
Supplementary material for “Minimax
quasi-Bayesian estimation in sparse canonical
correlation analysis via a Rayleigh quotient

function”

S-1 Proofs

Throughout the proofs c0 denotes a generic absolute constant that depends only on κ
and κ̄ in H3, but whose actual value or expression may change during the text. From
the definition of Π(·|Z), for any measurable subset C of ∆s × Rp, by integrating out the
non-selected component θ − θδ, we have

Π(C|Z) =

∑
δ∈∆s

ea‖δ‖0
∫
Rp 1C(δ, θ) (θ) exp

(
−ρ1

2
‖θδ‖2

2 −
ρ0

2
‖θ − θδ‖2

2 + σnRn(θδ;Z)
)

dθ∑
δ∈∆s

ea‖δ‖0
∫
Rp exp

(
−ρ1

2
‖θδ‖2

2 −
ρ0

2
‖θ − θδ‖2

2 + σnRn(θδ;Z)
)

dθ

=

∑
δ∈∆s

(
1
pu

√
ρ1

2π

)‖δ‖0 ∫
R‖δ‖0 1C(δ, (u, 0)δ) exp

(
−ρ1

2
‖u‖2

2 + σnR̄n((u, 0)δ;Z)
)

du∑
δ∈∆s

(
1
pu

√
ρ1

2π

)‖δ‖0 ∫
R‖δ‖0 exp

(
−ρ1

2
‖u‖2

2 + σnR̄n((u, 0)δ;Z)
)

du

, (S-1)

where
R̄n(θ;Z)

def
= Rn(θ;Z)− Rn(θ?;Z).

S-1.1 Proof of Theorem 2

We recall that ∆s
def
= {δ ∈ ∆ : ‖δ‖0 ≤ s}, and for δ ∈ ∆s, we let

Bδ
def
=

{
θ ∈ Rp :

∥∥∥∥ θδθT
δ

‖θδ‖2
2

− θ?θT

?

∥∥∥∥
F

≤Mε

}
,

and Bcδ its complement in Rp. We then set

B
def
=
⋃
δ∈∆s

{δ} × Bδ, and A
def
=
⋃
δ∈∆s

{δ} × Bcδ.
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Clearly we have ∆s×Rp = B∪A. Hence our objective is to establish that Π(A|Z) is small.
We show in Lemma S-1 that the denominator on the right hand side of (S-1) is bound from
below by

$
def
= e−s?(u+1) log(p).

Equation (S-1) then implies that

Π(A1|Z) ≤ 1

$

×
∑
δ∈∆s

(
1

pu

√
ρ1

2π

)‖δ‖0 ∫
R‖δ‖0

1Bcδ
((u, 0)δ) exp

(
−ρ1

2
‖u‖2

2 + σnR̄n((u, 0)δ;Z)
)

du. (S-2)

We show in Lemma S-4 that any θ ∈ Rp, such that ‖θ‖0 ≤ s,

Rn(θ;Z)− Rn(θ?;Z) ≤ −gap

2

(κ
κ̄

)2

‖θθT − θ?θT

?‖2
F + c0r1‖θθT − θ?θT

?‖F,

for some absolute constant c0 that depends only on κ and κ̄. Therefore, for 4c0r1
gap

(
κ̄
κ

)2

≤
‖θθT − θ?θT

?‖F, we have

Rn(θ;Z)− Rn(θ?;Z) ≤ −gap

4

(κ
κ̄

)2

‖θθT − θ?θT

?‖2
F.

Therefore, for M ≥ 4c0

(
κ̄
κ

)2

, (S-2) becomes

Π(A1|Z) ≤ 1

$
e−

M2gap
4 (κκ̄)

2
σnε2

∑
δ∈∆s

(
1

pu

√
ρ1

2π

)‖δ‖0 ∫
R‖δ‖0

1Bδ((u, 0)δ) exp
(
−ρ1

2
‖u‖2

2

)
du

≤ 1

$
e−

M2gap
4 (κκ̄)

2
σnε2

∑
δ∈∆s

(
1

pu

√
ρ1

2π

)‖δ‖0 (
2πρ−1

1

)‖δ‖0/2
≤ 2es?(u+1) log(p)e−

M2gap
4 (κκ̄)

2
σnε2 ≤ 2e−

M2

8gap(
κ
κ̄)

2
σnr21 ,

under the sample size condition (11), where the third inequality follows from the assump-
tions u > 1, and pu−1 > 2. This proves the theorem.

�

2



We derive here a lower bound on the normalizing constant of the quasi-posterior distri-
bution.

Lemma S-1. Suppose that the dataset Z satisfies Assumption H3, and 1 < σn ≤ p. Then
we can an absolute constant c0 such that p ≥ max(c0, e

1s?), we have

∑
δ∈∆s

(
1

pu

√
ρ1

2π

)‖δ‖0 ∫
R‖δ‖0

exp
(
−ρ1

2
‖u‖2

2 + σnR̄n((u, 0)δ;Z)
)

du ≥ e−s?(u+1) log(p)) (S-3)

Proof. Clearly, the left hand side of (S-3) is bounded from below by(
1

pu

√
ρ1

2π

)s? ∫
Rs?

exp
(
−ρ1

2
‖u‖2

2 + σnR̄n((u, 0)δ? ;Z)
)

du.

For any θ ∈ Rp that has the same support as θ?, we have

R̄n(θ;Z) =
θTÂθ

θTB̂θ
− θT

? Âθ?

θT
? B̂θ?

=
θTΣ̂θ

θTB̂θ
− θT

? Σ̂θ?

θT
? B̂θ?

=
θTΣ̂θ

(
θT
? B̂θ? − θTB̂θ

)
(θT
? B̂θ?)(θ

TB̂θ)
+

1

θT
? B̂θ?

(
θTΣ̂θ − θT

? Σ̂θ?

)
.

