
A FAST ASYNCHRONOUS MCMC SAMPLER FOR SPARSE

BAYESIAN INFERENCE

YVES ATCHADÉ AND LIWEI WANG

(July 2023; First version May 2021)

Abstract. We propose a very fast approximate Markov Chain Monte Carlo (MCMC)

sampling framework that is applicable to a large class of sparse Bayesian inference

problems. The computational cost per iteration in several regression models is of

order O(n(s + J)), where n is the sample size, s the underlying sparsity of the

model, and J is the size of a randomly selected subset of regressors. This cost

can be further reduced by data sub-sampling when stochastic gradient Langevin

dynamics are employed. The algorithm is an extension of the asynchronous Gibbs

sampler of Johnson et al. (2013), but can be viewed from a statistical perspective as

a form of Bayesian iterated sure independent screening (Fan et al. (2009)). We show

that in high-dimensional linear regression problems, the Markov chain generated by

the proposed algorithm admits an invariant distribution that recovers correctly the

main signal with high probability under some statistical assumptions. Furthermore

we show that its mixing time is at most linear in the number of regressors. We

illustrate the algorithm with several models.

1. Introduction

There is a rich and extensive literature on high-dimensional sparse Bayesian infer-

ence built mainly around shrinkage priors and spike and slab priors (see e.g. Mitchell

and Beauchamp (1988); George and McCulloch (1997); Castillo et al. (2015); Atchade

(2017); Carvalho et al. (2010); Piironen and Vehtari (2017); Biswas et al. (2021) and

the references therein). However the computational cost per iteration for sampling

from the resulting posterior distributions grows at least as O(np2) (Bhattacharya

2010 Mathematics Subject Classification. 62F15, 62Jxx.

Key words and phrases. Sparse Bayesian inference, Asynchronous MCMC sampling, MCMC mix-

ing, Bayesian deep learning.

This work is partially supported by the NSF grants DMS 1513040 and DMS 2210664. The authors

have no conflicts of interest to declare.

Y. Atchadé: Boston University, 111 Cummington Mall, Boston 02215 MA, United States. E-mail

address: yvesa@umich.edu.

L. Wang: Boston University, 111 Cummington Mall, Boston 02215 MA, United States. E-mail

address: wlwfoo@bu.edu.

1

2 YVES ATCHADÉ AND LIWEI WANG

et al. (2016)) in Gaussian linear regression models with n data samples and p regres-

sors (n ≤ p), and becomes quickly prohibitive, particularly in non-Gaussian models.

Indeed, computing high-dimensional integrals remains the main challenge in the prac-

tical implementation of Bayesian inference. The problem has grown much worse over

the last decade or so with the rise of deep neural networks and other highly over-

parameterized models (Bhadra et al. (2020)).

As a step forward, we propose herein a very fast but approximate MCMC scheme

for sparse Bayesian models with spike and slab priors. The algorithm builds on a

version of the spike and slab prior developed in Atchade and Bhattacharyya (2019).

Suppose that we have a dataset D with a postulated statistical model {fθ, θ ∈ Rp}.
The proposed prior for θ introduces a variable δ ∈ ∆

def
= {0, 1}p (called sparsity

structure), with prior distribution {π(δ), δ ∈ ∆} of the form

π(δ) ∝ p−u∥δ∥0 , (1)

for some user-defined parameter u > 1. Given δ, the components of θ are assumed

to be conditionally independent mean-zero Gaussian random variables, with variance

ρ−1
0 (resp. ρ−1

1) if the corresponding component of δ is 0 (resp. 1), for user-defined

parameters ρ0 > 0 and ρ1 > 0. The limiting case ρ−1
0 = 0 corresponds to the well-

known spike and slab prior with a point mass at 0 (Mitchell and Beauchamp (1988)).

Setting ℓ(θ)
def
= log fθ(D), we consider the posterior distribution of (δ, θ) given D with

density on ∆× Rp given by

Π(δ, θ|D) ∝
(

1

pu

√
ρ1
ρ0

)∥δ∥0
exp

(
−ρ0

2
∥θ − θδ∥22 −

ρ1
2
∥θδ∥22 + ℓ(θδ)

)
, (2)

where θδ
def
= θ · δ is the component-wise product of θ, δ. A key feature of this sparse

Bayesian modeling is that θ enters the likelihood through θδ. As a result, the marginal

posterior distribution of (δ, θδ) under (2) does not depend on ρ0, and in particular

is the same as with the corresponding spike and slab prior with point mass at the

origin. Hence (2) incurs no loss of information in the estimation of (δ, θδ) compared

with spike and slab priors with point mass at the origin. We refer the reader to

Atchade and Bhattacharyya (2019) for more details on (2) including its posterior

contraction properties.

1.1. Main contributions. We propose a fast MCMC method to sample approx-

imately from (2) where the computational cost per iteration in generalized linear

models is of order O(n(s+ J)), where n is the sample size, s the underlying sparsity

of the model, and J is the update batch size (the number of components of δ that

ASYNCHRONOUS MCMC SAMPLING FOR SPARSE BAYESIAN INFERENCE 3

are asunchronously updated per iteration). This cost can be further reduced by sub-

sampling when stochastic gradient Langevin dynamics (Welling and Teh (2011)) is

employed. Furthermore, we show that for linear regression models and well-selected

values of J , the mixing time of the algorithm is O(p), and the sampling approxi-

mation error due to the asynchronous update is small. We show by simulation that

these results continue to hold more generally for posterior distributions with good

contraction properties.

