ≥ 1− 1

p
. (7.23)

For further simplification of the upper bound on
∣∣∣T̂t − Tt∣∣∣, we need to control |σ̂p,w − σp,w| from above.

Claim 1. There exists a bounded constant C (αmin,M) such that

P
(∣∣∣∣ σ̂p,wσp,w

− 1

∣∣∣∣ ≥ C (αmin,M) εnt,p,dmax

)
≤ 2

p
, where εnt,p,dmax

:= d
1
4
max

√
log p

nt
.

Before proving Claim 1, we use it for simplifying Eq. (7.23). Under conditions in Eq. (7.21), εnt,p,dmax

√
log p

converges to zero, as

εnt,p,dmax

√
log p =

d
1
4
max log p
√
nt

.
d

1
4
max log p√
pdmax log2 p

=
(
p
√
dmax

)− 1
2 → 0.

Therefore for large p and n, 2σ̂p,w ≥ σp,w with probability at least 1− p−1, and∣∣∣∣σp,wσ̂p,w
− 1

∣∣∣∣√log p =
|σ̂p,w − σp,w|

σ̂p,w

√
log p ≤ 2 |σ̂p,w − σp,w|

σp,w

√
log p ≤ 2C (αmin,M) εnt,p,dmax

√
log p

� εnt,p,dmax

√
log p→ 0. (7.24)

Replacing Eq. (7.24) into Eq. (7.23) ensures that

∣∣∣T̂t − Tt∣∣∣ = OP

∣∣∣∣∣∣
p∑
s=1

f̄
(
Ŷ

(t,w)
s

)
− f̄

(
Y

(t,w)
s

)
g2 (w)

√
p

∣∣∣∣∣∣ ∨ εnt,p,dmax

√
log p

 .
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So
∣∣∣T̂t − Tt∣∣∣→ 0 (in probability), which terminates the proof, if we prove that

p∑
s=1

∣∣∣f̄ (Ŷ (t,w)
s

)
− f̄

(
Y (t,w)
s

)∣∣∣ = oP (g2 (w)
√
p) .

Since wg2 (w) is strictly less than some bounded universal constant C ′0, we just need to show that

w
√
p

p∑
s=1

∣∣∣f̄ (Ŷ (t,w)
s

)
− f̄

(
Y (t,w)
s

)∣∣∣ = oP (1) . (7.25)

Define

ηs :=
Ω̂

(t)
s,:

(
Ω(t)

)−1
Ω̂

(t)
:,s

Ω̂
(t)
ss

, ∀ s = 1, . . . , p. (7.26)

ηs is an important quantity in our analysis as it captures the conditional expected value of Ŷ (t,w)
s given

X1, . . . , Xt. Particularly, it is easy to show that

E
[
Y (t,w)
s | X1, . . . , Xt

]
= 1, and E

[
Ŷ (t,w)
s | X1, . . . , Xt

]
= ηs.

A vigilant reader notices that despite random nature of ηs, it does not depend on Xt+1, . . . , Xt+w. So using
Corollary B.1 yields

P

[∣∣∣f̄ (Ŷ (t,w)
s

)
− f̄

(
Y (t,w)
s

)∣∣∣ ≥ f (ηs) + |ηs − 1|
√

8 log p

w

(
1 ∨

√
8 log p

w

)]
≤ p−2, ∀ s = 1 . . . , p.

Using union bound technique, we get

P

[∣∣∣f̄ (Ŷ (t,w)
s

)
− f̄

(
Y (t,w)
s

)∣∣∣ ≥ f (ηs) + |ηs − 1|
√

8 log p

w

(
1 ∨

√
8 log p

w

)
, ∀ s = 1 . . . , p

]
≤ p−1.

In summary we showed that

w
√
p

p∑
s=1

∣∣∣f̄ (Ŷ (t,w)
s

)
− f̄

(
Y (t,w)
s

)∣∣∣ = OP

(
w
∑p
s=1 f (ηs)√
p

+
log p ∨

√
w log p

√
p

p∑
s=1

|ηs − 1|

)
. (7.27)

Using Cauchy-Schwartz inequality, we can rewrite Eq. (7.27) as the following.

w
√
p

p∑
s=1

∣∣∣f̄ (Ŷ (t,w)
s

)
− f̄

(
Y (t,w)
s

)∣∣∣ = OP

w∑p
s=1 f (ηs)√
p

+
(

log p ∨
√
w log p

)( p∑
s=1

|ηs − 1|2
) 1

2

 . (7.28)

Let us investigate the behaviour of f (ηs) for s = 1, . . . , p. We assumed that λmin

(
Ω(t)

)
is greater than αmin.

It is also known that (see Theorem 1 of [11]) with probability at least 1− 1/p

∥∥∥Ω̂(t) − Ω(t)
∥∥∥

2→2
≤ CM2dmax

√
log p

n
= OP

(
dmax

√
log p

n

)
→ 0.

for some bounded universal constant C. Thus(
1− CM2dmax

αmin

√
log p

n

)
Ω̂(t) 4 Ω(t) 4

(
1 +

CM2dmax

αmin

√
log p

n

)
Ω̂(t). (7.29)
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The inequality (7.29) is essential for studying the behaviour of ηs, as

|ηs − 1| ≤

(
1 +

CM2dmax

αmin

√
log p

n

)
Ω̂

(t)
s,:

(
Ω̂(t)

)−1

Ω̂
(t)
:,s

Ω̂ss
− 1 =

CM2dmax

αmin

√
log p

n
→ 0, ∀ s = 1, . . . , p.

So all ηs are in a small neighbourhood around one, which means that for large enough p and nt

f (ηs) ≤ 2 (ηs − 1)
2
.