Since Rn(·;Z) is invariant to rescaling, we can assume without any loss of generality that
‖θ‖2 = ‖θ?‖2 = 1. Therefore for Z satisfying H3-(1),we have from Lemma S-3

∣∣R̄n(θ;Z)
∣∣ ≤ (

2

(
κ̄

κ

)2

+ 2

(
κ̄

κ

))
‖θθT − θ?θ

T

?‖F ≤ 4

(
κ̄

κ

)2

‖θθT − θ?θ
T

?‖F. (S-4)

It follows from the above observations that for Z satisfying H3 the left hand side of (S-3)
is bounded from below by(

1

pu

√
ρ1

2π

)s? ∫
Rs?

exp

(
−ρ1

2
‖u‖2

2 −
C

2
σn‖uuT − θ?θT

?‖F
)

du

≥
(

1

pu

√
ρ1

2π

)s?
e−Cη

2σn

∫
S0

e−
ρ1
2
‖u‖22du,
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where C = 8(κ̄/κ)2, η ∈ (0, 1) and S0
def
= {u ∈ Rs? : ‖uuT − θ?θT

?‖F ≤ 2η2}. Note that the
integral

∫
S0
e−

ρ1
2
‖u‖22du is invariant to change of variables by orthogonal matrices. Hence in

that integral we can replace θ? by the unit vector e = (0, . . . , 0, 1) ∈ Rs? . Using this and
switching to polar coordinates, we write the integral as∫

S0

e−
ρ1
2
‖u‖22du =

∫ +∞

0

e−
ρ1
2
r2

rs?−1dr × ν
(
θ ∈ Ss?−1 : | sin(θ)| ≤ η

)
,

where ν is the surface measure on the unit sphere Ss?−1 = {u ∈ Rs? : ‖u‖2 = 1}, and
sin(θ) is the sine of the angle between θ and e. The measure ν (θ ∈ Ss?−1 : | sin(θ)| ≤ η) is
equal to twice the spherical cap around the pole e defined by η. We use the formula of the
spherical cap from ([10]) to write

ν
(
θ ∈ Ss?−1 : | sin(θ)| ≤ η

)
=

4π
s?−1

2

Γ
(
s?−1

2

) ∫ arcsin(η)

0

sins?−2(θ)dθ

=
4π

s?−1
2

Γ
(
s?−1

2

) ∫ η

0

xs?−2

√
1− x2

dx ≥ 4π
s?−1

2

Γ
(
s?−1

2

) ηs?−1

s? − 1
.

Whereas, ∫ +∞

0

e−
ρ1
2
r2

rs?−1dr =
1

2

(
2

ρ1

) s?
2

Γ
(s?

2

)
.

It follows that ∫
S0

e−
ρ1
2
‖u‖22du ≥ 2

s?
√
π

(
2π

ρ1

) s?
2

ηs?−1.

We conclude that for Z satisfying H3, and any η ∈ (0, 1), the left hand side of (S-3) is
bounded from below by

2√
πs?

(
1

pu

)s?
e−(s?−1) log(1/η)e−Cη

2σn

=
2√
π

p

s?e1
exp

(
−(us? + 1) log(p)− (s? − 1) log(

√
Cσn)

)
≥ e−(u+1)s? log(p∨Cσn),

by taking η = 1/
√
Cσn, and assuming that p ≥ e1s?, and

√
Cσn ≤ p. This concludes the

proof.
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We make use of the following version of the Davis-Kahan sin Θ theorem taken from [15]
Lemma 4.2.

Lemma S-2. Let A be a p× p symmetric semipositive definite matrix and suppose that its
eigenvalues satisfies λ1(A) > λ2(A) ≥ . . . ≥ λp(A). If a unit vector u is an eigenvector of
A associated to the largest eigenvalue λ1(A), for all v ∈ Rp, ‖v‖2 = 1 it holds

〈A, uu′ − vv′〉 ≥ 1

2
(λ1(A)− λ2(A)) ‖uu′ − vv′‖2

F.

We will need the following technical result.

Lemma S-3. For any unit vectors u, v and square matrix B with matching dimensions,
we have

|〈B, uuT − vvT〉| ≤ 2‖B‖op‖uuT − vvT‖F, (S-5)

Proof. Indeed, we have

|〈B, uuT − vvT〉| = |(u− v)TBu+ vTB(u− v)| ≤ 2‖B‖op‖u− v‖2.

Similarly, we have |〈B, uuT − vvT〉| ≤ 2‖B‖op‖u+ v‖2. Hence

|〈B, uuT − vvT〉| ≤ 2‖B‖op min (‖u− v‖2, ‖u+ v‖2) .

The result follows by noting that

‖uuT − vvT‖F ≥ min (‖u− v‖2, ‖u+ v‖2) . (S-6)

To see this, note that ‖uuT − vvT‖F = ‖u− v‖2‖u + v‖2/
√

2 = ‖u− v‖2

√
2− ‖u− v‖2

2/2.
Hence, if ‖u− v‖2

2 ≤ 2, then we have ‖uuT − vvT‖F ≥ ‖u− v‖2. But if ‖u− v‖2
2 > 2 then

‖uuT − vvT‖F > ‖u+ v‖2. Hence the result.

The next result describes the behavior of the Rayleigh quotient function that yields the
posterior contraction result.

Lemma S-4. Assume H3. For any θ ∈ Rp such that ‖θ‖0 ≤ s, we have

Rn(θ;Z)− Rn(θ?;Z) ≤ −gap

2

(κ
κ̄

)2

‖θθT − θ?θT

?‖2
F + c0r1‖θθT − θ?θT

?‖F. (S-7)
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Proof. Fix θ ∈ Rp such that ‖θ‖0 ≤ s. Since the Rayleigh quotient is invariant under
rescaling we can assume without any loss of generality that ‖θ‖2 = 1. We have

R̄n(θ;Z) = Rn(θ;Z)− Rn(θ?;Z) =
θTΣ̂θ

θTB̂θ
− θT

? Σ̂θ?

θT
? B̂θ?

=
θTΣθ

θTBθ
− θT

?Σθ?
θT
?Bθ?

+

〈
Σ̂− Σ,

θθT

θTBθ
− θ?θ

T
?

θT
?Bθ?

〉
+

〈
Σ̂,

[
θθT

θTB̂θ
− θθT

θTBθ

]
−

[
θ?θ

T
?

θT
? B̂θ?

− θ?θ
T
?

θT
?Bθ?

]〉
. (S-8)

Set S
def
= B−1/2ΣB−1/2, w = B1/2θ/‖B1/2θ‖2, w? = B1/2θ?/‖B1/2θ?‖2, and note that w?

is an eigenvector of S associated to the largest eigenvalue of S. Hence by the curvature
lemma (Lemma S-2) we have

θTΣθ

θTBθ
− θT

?Σθ?
θT
?Bθ?

= 〈S,wwT − w?wT

? 〉 ≤ −
gap

2
‖wwT − w?wT

?‖2
F.

Let I ⊆ {1, . . . , p} be the joint support of θ and θ? (hence ‖I‖0 ≤ s + s?). Then we can
express

‖wwT − w?wT

?‖F =

∥∥∥∥(BI,I)
1/2

(
θIθ

T
I

θT
I (BI,I)θI

− θ?Iθ
T
?I

θT
?I(BI,I)θ?I

)
(BI,I)

1/2

∥∥∥∥
F

.

We recall that for any square matrix A and invertible matrix B,

‖A‖F = ‖B−1/2B1/2AB1/2B−1/2‖F ≤ ‖B−1/2‖2
op‖B1/2AB1/2‖F,

where ‖M‖op denotes the operator norm of M . With these observations in mind, we get

‖wwT − w?wT

?‖F ≥
1

‖(BI,I)−1/2‖2
op

∥∥∥∥ θIθ
T
I

θT
I (BI,I)θI

− θ?Iθ
T
?I

θT
?I(BI,I)θ?I

∥∥∥∥
F

≥ κ

∥∥∥∥ θIθ
T
I

θT
I (BI,I)θI

− θ?Iθ
T
?I

θT
?I(BI,I)θ?I

∥∥∥∥
F

.

We note also that for any unit vectors u, v and symmetric invertible matrix B with matching
dimension,∥∥∥∥ uuT

uTBu
− vvT

vTBv

∥∥∥∥2

F

=
(uTBu− vTBv)2

(uTBu)2(vTBv)2
+
‖uuT − vvT‖2

F

(uTBu)(vTBv)
≥ ‖uu

T − vvT‖2
F

(uTBu)(vTBv)
. (S-9)
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Hence, under H3,

‖wwT − w?wT

?‖2
F ≥

(κ
κ̄

)2

‖θIθT

I − θ?IθT

?I‖2
F =

(κ
κ̄

)2

‖θθT − θ?θT

?‖2
F.

In conclusion we have

θTΣθ

θTBθ
− θT

?Σθ?
θT
?Bθ?

≤ −gap

2

(κ
κ̄

)2

‖θθT − θ?θT

?‖2
F. (S-10)

The second term from (S-8) can be written as

∣∣∣∣〈Σ̂− Σ,
θθT

θTBθ
− θ?θ

T
?

θT
?Bθ?

〉∣∣∣∣ =

∣∣∣∣∣∣
〈

(Σ̂)I,I − ΣI,I,

θIθ
T
I

θTBθ
− θ?Iθ

T
?I

θT
? Bθ?∥∥∥ θIθ

T
I

θTBθ
− θ?Iθ

T
?I

θT
? Bθ?

∥∥∥
F

〉∣∣∣∣∣∣
∥∥∥∥ θIθT

I

θTBθ
− θ?Iθ

T
?I

θT
?Bθ?

∥∥∥∥
F

≤ max
M∈RI×I: ‖M‖F=1, Rank(M)≤2

∣∣∣〈(Σ̂)I,I − ΣI,I,M
〉∣∣∣× ∥∥∥∥ θIθT

I

θTBθ
− θ?Iθ

T
?I

θT
?Bθ?

∥∥∥∥
F

.

And we note from (S-9) and Lemma S-3 that for Z satisfying H3,∥∥∥∥ θIθT
I

θTBθ
− θ?Iθ

T
?I

θT
?Bθ?

∥∥∥∥2

F

≤ 1

κ4

〈
BII, θIθ

T
I − θ?,IθT

?,I

〉2
+

1

κ2

∥∥θIθTI − θ?,IθT

?,I

∥∥2

F

≤ 1

κ2

(
1 + 2

(
κ̄

κ

)2
)
‖θθT − θ?θT

?‖2
F. (S-11)

Therefore for Z satisfying H3,∣∣∣∣〈Σ̂− Σ,
θθT

θTBθ
− θ?θ

T
?

θT
?Bθ?

〉∣∣∣∣ ≤ c0r1‖θθT − θ?θT

?‖F. (S-12)

We process the last term in (S-8) as follows.〈
Σ̂,

[
θθT

θTB̂θ
− θθT

θTBθ

]
−

[
θ?θ

T
?

θT
? B̂θ?

− θ?θ
T
?

θT
?Bθ?

]〉

=
θTΣ̂θ

θTB̂θ

〈
B − B̂, θθ

T

θTBθ

〉
− θT

? Σ̂θ?

θT
? B̂θ?

〈
B − B̂, θ?θ

T
?

θT
?Bθ?

〉
=

(
θTΣ̂θ

θTB̂θ
− θT

? Σ̂θ?

θT
? B̂θ?

)〈
B − B̂, θθ

T

θTBθ

〉
+
θT
? Σ̂θ?

θT
? B̂θ?

〈
B − B̂, θθ

T

θTBθ
− θ?θ

T
?

θT
?Bθ?

〉
. (S-13)
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Hence for Z satisfying H3, the first term in the last display can be bounded, similar to
(S-4), as∣∣∣∣∣
(
θTΣ̂θ

θTB̂θ
− θT

? Σ̂θ?

θT
? B̂θ?

)〈
B − B̂, θθ

T

θTBθ

〉∣∣∣∣∣
≤ 1

κ
λmax(B̂ −B, s)

[
4

(
κ̄

κ

)2

‖θθT − θ?θT

?‖F

]

≤ 4

κ
λmax(B̂ −B, s)

(
κ̄

κ

)2

‖θθT − θ?θT

?‖F.

The rightmost of (S-13) is similar to (S-12):∣∣∣∣∣ θT
? Σ̂θ?

θT
? B̂θ?

〈
B − B̂, θθ

T

θTBθ
− θ?θ

T
?

θT
?Bθ?

〉∣∣∣∣∣ ≤ c0r1‖θθT − θ?θT

?‖F.

In conclusion the last term in (S-8) is bounded from above by∣∣∣∣∣
〈

Σ̂,

[
θθT

θTB̂θ
− θθT

θTBθ

]
−

[
θ?θ

T
?

θT
? B̂θ?

− θ?θ
T
?

θT
?Bθ?

]〉∣∣∣∣∣ ≤ c0r1‖θθT − θ?θT

?‖F. (S-14)

We conclude from (S-10-S-14) that for Z satisfying H3

Rn(θ;Z)− Rn(θ?;Z) ≤ −gap

2

(κ
κ̄

)2

‖θθT − θ?θT

?‖2
F + c0r1‖θθT − θ?θT

?‖F.

This ends the proof.

S-2 Proof of Proposition 3

We present the details of this claim for Σ̂, the argument being similar for the other two
covariance matrices. For any J ⊂ [1 : p] of size s, we have

‖Σ̂J,J −ΣJ,J‖op = ‖Σ1/2
J,J

(
Σ
−1/2
J,J Σ̂J,JΣ

−1/2
J,J − Is

)
Σ

1/2
J,J‖op ≤ ‖Σ

1/2
J,J‖

2
op×‖

1

n

n∑
i=1

UiJU
T

iJ − Is‖op,

8



where UiJ
def
= Σ

−1/2
J,J ZiJ , where ZiJ = (Zij)j∈J , is mean zero and isotropic. By Theorem

4.6.1 (Equation 4.22) of ([14]), provided that n ≥ 4c0s log(p) for some absolute constant
c0 > 1, we have

‖Σ̂J,J − ΣJ,J‖op ≤ CK2‖Σ1/2
J,J‖

2
op

√
c0s log(p)

n
,

with probability at least 1 − 2p−c0s. Therefore, for any matrix A ∈ Rs×s, with ‖A‖F = 1,
and Rank(A) ≤ α, using the singular value decomposition of A, we have

max
A∈Rs×s: ‖A‖F=1

Rank(A)≤α

∣∣∣〈Σ̂J,J − ΣJ,J , A
〉∣∣∣ ≤ √α‖Σ̂J,J − ΣJ,J‖op ≤ CK2λmax(Σ, s)

√
c0αs log(p)

n
.