From Proposition B.2 we know that if we replace the last inequality into Eq. (7.27), then we get

w
√
p

p∑
s=1

∣∣∣f̄ (Ŷ (t,w)
s

)
− f̄

(
Y (t,w)
s

)∣∣∣ = OP

∑p
s=1 (ηs − 1)

2

w−1√p
+
(

log p ∨
√
w log p

)( p∑
s=1

|ηs − 1|2
) 1

2

 . (7.30)

Claim 2.
∑p
s=1 (ηs − 1)

2
= OP

(
pdmax log p

nt

)
. The constant involved in OP depends on M and αmin.

Given Claim 2, by applying Proposition B.2 we can rewrite Eq. (7.30) in the following way.

w
√
p

p∑
s=1

∣∣∣f̄ (Ŷ (t,w)
s

)
− f̄

(
Y (t,w)
s

)∣∣∣ = OP

pwdmax log p
√
p

+

√
pdmax log2 p (w ∨ log p)

nt


= OP

√pdmax log2 p (w ∨ log p)

nt

 (a)
= oP (1) .

Here identity (a) is implied form assumptions in Eq. (7.21). Notice that the last equation is identical as Eq.
(7.25), which concludes the proof. Finally, we establish Claim 1 and 2.

Proof of Claim 1. Lemma B.3 states that as long as αmin > 0, the following result holds with probability at
least 1− p−1, and for some bounded C ′ (αmin).∣∣∣∣ σ̂p,wσp,w

− 1

∣∣∣∣ ≤ C ′ (αmin)

(
‖R‖−1

`4

√∥∥∥Ω̂(t) − Ω(t)
∥∥∥
`∞

∥∥∥Ω̂(t) − Ω(t)
∥∥∥
`2
∨
∥∥∥Ω̂(t) − Ω(t)

∥∥∥
`∞

)
(a)

. p−
1
4

√∥∥∥Ω̂(t) − Ω(t)
∥∥∥
`∞

∥∥∥Ω̂(t) − Ω(t)
∥∥∥
`2
∨
∥∥∥Ω̂(t) − Ω(t)

∥∥∥
`∞
. (7.31)

The inequality (a) is valid as all diagonal entries of R are equal to one. It is also known that (see Theorem
4 of [11]) with probability at least 1− p−1

∥∥∥Ω̂(t) − Ω(t)
∥∥∥
`∞
≤ C0M

2

√
log p

nt
, and

∥∥∥Ω̂(t) − Ω(t)
∥∥∥
`2
≤ C0M

2

√
pdmax log p

nt
, (7.32)

for some bounded universal constant C0. Combining Eq. (7.32) and Eq. (7.31) ends the proof.

Proof of Claim 2. Recall ηs from Eq. (7.26). Observe that

ηs =
Ω̂

(t)
s,:

(
Ω(t)

)−1
Ω̂

(t)
:,s
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(t)
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∥∥∥(Ω(t)
)−1/2

Ω̂
(t)
:,s

∥∥∥2
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`2√

Ω̂
(t)
ss


2
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Using Eq. (7.29), we showed that all δs, s = 1, . . . , p are in a small neighborhood of one, with probability
at least 1− 1/p. Thus, |ηs − 1| ≤ 3

∣∣√ηs − 1
∣∣ in the asymptotic framework and hence

|√ηs − 1| =
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∥∥∥
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. (7.33)

Note that identity (b) is an immediate consequence of the fact that

Ω(t)
ss =

[
Ω(t)

(
Ω(t)

)−1

Ω(t)

]
= Ω(t)

:,s

(
Ω(t)

)−1

Ω(t)
:,s =

∥∥∥∥(Ω(t)
)− 1

2

Ω(t)
:,s

∥∥∥∥2

`2

.

For simplicity define the following two matrices

L(t) :=

 Ω
(t)
s1,s2√
Ω

(t)
s2,s2

p
s1,s2=1

, L̂(t) :=

 Ω̂
(t)
s1,s2√
Ω̂

(t)
s2,s2

p
s1,s2=1

.

Next, we find an upper bound on
∑p
s=1 (ηs − 1)

2 by using Eq. (7.33).

p∑
s=1

(ηs − 1)
2 ≤ 9

p∑
s=1

(
√
ηs − 1)

2 ≤ 9

αmin

p∑
s=1

∥∥∥L̂(t)
:,s − L(t)

:,s

∥∥∥2

`2
=

9

αmin

∥∥∥L̂(t) − L(t)
∥∥∥2

`2
.

Lemma B.4 provides an upper bound on
∥∥∥L̂(t) − L(t)

∥∥∥
`2
. There is C1 <∞ (depending on αmin) such that

∥∥∥L̂(t) − L(t)
∥∥∥2

`2
≤ C1

(∥∥∥Ω(t)
∥∥∥2

`2

∥∥∥Ω̂(t) − Ω(t)
∥∥∥2

`∞
+
∥∥∥Ω̂(t) − Ω(t)

∥∥∥2

`2

)
(c)
= OP

(
M2 log p

nt

∥∥∥Ω(t)
∥∥∥2

`2
+M2 pdmax log p

nt

)
.

Note that identity (c) is implied by the rates obtained in Theorem 4 of [11]. Recall that `1 operator norm
of Ω(t) is less than M . Therefore∥∥∥Ω(t)

∥∥∥2

`2
≤ p

∥∥∥Ω(t)
∥∥∥2

2→2
≤ p

∥∥∥Ω(t)
∥∥∥2

2→2
≤ pM2.