Since the number of subsets of [1 : p] of size s is smaller than ps, we conclude with a union
bound argument that

λ(α)
max(Σ̂− Σ, s) ≤ CK2λmax(Σ, s)

√
c0αs log(p)

n
,

with probability 1− 2p−(c0−1)s.

S-3 MCMC sampling

We sample from the simulated tempering distribution (15) using a Metropolis-within-Gibbs
strategy. We describe here one iteration of the algorithm, and its transition kernel. Given
(δ, θ, k), we perform a three-step update. First, given k and δ, we update θ. We let [θ]δ to

denote the δ-selected component of θ listed in their original order: [θ]δ
def
= (θj : j ∈ {1 ≤

k ≤ p : δk = 1}), and [θ]δc
def
= (θj : j ∈ {1 ≤ k ≤ p : δk = 0}). We employ the fact that

the selected components [θ]δ and the un-selected components [θ]δc of θ are independent
conditional on k and δ to update θ. In addition, given k and δ, the components of [θ]δc are
i.i.d. N(0, tkρ

−1
0 ) and the distribution of [θ]δ has density on R‖δ‖0 proportional to

u 7→ exp

(
− ρ1

2tk
‖u‖2

2 +
σn
tk

Rn((u, 0)δ;Z)

)
, (S-15)

where the notation (u, 0)δ denotes the vector in Rp such that [(u, 0)δ]δ = u. Hence we
update [θ]δ using a Metropolis adjusted Langevin algorithm (MALA) on R‖δ‖0 with target
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Algorithm 1 Simulated tempering for sparse canonical correlation analysis

Model Input: Matrices Â, B̂, prior parameters ρ0, ρ1, u.
MCMC Input: Number of iterations N , batch size J , temperatures 1 = t1 < . . . < tK ,
weights {c1, . . . , cK}, and step-sizes {η1, . . . , ηK}.
Initialization: Set the temperature index k(0) = 1. Draw δ

(0)
j

i.i.d.∼ Ber(0.5) for j =

1, . . . , p, and independently draw θ(0) ∼ N(0, Ip).
for t = 0 to N − 1, given (δ(t), θ(t), k(t)) = (δ, θ, k) do

1. Update θ: Draw the components of [θ̄]δ̄c independently from N(0, ρ−1
0 tk). Draw

[θ̄]δ̄ ∼ Pk,δ([θ]δ, ·), where Pk,δ denotes the transition kernel of the MALA with step-
size ηk and invariant distribution given by (S-15).

2. Update δ: Uniformly randomly select a subset J from {1, . . . , p} of size J without

replacement, and draw δ̄ ∼ Q
(J)

k,θ̄
(δ, ·), where the transition kernel described in (S-18).

3. Update k: Draw k̄ ∼ Tδ̄,θ̄(k, ·), where Tδ,θ is the transition kernel of the Metropolis-
Hastings on {1, . . . , K} with invariant distribution given by (S-19) and random walk
proposal that has reflection at the boundaries.

4. New MCMC state: Set (δ(t+1), θ(t+1), k(t+1)) = (δ̄, θ̄, k̄).

end for
Output: {(δ(t), θ(t), k(t)) : 0 ≤ t ≤ N s.t. k(t) = 1}

distribution (S-15), and step-size ηk (we use different step-sizes for different temperature
levels). Let Mδ,k denote the resulting transition kernel on R‖δ‖0 . For more details on the
MALA, see e.g., [13]. For convenience, we write Pk,δ to denote the Markov kernel on Rp

corresponding to the update of θ just described. Specifically,

Pδ,k(θ, dθ
′) = Mδ,k([θ]δ, d[θ′]δ)

∏
j: δj=0

N(0, ρ−1
0 )(dθ′j),

where N(µ, σ2)(dx) is a short for the Gaussian measure on R with mean µ and variance
σ2.

Secondly, we update δ by applying a Gibbs sampler to the conditional distribution of
δ given k and θ. Note that the conditional distribution of δj given k, θ and δ−j, where

δ−j
def
= (δ1, . . . , δj−1, δj+1, . . . , δp), is the Bernoulli distribution Ber(qj), with probability of

10



success given by

qj
def
=

{
1 + exp

(
− a

tk
+

1

2tk
(ρ1 − ρ0)θ2

j

)
exp

(
σn
tk

Rn(θδ(j,0) ;Z)− σn
tk

Rn(θδ(j,1) ;Z)

)}−1

,

(S-16)
where

δ
(j,0)
i

def
=

{
0 i = j

δi i 6= j
, δ

(j,1)
i

def
=

{
1 i = j

δi i 6= j
. (S-17)

Given k, θ and j, let Q
(j)
k,θ denote the transition kernel on ∆ which, given δ, leaves δi

unchanged for all i 6= j, and draws δj ∼ Ber(qj). We update δ as follows: randomly draw
a subset J = {J1, . . . , JJ} of size J from {1, . . . , p}, and update δ using the transition kernel
on ∆ given by

Q
(J)
k,θ

def
= Q

(J1)
k,θ Q

(J2)
k,θ · · ·Q

(JJ )
k,θ . (S-18)

The resulting overall kernel on ∆ is

Q̄k,θ =
∑

J: |J|=J

(
p

J

)−1

Q
(J)
k,θ.

Thirdly, given δ and θ, we update k using a standard Metropolis-Hastings algorithm
with a random walk proposal that has reflection at the boundaries. Specifically, at k we
propose with equal probability either k− 1 or k+ 1, except at 1, where we only propose 2,
and at K, where we only propose K − 1. We write Tδ,θ to denote the transition kernel on
{1, . . . , K} of this Metropolis-Hastings algorithm with invariant distribution

i 7→ 1

ci
exp

{
a

ti
‖δ‖0 −

ρ1

2ti
‖θδ‖2

2 −
ρ0

2ti
‖θ − θδ‖2

2 +
σn
ti
Rn(θδ;Z)

}
. (S-19)

Lastly, we collect samples by retaining the values of (δ, θ) at iterations at which k = 1.
In stationarity these samples have distribution (8).

S-3.1 Parameter choices and adaptive tuning

Throughout the simulation, we specify the parameters of the prior distribution in the
following way. We let ρ1 = 1

2
, and ρ0 = n/10, where n is the sample size, and we set

u = 1.5.
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Algorithm 1 also depends on the user-defined parameters J , K, (t1, . . . , tK), (c1, . . . , cK),
and (η1, . . . , ηK). The parameter J (the Gibbs sampling batch size) does not greatly impact
performance, and setting J = 100 works well in most settings. Efficient selection and
tuning of temperatures in simulated tempering has received some attention ([8, 2]), and
despite some progress ([12]), to the best of our knowledge, there is no practical and scalable
algorithm to do so. In our implementation we use variations of the geometric scaling. We
refer the reader to Section 4 for specific choices.