We conclude the proof by combining the last two inequalities.∥∥∥L̂(t) − L(t)
∥∥∥2

`2
= OP

(
M4 p log p

nt
+M2 pdmax log p

nt

)
= OP

(
pdmax log p

nt

)
.
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Appendices
A Auxiliary results on moments of a Chi-square random variable

We used Y
(t,w)
s (recall its definition from Eq. (2.6)) to denote the sample mean of conditional log-

likelihood of node s given other nodes of Gt, over a window of size w. We argued in Section 2.2 that if GGM
does not experience a sudden change at t + 1, then wY (t,w)

s is distributed as a Chi-square random variable
with w degrees of freedom. Also recall f : [0,∞] 7→ R from Eq. (2.3). In this section we formulate central
moments of f

(
Y

(t,w)
s

)
, s = 1, . . . , p under H0,t (no change at t+ 1) and H1,t (abrupt change at t+ 1). The

two following results, Lemma A.1 and A.2, are crucial in the proof of principal results in this section.

Lemma A.1. Let X and Y be two real-valued independent zero-mean random variables. For arbitrary
functions f1, f2 : R 7→ R, we have

cov
(
f1 (X) , Y f2 (X)

)
= 0.

Proof. Independence of X and Y means that

cov
(
f1 (X) , Y f2 (X)

)
= Ef1 (X) f2 (X)Y − Ef1 (X)Ef2 (X)Y = Ef1 (X) f2 (X)EY − Ef1 (X)Ef2 (X)EY

= EY cov
(
f1 (X) , f2 (X)

)
.

Thus f1 (X) and Y f2 (X) are obviously uncorrelated, since EY = 0.

Lemma A.2. Let (X,X ′) be a standard bi-variate Gaussian random vector with corr (X,X ′) = r. Let
{(Xk, X

′
k)}wk=1 be i.i.d. draws from (X,X ′) and define

Zw :=

w∑
k=1

X2
k , Z ′w :=

w∑
k=1

X ′2k .

Then,

p (r, w) := cov
[
(Zw − w)

2
, (Z ′w − w)

2
]

= 8r2
[
4w + r2w2 + 2r2

]
,

q (r, w) := cov
[
(Zw − w)

2
, (Z ′w − w)

3
]

= 72r4
(
w2 + w + 2

)
+ 240r2w.

Proof. Zw and Z ′w are identically distributed chi-square random variables with w degrees of freedom. We
aim to find a recursive formula for p (r, w) in terms of p (r, w − 1) and p (r, 1). Zw and Z ′w can be formulated
in a recursive way.

Zw − w =
(
Zw−1 − (w − 1)

)
+X2

w − 1, Z ′w − w =
(
Z ′w−1 − (w − 1)

)
+
(
X ′2w − 1

)
.

For simplicity, define Z̄w = Zw−w and Z̄ ′w = Z ′w−w. Notice that the pair of random variables
(
Z̄w−1, Z̄

′
w−1

)
are independent from X ′w and Xw. Thus,

cov
[
Z̄2
w−1,

(
X ′2w − 1

)2 ]
= 0, cov

[
Z̄ ′2w−1,

(
X2
w − 1

)2 ]
= 0. (A.1)

Furthermore, Lemma A.1 implies that

cov
[ (
X2
w − 1

)2
, Z̄ ′w−1

(
X ′2w − 1

) ]
= 0, cov

[ (
X ′2w − 1

)2
, Z̄w−1

(
X2
w − 1

) ]
= 0,

cov
[
Z̄2
w−1, Z̄

′
w−1

(
X ′2w − 1

) ]
= 0, cov

[
Z̄ ′2w−1, Z̄w−1

(
X2
w − 1

) ]
= 0. (A.2)
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The identities (A.1) and (A.2) are crucial for finding a simple alternative way of expressing p (r, w).

p (r, w) = cov
[ (
X2
w − 1

)2
+ Z̄2

w−1 + 2Z̄w−1

(
X2
w − 1

)
,
(
X ′2w − 1

)2
+ Z̄ ′2w−1 + 2Z̄ ′w−1

(
X ′2w − 1

) ]
= cov

[(
X2
w − 1

)2
,
(
X ′2w − 1

)2]
+ cov

[
Z̄2
w−1, Z̄

2
w−1

]
+ 4 cov

[
Z̄w−1

(
X2
w − 1

)
, Z̄ ′w−1

(
X ′2w − 1

)]
= p (r, 1) + p (r, w − 1) + 4 cov

[
Z̄w−1

(
X2
w − 1

)
, Z̄ ′w−1

(
X ′2w − 1

)]
.

Next we evaluate cov
[
Z̄w−1

(
X2
w − 1

)
, Z̄ ′w−1

(
X ′2w − 1

)]
in terms of w and r. Since X2

w − 1 is a zero mean
random variable, so

EZ̄w−1

(
X2
w − 1

)
= EZ̄w−1E

(
X2
w − 1

)
= 0.

Therefore,

cov
[
Z̄w−1

(
X2
w − 1

)
, Z̄ ′w−1

(
X ′2w − 1

)]
= E

(
Z̄w−1Z̄

′
w−1

)
E
[ (
X ′2w − 1

) (
X2
w − 1

) ]
= cov

(
Z̄w−1, Z̄

′
w−1

)
cov

(
X2
w, X

′2
w

)
=

w−1∑
i,j=1

cov
(
X2
i , X

′2
j

)
cov

(
X2
w, X

′2
w

)
(b)
= (w − 1)

[
cov

(
X2

1 , X
′2
1

)]2
=

(c)
= 4r4 (w − 1) .

Identity (b) is an obvious consequence of the independence of Xi and X ′j , for any distinct pair (i, j). Finally
equality (c) is implied from the fact that cov

(
X2

1 , X
′2
1

)
= 2r2. Thus,

p (r, w) = p (r, w − 1) + p (r, 1) + 4r4 (w − 1) , ∀ w > 1. (A.3)

Eq. (A.3) can be easily reformulated as the following way

p (r, w) = p (r, 1) + (w − 1) p (r, 1) + 4r4
w∑
k=1

(k − 1) = wp (r, 1) + 8r4 (w − 1) (w − 2) . (A.4)

In the last step, we calculate p (r, 1). The cumbersome algebraic details (which is mainly based on using
moment identities for standard Gaussian distribution) are omitted due to space constraint. The fact that
Z1 and Z ′1 has the same distribution yields

p (r, 1) = E
[
(Z1 − 1)

2
(Z ′1 − 1)

2
]
− var (Z1) var (Z ′1) = E

[
(Z1 − 1)

2
(Z ′1 − 1)

2
]
− 4

= EZ2
1Z
′2
1 − 4EZ2

1Z
′
1 + 2EZ2

1 + 1− 4EZ1 + 4EZ1Z
′
1 − 4

= EZ2
1Z
′2
1 − 4EZ2

1Z
′
1 + 4EZ1Z

′
1 − 1. (A.5)

Furthermore, using Isserlis’ Theorem implies that

EZ1Z
′
1 = EZ1EZ ′1 + 2 (EX1X

′
1)

2
= 1 + 2r2,

EZ2
1Z
′
1 =

1

2

(
4

2

)
(EZ1)

2 EZ ′1 + 2×
(

4

2

)
EZ1 (EX1X

′
1)

2
= 3 + 12r2,

EZ2
1Z
′2
1 = EZ2

1EZ ′21 + 4! (EX1X
′
1)

4
+

42 × 32

2
(EX1X

′
1)

2 EZ1EZ ′1 = 9 + 72r2 + 24r4. (A.6)

Substituting Eq. (A.6) into (A.5) yields

p (r, 1) = EZ2
1Z
′2
1 − 9− 40r2 = 24r4 + 72r2 + 9− 9− 40r2 = 8r2

(
4 + 3r2

)
. (A.7)

We terminate the proof by replacing Eq. (A.7) into Eq. (A.4). As the second claim in the statement of
Lemma A.2 can be substantiated by similar techniques, we skip its proof for avoiding repetitions.
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The succeeding Lemma comes in handy at Section 2.2 for standardizing Tt under H0,t regime.

Lemma A.3. Let Zw be a chi-square random variable with w degrees of freedom. Then the mean and
standard deviation of f (Zw/w) is given by

g1 (w) := Ef
(
Zw
w

)
= log

(w
2

)
− ψ(0)

(w
2

)
, g2 (w) := std f

(
Zw
w

)
=

√
ψ(1)

(w
2

)
− 2

w
.

in which ψ(r) stands for the poly-gamma function of order r.

Proof. It is known that the expected value and variance of logZw are respectively given by log 2+ψ(0) (w/2)
and ψ(1) (w/2) [26]. Therefore,

Ef
(
Zw
w

)
= E

[
Zw
w
− 1− log

(
Zw
w

)]
= 1− 1 + logw − E logZw = log

(w
2

)
− ψ

(w
2

)
.

We now focus on calculating the variance of f
(
Zw
w

)
. Observe that

var f

(
Zw
w

)
= var

(
Zw
w
− logZw

)
=

varZw
w2

+ var logZw −
2 cov (Zw, logZw)

w

=
2

w
+ ψ(1)

(w
2

)
− 2

w
cov (Zw, logZw)

=
2

w
+ ψ(1)

(w
2

)
− 2

w
[E (Zw logZw)− wE logZw] . (A.8)

So we just need to evaluate the expected value of Zw logZw. Using the fact that Γ (x+ 1) = xΓ (x) for any
x > 0 leads to

E (Zw logZw) =

∫ ∞
0

x log x
xw/2−1 exp (x/2)

2w/2Γ (w/2)
dx =

∫ ∞
0

log x
x(w+2)/2−1 exp (x/2)

2w/2Γ (w/2)
dx

= w

∫ ∞
0

log x
x(w+2)/2−1 exp (x/2)

2(w+2)/2Γ ((w + 2) /2)
dx = wE logZw+2.

Thus the covariance of Zw and logZw can be rewritten as

cov (Zw, logZw) = w (E logZw+2 − E logZw) = w

[
ψ(0)

(
w + 2

2

)
+ log 2− ψ(0)

(w
2

)
− log 2

]
= w

[
ψ(0)

(
1 +

w

2

)
− ψ(0)

(w
2

)]
(a)
= w

2

w
= 2. (A.9)

In which the identity (a) is a direct implication of the fact that ψ(0) (x+ 1)−ψ(0) (x) = 1/x. Replacing Eq.
(A.9) into Eq. (A.8) yields

var f

(
Zw
w

)
=

2

w
+ ψ(1)

(w
2

)
− 4

w
= ψ(1)

(w
2

)
− 2

w
,

which concludes the proof.

The following result, which is needed for proving Theorem 3.1, shows that all moments of wf
(
Zw
w

)
are

bounded

Lemma A.4. There exist universal constant C1, C2 > 0 such that∥∥∥∥wf (Zww
)∥∥∥∥

k

= w

∣∣∣∣Efk (Zww
)∣∣∣∣1/k ≤ C1k,∥∥∥∥w [f (Zww

)
− g1 (w)

]∥∥∥∥
k

≤ C2k, ∀ k ∈ N.
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Proof. Let Gw (t) denotes the moments generating function of f (Zw/w). Due to non-negativity of f , if Gw
is well defined for a strictly positive t, then all moments of f (Zw/w) can be controlled from above by Gw (t).
We first show that Gw is well defined at t = w/4. Observe that

Gw

(w
4

)
= E

[
exp

(
w

4
f

(
Zw
w

))]
= E

[
exp

(
Zw
4
− w

4
− w

4
log

(
Zw
w

))]
= e−

w
4 w

w
4 E
[
Z
−w4
w exp

(
Zw
4

)]
= e−

w
4 w

w
4

∫ ∞
0

x−
w
4 e

x
4
x
w
2 −1e−

x
2

2
w
2 Γ
(
w
2

) dx = e−
w
4 w

w
4

∫ ∞
0

x
w
4 −1e−

x
4

2
w
2 Γ
(
w
2

) dx.
The last integral can be simplified by introducing u := x

4 .