We tune the step-sizes η = (η1, . . . , ηK) of MALA and the weights (c1, . . . , cK) of sim-
ulated tempering using adaptive MCMC methods , see e.g., [1]. To tune ηk, we follow the
algorithm proposed in [3], with a targeted acceptance probability of 30%. For simulated
tempering to visit all temperature levels frequently, the weights (c1, . . . , cK) need to be
adequately tuned. We refer the reader to [8] for an extensive discussion of the issue. This
problem can be efficiently solved using the Wang-Landau algorithm for simulated temper-
ing as developed in [4]. We follow this approach here. The fully adaptive MCMC sampler
is presented in Algorithm 2.

S-4 Coupled Markov chains for mixing time estima-

tion

At least empirically, simulated tempering is well-known to improve mixing when deal-
ing with multimodal distributions ([8, 11]). However, rigorous results are far less well-
established. Using a Markov kernel decomposition approach, ([16]) gives a lower bound on
the spectral gap of simulated tempering in terms of the spectral gaps of the component
kernels and the so-called projection kernel. However, applying their result to a specific
problem remains non-trivial. Furthermore, their lower bound decays exponentially fast in
the number of components in the partition, which clearly limits its relevance in our setting.
Using a similar Markov kernel decomposition technique, ([7]) has a more explicit upper
bound on the mixing time of simulated tempering. However their result applies to a differ-
ent algorithm than the one considered here, and they consider a specific form of the target
distribution that does not include (15).

Given the lack of theoretical mixing time analysis of simulated tempering, we take a
more empirical approach based on the unbiased Markov Chain Monte Carlo framework in
([5, 9]). Let {X(t), t ≥ 0} be the Markov chain generated by our simulated tempering
algorithm, where X(t) = (δ(t), θ(t), k(t)) ∈ X. Let P denote its transition kernel (which
is described in Section S-4 in the supplementary material). Following [9], we construct a

12



Algorithm 2 Adaptive version of simulated tempering for Canonical correlation analysis

Model Input: Matrices Â, B̂, prior parameters ρ0, ρ1, u.
MCMC Input: Number of iterations N , Batch size J , temperatures 1 = t1 < . . . , < tK .
Adaptive MCMC Input: a = 10 and w ∈ (0, 1).

MCMC Initialization: Set k(0) = 1. Draw δ
(0)
j

i.i.d.∼ Ber(0.5),∀j = 1, . . . , p, and

independently θ(0) ∼ N(0, Ip).
Adaptation Parameters Initialization : . Set `(0) = 0 ∈ RK , v(0) = (0, . . . , 0) ∈ RK ,
ν(0) = (0, . . . , 0) ∈ RK , and choose c(0) ∈ (0,∞)K .
for t = 1 to N − 1, given (δ(t), θ(t), k(t)) = (δ, θ, k), `(t) = `, c(t) = c, v(t) = v, and ν(t) = ν
do

1. Update θ and `: Draw the components of [θ̄]δ̄c independently from N(0, ρ−1
0 tk).

Draw [θ̄]δ ∼ Pk,δ([θ]δ, ·), where Pk,δ denotes the transition kernel of the MALA with
step-size e`k and invariant distribution given by (S-15). Denote α as the acceptance
probability of the MALA update. Set

¯̀
k = `k + v−0.6

k (α− 0.3) and for i 6= k, set ¯̀
i = `i.

2. Update δ: Uniformly randomly select a subset J from {1, . . . , p} of size J without

replacement, and draw δ̄ ∼ Q
(J)

k,θ̄
(δ, ·), where the transition kernel described in (S-18).

3. Update k, c, v and ν: Draw k̄ ∼ Tδ̄,θ̄(k, ·), where Tδ,θ is the transition kernel of
the Metropolis-Hastings on {1, . . . , K} with invariant distribution given by (S-19)
and random walk proposal with reflection at the boundaries. We then set

c̄k̄ = ck̄e
a, v̄k̄ = vk̄ + 1, ν̄k̄ = νk̄ + 1, and for i 6= k̄, c̄i = ci, v̄i = vi, and ν̄i = νi.

4. Update a and ν: If ‖ν/(
∑K

k=1 νk)−1/K‖∞ ≤ w/K, then set a = a/2, ν = 0 ∈ RK .

5. New MCMC state: Set (δ(t+1), θ(t+1), k(t+1)) = (δ̄, θ̄, k̄), `(t+1) = ¯̀, c(t+1) = c̄,
v(t+1) = v̄, and ν(t+1) = ν̄.

end for
Output: {(δ(t), θ(t), k(t)) : 0 ≤ t ≤ N s.t. k(t) = 1}

13



coupling P̌ of P with itself: that is, a transition kernel on X × X such that P̌ ((x, y), A ×
X) = P (x,A), P̌ ((x, y),X × B) = P (y,B), for all x, y ∈ X, and all measurable sets A,B.

Furthermore, P̌ ((x, x),D) = 1 where D def
= {(x, x) : x ∈ X}. The construction of the

Markov kernel P̌ is described in Section S-4 in the supplementary material.
Given P̌ , a lag L ≥ 1, and an initial distribution as given in the initialization step of Al-

gorithm 1, we simulate a bivariate Markov chain {(Xt, Yt−L), t ≥ L} as follows. First draw
X(0) ∼ Π(0) and Y (0) ∼ Π(0). Next, for 1 ≤ t ≤ L, we draw Xt|(X0, Y0, X1, X2, . . . , Xt−1) ∼
P (Xt−1, ·). Then for t > L, we draw

(Xt, Yt−L)| {(Xt−1, Yt−L−1), . . . , (XL, Y0), XL−1, . . . , X0} ∼ P̌ ((Xt−1, Yt−L−1), ·) .

In other words, at each time t > L we attempt to couple the two chains while maintaining

the correct marginals. We define τ (L) def
= inf {t ≥ L : Xt = Yt−L}, and have the following:

Proposition 5. Let {X(t), t ≥ 0} be the Markov chain generated by the simulated temper-
ing algorithm, and let Π̄(t) denote the distribution of X(t). For all t ≥ 0, we have

‖Π̄(t) − Π̄‖tv ≤ E
[
max

(
0,

⌈
τ (L) − L− t

L

⌉)]
. (S-20)

Proof. See Section S-4.2.

This inequality implies that by simulating multiple copies of the bivariate chain, and
approximating the expectation in (S-20) by Monte Carlo, we can actually estimate the
mixing time of our algorithm. This gives us the possibility to investigate empirically the
mixing time of our sampler with some theoretical guarantees.