Gw

(w
4

)
= e−

w
4 w

w
4

∫ ∞
0

u
w
4 −1e−u

Γ
(
w
2

) du = exp
[
−w

4
+
w

4
logw + log Γ

(w
4

)
− log Γ

(w
2

)]
. (A.10)

This identity ensures that Gw
(
w
4

)
is well defined as long as w does not grow. Strictly speaking we can find

bounded w0 ∈ N nd C0 > 0 (depending on w0) so that Gw (w/4) is smaller than C0 for all w ≤ w0. Next we
study the behaviour of Gw

(
w
4

)
for large w. It is known that 2

lim
x→∞

log Γ (x)−
(
x− 1

2

)
log x+ x =

log (2π)

2
.

Applying the asymptotic identity of log Γ function on Eq. (A.10) implies that

Gw

(w
4

)
= exp

(
1

2
log 2

)
=
√

2.

In summary we guaranteed the existence of a bounded universal constant C1 ≥ 1 for which Gw
(
w
4

)
≤ C1,

for all w ∈ N. Elementary properties of moment generating function implies that

1

k!

(w
4

)k ∥∥∥∥f (Zww
)∥∥∥∥k

k

≤ Gw
(w

4

)
, ∀ k ∈ N =⇒

∥∥∥∥w4 f
(
Zw
w

)∥∥∥∥
k

≤ k

√
k!Gw

(w
4

)
≤ k
√
k!C

1
k
1 , ∀ k ∈ N.

We conclude the proof by mentioning that k
√
k! ≤ k for any k ∈ N. Now we turn to the proof of second

claim. Using Minkowski’s inequality, we get∥∥∥∥w [f (Zww
)
− g1 (w)

]∥∥∥∥
k

≤
∥∥∥∥wf (Zww

)∥∥∥∥
k

+ |wg1 (w)| ≤ Ck + |wg1 (w)| .

So the desired result obviously holds, since there is a bounded universal scalar C ′ > 0 such that |wg1 (w)| ≤ C ′
for all w ∈ N 3.

We now find a polynomial approximation for hw function defined in Eq. (2.12).

Lemma A.5. Under the same notation and conditions as Lemma A.2, define hw [−1, 1] 7→ [−1, 1] by

hw (r) := corr

[
f

(
Zw
w

)
, f

(
Z ′w
w

)]
Then

1. hw is an even function, i.e. hw (x) = hw (−x) for any x ∈ [0, 1], with hw (0) = 0 and hw (1) = 1.
2See http://functions.wolfram.com/GammaBetaErf/LogGamma/introductions/Gammas/ShowAll.html
3We refer the reader to 5.11.2 of https://dlmf.nist.gov/5.11
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2. There exist a bounded universal scalar C > 0and w0 ∈ N such that for any w ≥ w0

max
r∈[−1,1]

∣∣hw (r)− r4
∣∣ ≤ C

w
.

Proof. The first claim in obvious. So we focus on finding a uniform upper bound on the difference between
hw (r) and r4, for r ∈ [−1, 1]. Choose an arbitrary r ∈ [−1, 1]. Define random variables Z̄w and Z̄ ′w by

Z̄w := (Zw − w) , Z̄ ′w := (Z ′w − w) . (A.11)

Taylor expansion of f around 1 gives us

f

(
Zw
w

)
= f

(
1 +

Z̄w
w

)
=

∞∑
k=2

(−1)
k
Z̄kw

kwk
.

Therefore,

cov

[
f

(
Zw
w

)
, f

(
Z ′w
w

)]
= cov

[ ∞∑
k=2

(−1)
k
Z̄kw

kwk
,

∞∑
k=2

(−1)
k
Z̄ ′kw

kwk

]
=

∞∑
j,k=2

(−1)
j+k

jkwj+k
cov

(
Z̄jw, Z̄

′k
w

)
=

cov
(
Z̄2
w, Z̄

′2
w

)
4w4

−
cov

(
Z̄3
w, Z̄

′2
w

)
3w5

+

∞∑
j+k≥6

(−1)
j+k

jkwj+k
cov

(
Z̄jw, Z̄

′k
w

)
. (A.12)

Lemma A.2 gives an equivalent representation for the first two terms in the second line of Eq. (A.12). One
line of algebra guarantees the existence of a large enough constant C1 such that∣∣∣∣∣cov

(
Z̄2
w, Z̄

′2
w

)
4w4

−
cov

(
Z̄3
w, Z̄

′2
w

)
3w5

− 2r4

w2

∣∣∣∣∣ ≤ C1

w3
, ∀ w ≥ 1. (A.13)

We also use ξ to denote the third term in the second line of Eq. (A.12). Observe that

|ξ| = w−3

∣∣∣∣∣∣
∞∑

j+k≥6

(−1)
j+k

jk

(
2

w

)(j+k−6)/2

cov

[(
Z̄w√
2w

)j
,

(
Z̄ ′w√
2w

)k]∣∣∣∣∣∣
We know from central limit Theorem that as w tends to infinity, then(

Z̄w√
2w

,
Z̄ ′w√
2w

)
d→ N

([
0
0

]
,

[
1 r2

r2 1

])
.

Thus, there exist a large enough w0 ∈ N and finite positive scalar C2 such that for any w ≥ w′0

|ξ| ≤ C2

w3
. (A.14)

Combining Eq. (A.12), (A.13) and (A.14) gives us∣∣∣∣cov

[
f

(
Zw
w

)
, f

(
Z ′w
w

)]
− 2r4

w2

∣∣∣∣ ≤ C1 + C2

w3
, ∀ w ≥ w′0.

According to Lemma A.3, var
[
f
(
Zw
w

)]
= var

[
f
(
Z′w
w

)]
= ψ(1)

(
w
2

)
− 2

w . So∣∣∣∣∣hw (r)− 2r4

w2

(
ψ(1)

(w
2

)
− 2

w

)−1
∣∣∣∣∣ ≤ C1 + C2

w3

(
ψ(1)

(w
2

)
− 2

w

)−1

. (A.15)
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It is known that4 there are two finite scalars C ′1 and w′′0 such that∣∣∣∣ψ(1)
(w

2

)
− 2

w
− 2

w2

∣∣∣∣ ≤ C ′1
w3

, ∀ w ≥ w′′0 .

So inequality (A.15) can be simplified as

∣∣hw (r)− r4
∣∣ ≤ C1 + C2

2w − C ′1
+

2C ′1r
4

w
≤ C

w
.

Here C is a finite scalar depending on C1, C2, C
′
1, w

′
0 and w′′0 . In summary we showed that for any r ∈ [−1, 1],∣∣hw (r)− r4

∣∣ ≤ C

w
, ∀ w ≥ w0 := w′0 ∨ w′′0 .

Lemma A.6. There exists a bounded constant Cw > 1 such that supr∈[−1,1]

∣∣∣hw(r)
r4 − 1

∣∣∣ ≤ Cw.
Proof. Since hw is a continuous function on a compact space, we only need to show that lim sup

r→0

hw(r)
r4 ≤

C ′w := 1 +Cw. According to Lemma A.4, hw (r) � r4 as w →∞, so we only present the proof for w = 1.

The following result is beneficiary for finding the expected value and standard deviation of Tt, under
alternative hypothesis H1,t.

Lemma A.7. Let (X,X ′) be a standard bi-variate Gaussian random vector with corr (X,X ′) = r. Let
{(Xk, X

′
k)}wk=1 be i.i.d. draws from (X,X ′) and define

Zw :=

w∑
k=1

X2
k , Z ′w :=

w∑
k=1

X ′2k .

Recall g1 (·) and g2 (·) from Lemma A.3. For two arbitrary positive scalars α, α′,

1. Ef
(
αZw
w

)
= g1 (w) + f (α).

2. cov
[
f
(
αZw
w

)
, f
(
α′Z′w
w

)]
= 2r2

w (α− 1) (α′ − 1) + hw (r) g2
2 (w).

Proof. We employ a similar approach as the proof of Lemma A.3 and A.5. Notice that

f

(
αZw
w

)
= f

(
Zw
w

)
+ (α− 1)

Zw
w
− logα. (A.16)

taking expected value from both sides substantiates the first claim.

Ef
(
αZw
w

)
= Ef

(
Zw
w

)
+ α− 1− logα = Ef

(
Zw
w

)
+ f (α) = g1 (w) + f (α) .

We now aim to prove the second claim. hw is defined to satisfy the following identity.

cov

[
f

(
Zw
w

)
, f

(
Z ′w
w

)]
= hw (r) g2

2 (w) .

4See 5.15.8 at https://dlmf.nist.gov/5.15
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Since covariance operator is bilinear, using Eq. (A.16) one can show that

cov

[
f

(
αZw
w

)
, f

(
α′Z ′w
w

)]
− hw (r) g2

2 (w) = (αα′ − 1) cov

(
Zw
w
,
Z ′w
w

)
− (α− 1) cov

(
Zw
w
, log

Z ′w
w

)
− (α′ − 1) cov

(
Z ′w
w
, log

Zw
w

)
. (A.17)

Let {Yk}wk=1 be a set of i.i.d. standard Gaussian random variables. Obviously

(Zw, Z
′
w) =

(
Zw, r

2Zw,
(
1− r2

) w∑
k=1

Y 2
k + 2r

√
1− r2

w∑
k=1

XkYk

)
.

This distributional identity alongside with Lemma A.1 shows that

cov (Zw, Z
′
w) = r2 varZw = 2r2w,

cov

(
Zw
w
,
Z ′w
w

)
= cov

(
Z ′w
w
, log

Zw
w

)
= r2 cov

(
Zw
w
, log

Zw
w

)
.

So we can rewrite Eq. (A.17) as the following.

cov

[
f

(
αZw
w

)
, f

(
α′Z ′w
w

)]
− hw (r) g2

2 (w) =
2r2

w
(αα′ − 1)− r2 (α+ α′ − 2)

w
cov (Zw, logZw) .

We conclude the proof by applying Eq. (A.9).

cov

[
f

(
αZw
w

)
, f

(
α′Z ′w
w

)]
− hw (r) g2

2 (w) =
2r2

w
(αα′ − 1)− 2r2

w
(α+ α′ − 2) =

2r2

w
(α− 1) (α′ − 1) .

B Some technical probabilistic results
This section contains auxiliary results that are useful for proving main theoretical contributions of this

manuscript in Section 7. The following Proposition comes in handy for substantiating Theorems 3.1 and 4.1.

Proposition B.1. Let Z ∈ Rp be a zero mean GGM with inverse covariance matrix Ω. Define another
(zero mean) GGM Y ∈ Rp by

Ys =
〈Ωs,:, Z〉√

Ωss
, ∀ s ∈ {1, . . . , p} .