S-4.1 Coupled Markov Chains

We describe here the specific coupled Markov chain employed to estimate the mixing time
plots presented in Section S-4.3.2. We refer the reader to [5] and [9] for more details on
the construction of such coupled kernels. We modify Algorithm 1 to construct the coupled
kernel P̌ . It suffices here to describe one iteration of the coupled chain. At some iteration
t ≥ 1, suppose that (δ(1,L+t), θ(1,L+t), k(1,L+t)) = (δ(1), θ(1), k(1)) and (δ(2,t), θ(2,t), k(2,t)) =
(δ(2), θ(2), k(2)).

In step 1, to update θ(1) and θ(2), we partition the indices {1, . . . , p} into four groups:

Gab = {j : δ
(1)
j = a, δ

(2)
j = b} for a, b = 0, 1. To update the components of θ

(1)
G00

and

14



θ
(2)
G00

, for any j ∈ G00 we first draw a common standard normal random variables Zj, and

then obtain θ̄
(i)
j = tk(i)ρ−1

0 Zj for i = 1, 2. To update the components of θ
(1)
G01

and θ
(2)
G01

, for
any j ∈ G01 we again first draw a common standard normal random variables Zj, and

then obtain θ̄
(1)
j = tk(1)ρ−1

0 Zj, and simultaneously draw θ̄
(2)
j using MALA with proposal

θ
(2)
j + ηk(2)∇ log π(θ

(2)
j ) +

√
2ηk(2)Zj , where π(θ

(2)
j ) is the marginal posterior distribution of

θ
(2)
j . Notice that the joint distribution of [θ(2)]δ(2) is given by Wk(2),δ(2) , whose density is

proportional to (S-15). A similar update procedure is used for updating the components

of θ
(1)
G10

and θ
(2)
G10

. To update the components of θ
(1)
G11

and θ
(2)
G11

, we draw reflection-coupled

MALA proposals in [5], and then for the acceptation step, θ
(1)
G11

and θ
(2)
G11

share the same
uniform random variables.

In step 2, to update δ(1) and δ(2), we first make use of the same randomly drawn subset
J. For i = 1, 2, drawing δ̄(i) ∼ Q

(J)
k,θ(δ

(i), ·) is equivalent to let δ̄
(i)
−J = δ

(i)
−J, and for any j ∈ J,

draw δ̄
(i)
j ∼ Ber(q

(i)
j ) which we implement in the following way. We first draw a common

uniform number uj ∼ Uniform(0, 1), then we obtain δ̄
(i)
j = 1{q(i)

j ≤ uj} for i = 1, 2.

In step 3, to update k(1) and k(2), we use a common uniform random number to make
the proposal move, and a common uniform random number for the acceptation step.

Remark 6. Note that although the empirical mixing time estimation method of [5] de-
scribed above only applies to Markov chains with fixed parameters, we have applied it
here to Algorithm 2, which is an MCMC sampler with adaptively tuned parameters. We
conjecture that the unbiased MCMC methodology remains approximately valid for well-
constructed adaptive MCMC samplers. However the question deserves more research.

S-4.2 Proof of Proposition 5

Using the notations established in Section S-3 the transition kernel of the simulated tem-

pering algorithm on X def
= ∆× Rp × {1, . . . , K} is given by

P ((δ, θ, k); (δ′, dθ′, k′)) = Pδ,k(θ, dθ
′)

 ∑
J: |J|=J

(
p

J

)−1

Q
(J)
k,θ′(δ, δ

′)

Tδ′,θ′(k, k
′),

and we call P̄ the transition kernel of the coupled chain on X ×X as described in Section
S-4. The kernel P is a standard Metropolis-within-Gibbs kernel to sample from the density
(15) that is positive everywhere. Therefore, P is phi-irreducible, aperiodic and has invariant
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distribution Π̄(·|Z) by construction. Furthermore, for any nonempty compact set C of Rp,

the set C̄ def
= C × ∆ × {1, . . . , K} is a small set for P , and it is easy to see from the

construction of the coupled chain that,

min
x,y∈C̄

P̄ n0 ((x, y);D) > 0, with n0 = max
(
K,

p

J

)
.

Therefore, according to Proposition 4 of ([9]) to establish the finiteness of the average
meeting time E(τ (L)), it suffices to show that there exist a drift function V : X → [1,∞),
λ ∈ (0, 1), and b <∞ such that

PV (x) ≤ λV (x) + b1C̄(x), for all x = (δ, θ, k) ∈ X , (S-21)

for some small C̄ of the form C̄L
def
= {x ∈ X : V (x) ≤ L}. We show (S-21) in three steps,

with

V (δ, θ, k)
def
= 1 +

1

tk
‖θδ‖2

2.

Step 1: Action of the kernel Tδ,θ We first show that for all (θ, δ, k) ∈ X ,

Tδ,θV (δ, θ, k) ≤ V (δ, θ, k) + c0, (S-22)

for some constant c0. To show this, we find it easy to reason in a slightly more general
terms. Consider a discrete distribution on {1, . . . , K}, given by

π(k) ∝ 1

ck
e−U/tk ,

for some increasing sequence {ck, 1 ≤ k ≤ K}, and for some nonnegative constant U .
Consider a Metropolis-Hastings algorithm to sample from π with a proposal q on {1, . . . , K}
such that at j, we propose to move only to j − 1 or j + 1 for equal probability (at 1 we
propose to move only to 2, and at K we propose to move only to K − 1). Call M the
transition kernel of that Metropolis-Hastings, and for some nonnegative constant B, define

V (j) =
B

tj
, j = 1, . . . , K.
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By the definition of the Metropolis-Hasting kernel, we have

MV (j) = V (j) +
K∑
j′=1

(V (j′)− V (j)) min

(
1,
π(j′)q(j′, j)

π(j)q(j, j′)

)
q(j, j′)

= V (j) +
K∑
j′=1

R(j, j′)q(j, j′),

where

R(j, j′) = (V (j′)− V (j)) min

(
1,
π(j′)q(j′, j)

π(j)q(j, j′)

)
.

Note that V (j + 1) ≤ V (j), and therefore R(j, j + 1) ≤ 0. Whereas

R(j, j − 1) = B

(
1

tj−1

− 1

tj

)
min

(
1,

cj
cj−1

q(j − 1, j)

q(j, j − 1)
e
−
(

1
tj−1

− 1
tj

)
U

)

≤
(
B

U

)
2cj
cj−1

(
1

tj−1

− 1

tj

)
Ue
−
(

1
tj−1

− 1
tj

)
U

≤ 2e−1

(
max
j

cj
cj−1

)
B

U
= C,

where we use the fact that q(j′, j)/q(j, j′) ≤ 2, and the observation that te−t ≤ e−1 for all
t ≥ 0. Using these we have

MV (1) = V (1) +R(1, 2) ≤ V (1).

MV (K) = V (K) +R(K,K − 1) ≤ V (K) + C.

For 2 ≤ j ≤ K − 1,

MV (j) = V (j) +
1

2
R(j, j − 1) +

1

2
R(j, j + 1) ≤ V (j) +

C

2
.

Hence, for all 1 ≤ j ≤ K, it holds

MV (j) ≤ V (j) + 2e−1

(
max
j

cj
cj−1

)
B

U
.
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We can apply this result to the kernel Tδ,θ with U = ρ1

2
‖θδ‖2

2 + ρ0

2
‖θ− θδ‖2

2− σnRn(θδ;Z)−
a‖δ‖0, and B = ‖θδ‖2

2. Under assumption H2, Rn(θδ;Z) ≤ 1. Hence for ρ1‖θδ‖2
2 ≥ 4(σn +

ap), the chosen U is non-negative and we get

Tδ,θV (δ, θ, k) ≤ V (δ, θ, k)

+ 2e−1

(
max
j

cj
cj−1

)
‖θδ‖2

2
ρ1

2
‖θδ‖2

2 + ρ0

2
‖θ − θδ‖2

2 − σnRn(θδ;Z)− a‖δ‖0

≤ V (δ, θ, k) +
8e−1

ρ1

(
max
j

cj
cj−1

)
,

for ‖θδ‖2 ≥ L, for L taken large enough.

Step 2: Accounting for the kernel Q̄ For consistency in the notation, we write summa-
tions as integrals with respect to the counting measure. Using (S-22) and the definition of
Q̄, we have for all (δ, θ, k) ∈ X such that ‖θδ‖2 ≥ L for some appropriately large L,∫

∆

Q̄θ,k(δ, dδ
′)

∫
Tθ,δ′(k, dk

′)V (θ, δ′, k′) ≤
∫

∆

Q̄θ,k(δ, dδ
′)V (θ, δ′, k) + c0

=
∑

J: |J|=J

(
p

J

)−1 ∫
∆

Q
(J)
θ,k(δ, dδ

′)V (θ, δ′, k) + c0.

Given a selection J = {j1, . . . , jJ} ⊆ {1, . . . , p}, and ji ∈ J, we have∫
∆

Q̃
(ji)
k,θ (δ, dδ′)V (θ, δ′, k) = V (θ, δ, k) + (qji − δji)

θ2
ji

tk
≤ V (θ, δ, k) + (1− δji)

θ2
ji

tk
,

where qj is as given in (S-16). It follows that∫
∆

Q
(J)
θ,k(δ, dδ

′)V (θ, δ′, k) ≤ V (θ, δ, k) +
1

tk

J∑
i=1

θ2
ji
1{δji=0}.

We conclude that for ‖θδ‖2 ≥ L,∫
∆

Q̄θ,k(δ, dδ
′)

∫
Tθ,δ′(k, dk

′)V (θ, δ′, k′) ≤ V (θ, δ, k)

+
1

tk

∑
J: |J|=J

(
p

J

)−1
{

J∑
i=1

θ2
Ji
1{δJi=0}

}
+ c0. (S-23)
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Step 3: Drift condition for P We recall that under the kernel Pδ,k the components
{θ′j, j : δj = 0} are drawn independently from the Gaussian distribution N(0, ρ−1

0 ).
Therefore, for ‖θδ‖2 ≥ L, using (S-23), we have∫

X
P ((θ, δ, k); (dθ′, dδ′, dk′))V (θ′, δ′, k′)

≤
∫
Rp
Pδ,k(θ, dθ

′)

V (θ′, δ, k) +
1

tk

∑
J: |J|=J

(
p

J

)−1
{

J∑
i=1

(θ′Ji)
21{δJi=0}

}
+ c0


≤ 1 +

1

tk

∫
R‖δ‖0

Mk,δ(θδ, dv)‖v‖2
2 +

J

ρ0tk
+ c0, (S-24)

where Mk,δ is the kernel of the MALA with target distribution proportional to

u 7→ exp

(
− ρ1

2tk
‖u‖2

2 +
σn
tk

Rn((u, 0)δ;Z)

)
.

It remains to deal with the term
∫
R‖δ‖0 Mk,δ(θδ, dv)‖v‖2

2. For clarity sake let’s work is
a slightly more general setting. Suppose that we have a density on Rd, d ≥ 1, that is
proportional to e−m(u) for some function m of the form

m(u)
def
=
ρ

2
‖u‖2

2 + `(u),

for some bounded function `. Let qη(u, ·) be the density of the proposal distribution

N
((

1− ρη2

2

)
u, η2Id

)
, and define R(u)

def
= {v ∈ Rd : α(u, v) < 1}, where

α(u, v) = min

(
1,
e−m(v)qη(v, u)

e−m(u)qη(u, v)

)
.

Let L denote the resulting transition kernel on Rp. We have∫
Rd
L(u, dv)‖v‖2

2 = ‖u‖2
2 +

∫
α(x, y)

(
‖v‖2

2 − ‖u‖2
2

)
qη(u, v)dv

= ‖u‖2
2 +

∫
R(u)

[
e−m(v)qη(v, u)

e−m(u)qη(u, v)
− 1

] (
‖v‖2

2 − ‖u‖2
2

)
qη(u, v)dv

+

∫
Rd

(
‖v‖2

2 − ‖u‖2
2

)
qη(u, v)dv.
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We can write
‖v‖2

2 − ‖u‖2
2 = 2 〈u, v − u〉+ ‖v − u‖2

2.

Integrating both sides, we get∫
Rd

(
‖v‖2

2 − ‖u‖2
2

)
qη(u, v)dv = −ρη2‖u‖2

2 +
ρ2η4

4
‖u‖2

2 + η2d ≤ −3

4
ρη2‖u‖2

2 + η2d, (S-25)

by choosing η such that η2ρ ≤ 1/2. We also have

e−m(v)qη(v, u)

e−m(u)qη(u, v)
= exp

(
m(u)−m(v)− 1

2η2

∥∥∥∥u− v +
ρη2

2
v

∥∥∥∥2

+
1

2η2

∥∥∥∥v − u+
ρη2

2
u

∥∥∥∥2
)
.

If v ∈ R(u), we necessarily have e−m(v)qη(v,u)

e−m(u)qη(u,v)
< 1, which translates to:

m(v)−m(u) > − 1

2η2

∥∥∥∥u− v +
ρη2

2
v

∥∥∥∥2

+
1

2η2

∥∥∥∥v − u+
ρη2

2
u

∥∥∥∥2

.