Choose four distinct points s1, t1, s2, t2 ∈ {1, . . . , p} such that there is no edge between B1 = {s1, t1} and
B2 = {s2, t2}. Then [Ys1 , Yt1 ] is independent of [Ys2 , Yt2 ].

Proof. Let R be the partial correlation matrix of Z. It is easy to show that cov (Y ) = R. Thus [Ys1 , Yt1 ] is
independent of [Ys2 , Yt2 ] if and only if

cov ([Ys1 , Yt1 ] , [Ys2 , Yt2 ]) = RB1,B2
= 02×2.

Since there is no edge between {s1, t1} and {s2, t2}, then ΩB1,B2
= 02×2. We conclude the proof by reminding

the reader that R has the same sparsity pattern as Ω, i.e. supp (R) = supp (Ω).

Next we conduct a probabilistic sensitivity analysis for f with a stochastic argument (Chi-square random
variable with w-degrees of freedom). Such result is crucial in the proof of Theorem 4.1.
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Lemma B.1. Let α be a bounded strictly positive scalar and let Zw be a chi-square random variables with
w degrees of freedom. Then for any ξ > 0,

P

[∣∣∣∣f (αZww
)
− f

(
Zw
w

)
− f (α)

∣∣∣∣ ≥ |α− 1|
√

8ξ log p

w

(
1 ∨

√
8ξ log p

w

)]
≤ p−2ξ.

Proof. Without loss of generality, assume that α 6= 1. The following identity holds for any x > 0.

f (αx)− f (x)− f (α) = [αx− 1− log (αx)]− (x− 1− log x)− (α− 1− logα) = (α− 1) (x− 1) .

Thus √
w
2

|α− 1|

∣∣∣∣f (αZww
)
− f

(
Zw
w

)
− f (α)

∣∣∣∣ =
|Zw − w|√

2w
.

Therefore we just need a concentration inequality for a standardized version of Zw. We know form Remark
2.11 of [9] that for any t > 0

P

(
|Zw − w|√

2w
≥
√

2t+

√
2

w
t

)
≤ e−t. (B.1)

Replacing t = 2ξ log p in Eq. (B.1) concludes the proof.

One can extend Lemma B.1 to random α, as long as it is independent from Zw. We skip the proof due
to its simplicity.

Corollary B.1. Lemma B.1 is satisfied for a strictly positive random variable α, independent of Zw.

Proposition B.2. Let X and Y be random variables jointly distributed as P. Let B be a measurable set
with P (Y ∈ B) ≥ 1− ε1, for some ε1 ∈ (0, 1). If there exist a measurable set A and ε2 ∈ (0, 1) such that

P (A | Y = y) ≤ ε2, ∀ y ∈ B, (B.2)

then P (A) ≤ ε1 + ε2

Proof. Let PY stands for the marginal distribution of Y . Observe that

P (A) = P (A ∩ [Y /∈ B]) + P (A ∩ [Y ∈ B]) ≤ P (Y /∈ B) + P (A ∩ [Y ∈ B]) ≤ ε1 + P (A ∩ [Y ∈ B])

= ε1 +

∫
B

P (A | Y = y) dPY (y) ≤ ε1 + sup
y∈B

P (A | Y = y) .

Finally condition (B.2) trivially substantiates the desired upper bound on P (A).

Lemma B.2. Let Ω,Ω′ ∈ Sp×p++ be two inverse covariance matrices such that

λmin (Ω) ∧ λmin (Ω′) ≥ αmin, (B.3)

for a strictly positive scalar αmin. We use R and R′ to denote the partial correlation matrices associated to
Ω and Ω′, respectively. If ‖Ω′ − Ω‖`∞ ≤ αmin, then there exists a bounded universal constant C such that

‖R′ −R‖`4
‖R‖`4

≤ C

α2
min


√
‖Ω′ − Ω‖`∞ ‖Ω

′ − Ω‖`2
‖R‖`4

+ ‖Ω′ − Ω‖`∞
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Proof. For simplicity define ∆ := R′ − R. Our objective is control |∆st| , s, t = 1, . . . , p from above. Using
triangle inequality yields

|∆st| =

∣∣∣∣∣ Ω′st√
Ω′ssΩ

′
tt

− Ωst√
ΩssΩtt

∣∣∣∣∣ ≤ |Ω′st − Ωst|√
Ω′ssΩ

′
tt

+ |Ωst|

∣∣∣∣∣ 1√
Ω′ssΩ

′
tt

− 1√
ΩssΩtt

∣∣∣∣∣
≤ |Ω′st − Ωst|√

ΩssΩtt

√
Ωtt
Ω′tt

√
Ωss
Ω′ss

+ |Rst|

∣∣∣∣∣
√

Ωtt
Ω′tt

√
Ωss
Ω′ss
− 1

∣∣∣∣∣
Let us simplify the right hand side term in preceding inequality. The right hand side condition in Eq. (B.3)
guarantees that all diagonal entries of Ω are greater than αmin. Thus for all s ∈ {1, . . . , p},√

Ωss
Ω′ss

=

(
1 +

Ωss − Ω′ss
Ω′ss

)1/2

≤ 1 +
|Ω′ss − Ωss|

2Ω′ss
≤ 1 +

‖Ω′ − Ω‖`∞
2Ω′ss

≤ 1 +
‖Ω′ − Ω‖`∞

2αmin
. (B.4)

Moreover we know that ‖Ω′ − Ω‖`∞ ≤ αmin. So, the upper bound on |∆st| can be rewritten as

|∆st| ≤
|Ω′st − Ωst|

αmin

(
1 +
‖Ω′ − Ω‖`∞

2αmin

)2

+ |Rst|

∣∣∣∣∣
(

1 +
‖Ω′ − Ω‖`∞

2αmin

)2

− 1

∣∣∣∣∣
≤ 9 |Ω′st − Ωst|

4αmin
+

5 |Rst|
4αmin

‖Ω′ − Ω‖`∞ ≤
9
√
|Ω′st − Ωst|
4αmin

√
‖Ω′ − Ω‖`∞ +

5 |Rst|
4αmin

‖Ω′ − Ω‖`∞ .