Noting that m(u) = (ρ/2)‖u‖2
2 + `(u), where ` is bounded by b0, we infer that for v ∈ R(u),

ρ

2

(
‖u‖2

2 − ‖v‖2
2

)
≤ 2b0 +

1

2η2

∥∥∥∥u− v +
ρη2

2
v

∥∥∥∥2

− 1

2η2

∥∥∥∥v − u+
ρη2

2
u

∥∥∥∥2

= 2b0 +
ρ2η2

8

(
‖v‖2

2 − ‖u‖2
2

)
− ρ

2
〈v − u, v + u〉

= 2b0 +
ρ2η2

8

(
‖v‖2

2 − ‖u‖2
2

)
+
ρ

2

(
‖u‖2

2 − ‖v‖2
2

)
.

Hence, for v ∈ R(u),

‖u‖2
2 − ‖v‖2

2 ≤
16b0

ρ2η2
,

which we use to write∫
R(u)

[
e−m(v)qη(v, u)

e−m(u)qη(u, v)
− 1

] (
‖v‖2

2 − ‖u‖2
2

)
qη(u, v)dv

=

∫
R(u)

[
1− e−m(v)qη(v, u)

e−m(u)qη(u, v)

] (
‖u‖2

2 − ‖v‖2
2

)
qη(u, v)dv ≤ 16b0

ρ2η2
. (S-26)
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We combine (S-25)-(S-26) to conclude that∫
Rd
L(u, dv)‖v‖2

2 ≤ ‖u‖2
2 −

3

4
ρη2‖u‖2

2 + η2d+
16b0

ρ2η2
.

Hence we can find b1 (for instance b1 = 4ρ−1(d + 16b0ρ
−2η−4)) such that for ‖u‖2

2 > b1, it
holds ∫

Rd
L(u, dv)‖v‖2

2 ≤
(

1− ρη2

2

)
‖u‖2

2.

This results applied to Mk,δ together with (S-24) implies that there exist λ ∈ (0, 1) (for

instance λ = ρη2

2tK
), and L <∞ such that

PV (δ, θ, k) ≤ λV (δ, θ, k), for all(δ, θ, k) /∈ C̄L.

With similar (but simpler) calculations we check that

sup
(δ,θ,k)∈C̄L

PV (δ, θ, k) ≤ b,

for some finite constant b. This establishes the drift condition

PV (δ, θ, k) ≤ λV (δ, θ, k) + b1C̄L(δ, θ, k), for all (δ, θ, k) ∈ X .

Hence the result.

S-4.3 Empirical studies of our algorithm

S-4.3.1 On sparse CCA computational barrier

It was conjectured by ([6]) that it is not possible to solve the sparse CCA problem in poly-
nomial time at the statistical rate ε obtained in (13), in the data regime n = o(s2

? log(p)).
The authors made a compelling argument for this conjecture by showing that any such
estimator for the sparse CCA can be used to solve the planted clique problem in a regime
where it is widely believed to be computationally intractable. Since our estimator achieves
the rate ε under the weaker condition n ≥ C0s? log(p), we have the opportunity to test
empirically this conjecture.

In our simulation, we let Σx ∈ R(p/2)×(p/2) and Σy ∈ R(p/2)×(p/2) share the same structure,
namely, a block diagonal matrix with five blocks, each of dimension p/10×p/10, where the
(j, j′)-th element of each block takes value 0.8|j−j

′|. We let λ1 = 0.9, (vx?)j = (vy?)j = 1/
√

3
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(a) p = 500
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(b) p = 2000
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(c) p = 5000

Figure 1: Estimated canonical correlation along the MCMC iterations, averaged over 30
data repetitions for different values of dimension p and sample size n.

for j ∈ {1, 6, 11}, and (vx?)j = (vy?)j = 0 otherwise. Therefore, the true density level is
s? = 6. For each p ∈ {500, 2000, 5000}, we generate data from the model described in
Section 4.1 with two values of the sample size n, namely ds1.5

? log(p)e and ds2.5
? log(p)e. We

use the sample covariance matrices as estimators of Σx, Σy and Σxy, and set the scaling
parameter σn = 2n to construct the extended posterior distribution Π̄ in (15). We sample
from Π̄ using Algorithm 2, with the set of temperatures {1, 1/0.9, 1/0.8, 1/0.7}. Since in this
particular data model, the largest value of the (population) Rayleigh quotient is λ1 = 0.9,
proximity of the sample Rayleigh quotient Rn(·;Z) to λ1 along the MCMC iterations is a
good empirical measure of mixing.

We run each MCMC sampler for N = 10, 000 iterations, repeated 30 times (each time
with a newly generated dataset). At each iteration time, we average the values of Rn(·;Z)
across the 30 repetitions. Fig. 1 shows the plot of the averaged sample Rayleigh quotient
along iterations. The difference in behavior is striking. We clearly see that for all values
of p, the sample Rayleigh quotient Rn(·;Z) corresponding to n = ds2.5

? log(p)e quickly
converges to the population Rayleigh quotient λ1 = 0.9, whereas the one corresponding
to n = ds1.5

? log(p)e fails to converge even after 10,000 iterations. This suggests that the
condition n ≥ C0s

2
? log(p) is indeed needed for the simulated tempering sampler to mix

well, which appears to confirm the conjecture by ([6]).

S-4.3.2 Empirical mixing time of Algorithm 1

We investigate more carefully the mixing time of Algorithm 1 as a function of the dimension
p, using the coupled chain approach of ([5, 9]) as described in Section S-4. We focus on a
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data-rich setting where the sample size n = p/2. Now, let us describe the implementation
details. We let Σx, Σy, vx? and vy? all have the same structures as in Section S-4.3.1
and set λ1 = 0.9. We generate datasets from the model in Section 4.1 for each p ∈
{100, 200, . . . , 5000}, with sample size n = p/2. The extended posterior distribution Π̄ in
(15) is constructed in the same way as in Section S-4.3.1, except with the set of temperatures
{1, 1/0.9, 1/0.8, 1/0.7, 1/0.6}. We set the lag L = p and the maximum iterations N = 10p+
1000. For each value of p, we repeat the simulation 50 times to estimate the distribution of
the meeting time τ (L) of the chain. More precisely, using ε = 0.1, we estimate the mixing
time of the chain as the first iteration t for which the Monte Carlo estimate of the right
hand side of (S-20) is less than ε. Fig. 2 below shows the plot of the mean of meeting times
and the estimated mixing times as functions of p. The results suggest that Algorithm 2
has a mixing time that scales roughly linearly in the dimension p.

Remark S-4.1. As far as we know, the existing literature on simulated tempering gives only
general guidelines on choosing the temperatures ([8, 2]). The implementation of these guide-
lines remains challenging, and typically requires further adaptive MCMC methods ([12]). In
our case, the Rayleigh quotient responds very well to temperature tuning, and in particular
does not require high temperatures to mix well. As a result, we have chosen to maintain
some very simple temperature scaling, and these work very well in the our experiments.
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Figure 2: The mean of meeting times versus the estimated mixing times. The estimated
mixing times are with respect to the total variation distance 0.1.
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