We now apply the following result to find an upper bound on |∆st|4.

(x+ y)
4 ≤ 8

(
x4 + y4

)
, ∀ x, y ≥ 0.

The proof of preceding result is left to the reader. So,

|∆st|4 ≤
206

α4
min

|Ω′st − Ωst|
2 ‖Ω′ − Ω‖2`∞ ∨

20

α4
min

‖Ω′ − Ω‖4`∞ R
4
st.

Now summing up over all entries of ∆ (omitting the straightforward algebra), we get

‖∆‖4`4 ≤
C

α4
min

[
‖Ω′ − Ω‖2`∞ ‖Ω

′ − Ω‖2`2 + ‖Ω′ − Ω‖4`∞ ‖R‖
4
`4

]
, (B.5)

for some bounded universal constant C. Taking forth root from both sides of Eq. (B.5) ends the proof.

The following result is an easy consequence of Lemma A.6 and Lemma B.2.

Lemma B.3. The following inequality holds under the same conditions of Lemma B.2.∣∣∣∣∣
∑p
s1,s2=1 hw

(
R′s1,s2

)∑p
s1,s2=1 hw (Rs1,s2)

− 1

∣∣∣∣∣ ≤ C

α2
min


√
‖Ω′ − Ω‖`∞ ‖Ω

′ − Ω‖`2
‖R‖`4

+ ‖Ω′ − Ω‖`∞

 .
Proof. Lemma A.6 ensures the existence of two bounded strictly positive constants Cw, C ′w such that

hw (r) ≥ C ′wr4, and hw (r) ≤ Cwr4, ∀ r ∈ [−1, 1] .

Therefore, (
p∑

s1,s2=1

hw
(
R′s1,s2

)) 1
4

≤ C
1
4
w ‖R′‖`4 ≤ C

1
4
w ‖R‖`4

(
1 +
‖R′ −R‖`4
‖R‖`4

)

≤
(
Cw
C ′w

) 1
4

(
p∑

s1,s2=1

hw (Rs1,s2)

) 1
4
(

1−
‖R′ −R‖`4
‖R‖`4

)
. (B.6)
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Applying triangle inequality on Eq. (B.6) leads to∑p
s1,s2=1 hw

(
R′s1,s2

)∑p
s1,s2=1 hw (Rs1,s2)

− 1 .

(
1−
‖R′ −R‖`4
‖R‖`4

)4

− 1 ≤

∣∣∣∣∣1− ‖R′ −R‖`4‖R‖`4

∣∣∣∣∣− 1 ≤
‖R′ −R‖`4
‖R‖`4

.

Employing similar techniques, one can show that 1−
∑p
s1,s2=1 hw(R′s1,s2)∑p
s1,s2=1 hw(Rs1,s2)

≤
‖R′−R‖

`4

‖R‖`4
. Thus,

∣∣∣∣∣
∑p
s1,s2=1 hw

(
R′s1,s2

)∑p
s1,s2=1 hw (Rs1,s2)

− 1

∣∣∣∣∣ . ‖R′ −R‖`4‖R‖`4
. (B.7)

We conclude the proof by applying Lemma B.2 to Eq. (B.7).

Lemma B.4. Let Ω,Ω′ ∈ Sp×p++ be two precision matrices such that

λmin (Ω) ∧ λmin (Ω′) ≥ αmin,

for a strictly positive scalar αmin. Define L1, L2 ∈ Rp×p by

L :=

[
Ωst√
Ωtt

]p
s,t=1

, and L′ :=

[
Ω′st√
Ω′tt

]p
s,t=1

.

If ‖Ω′ − Ω‖`∞ ≤ αmin, then there exists a bounded universal constant C such that

‖L′ − L‖`2 ≤ C

(
‖Ω′ − Ω‖`2√

αmin
+
‖Ω‖`2 ‖Ω

′ − Ω‖`∞√
α3

min

)
.

Proof. We apply similar techniques as the proof of Lemma B.2. For simplicity define ∆ := L′ − L. Triangle
inequality leads to

|∆st| ≤
|Ω′st − Ωst|√

Ω′tt
+
|Ωst|√

Ωtt

∣∣∣∣∣
√

Ωtt
Ω′tt
− 1

∣∣∣∣∣ , ∀ s, t ∈ {1, . . . , p} .

Using Eq. (B.4) and the fact that ‖Ω′ − Ω‖`∞ ≤ αmin are critical for simplifying the obtained upper bound
on |∆st|. We skip the algebraic details as it is exactly the same in Eq. (B.4).

|∆st|2 ≤

[
|Ω′st − Ωst|√

αmin
+
|Ωst| ‖Ω′ − Ω‖`∞

2
√
α3

min

]2

≤ 2

(
(Ω′st − Ωst)

2

αmin
+

Ω2
st ‖Ω′ − Ω‖2`∞

4α3
min

)
, , ∀ s, t ∈ {1, . . . , p} .

(B.8)
Finally by combining inequality (B.8) for all pairs (s, t) in {1, . . . , p} × {1, . . . , p}, we get

‖∆‖2`2 =

p∑
s,t=1

|∆st|2 ≤
2

αmin
‖Ω′ − Ω‖2`2 +

1

2α3
min

‖Ω‖2`2 ‖Ω
′ − Ω‖2`∞ .

This inequality can be easily reformulated as the desirable upper bound on ‖∆‖`2 .
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