The algorithm can be viewed as a form of Bayesian sure independent screening

(Fan and Lv (2008); Fan et al. (2009)) in the sense that, as in sure independent

screening, the algorithm alternates between a fast component-wise variable screening

step where the components of δ are sampled independently (conditionally on θ), and

a sparse model refit step where the parameter θ is re-estimated. From the MCMC

viewpoint, the proposed algorithm is an extension of the asynchronous Gibbs sampler

(Smola and Narayanamurthy (2010); Johnson et al. (2013); De Sa et al. (2016)) where

several variables are updated asynchronously and in parallel.

We test the algorithm empirically on linear and logistic regression models, and with

a deep neural network model (lenet-5 applied to the MNIST-FASHION dataset (Xiao

et al. (2017))). The application to logistic regression models show that the algorithm

is faster and more accurate than the mean-field variational approximation, and the

skinny-Gibbs sampler of (Narisetty et al. (2018)). In deep neural network models

the proposed algorithm combined with stochastic gradient Langevin dynamics can be

easily implemented by modifying existing stochastic gradient descent implementation.

1.2. Related work. Sparse model estimation has been a major theme in statistics

over the last two decades (Bühlmann and van de Geer (2011); Hastie et al. (2015);

Wainwright (2019)), and several MCMC and approximate MCMC samplers have been

proposed to deal with Bayesian implementations. In (Bhattacharya et al. (2016)), the

authors proposed an exact algorithm with complexity O(p2min(n, p)) per iteration

for posterior sampling in Bayesian linear regression with Gaussian scale-mixture pri-

ors. Rajaratnam et al. (2019) proposes a two-step Gibbs sampler with blocking in

a linear regression scenario, simultaneously drawing the coefficient and residual vari-

ance in the same step of the Gibbs sampling cycle. In Narisetty et al. (2018), the

author focused on logistic regression and proposed an approximate Gibbs sampler

called Skinny Gibbs algorithm, which replaces the high dimensional covariance ma-

trix with a sparse approximation. Rockova and George (2018) developed the spike

and slab LASSO, a fast optimization-based method to recover the mode of a poste-

rior distribution of the form (2) but with the Gaussian distribution replaced by a

4 YVES ATCHADÉ AND LIWEI WANG

double-exponential. In Johndrow et al. (2020), the authors proposed an approximate

sampler for dealing with linear regression models with horseshoe priors.

One important limitation of these prior computational methods is that the pro-

posed samplers target specific models, mostly linear and logistic regression models.

In contrast, the approach proposed here has a much broader applicability, yet remains

competitive when applied to those basic models.

Variational approximation is another class of methods widely recommended for

large scale Bayesian computation (Blei et al. (2016); Louizos et al. (2017); Ghosh

et al. (2019); Tran et al. (2020)). However variational approximation is a general

methodology, and the extra step of building a good variational approximation family

for a given problem – an important requirement for the consistency of the method

(Zhang and Gao (2020)) – is a challenging task. Furthermore, fitting variational

approximation families that are not conjugate is generally a costly nonconvex problem.

For instance, we observed on logistic regression models that the mean field variational

approximation of (2) is computationally more expensive and less accurate than the

algorithm proposed in this work.

Another related line of research for dealing with big datasets is a divide-and-conquer

strategy developed in works such as (Neiswanger et al. (2014); Xue and Liang (2019);

Srivastava and Xu (2021)). However, these approaches are fundamentally different

from the one pursued here. Divide-and-conquer strategies deal with the statistical

challenge of combining posterior distributions obtained by data splitting, whereas

stochastic gradient Langevin dynamics is a specific algorithm to sample from the full

posterior distribution using mini-batches.

1.3. Outline. The paper is organized as follows. We end the introduction with a

compendium of our notations. The asynchronous sampler is developed in Section 2.

Some theoretical insights are provided in Section 3, but to keep the focus on the main

ideas we placed the proofs in the appendix. The numerical illustrations are collected

in Section 4. The paper ends with some concluding remarks in Section 5. MATLAB

code for the linear regression, logistic regression and deep neural network examples

are available at https://github.com/odrinaryliwei/S-SGLD.

1.4. Notations. We introduce here some Markov chain notations that are used be-

low, largely following Meyn and Tweedie (2009). A Markov kernel P on some mea-

surable space (T,B) acts both on bounded measurable functions f on T and on σ-

finite measures µ on (T,B) via Pf(·) def
=
∫
P (·,dy)f(y) and µP (·) def

=
∫
µ(dx)P (x, ·)

respectively. If W : T → [1,+∞) is a function, the W -norm of a function f :

T → R is defined as |f |W
def
= supT |f |/W . When W = 1, this is the supremum

ASYNCHRONOUS MCMC SAMPLING FOR SPARSE BAYESIAN INFERENCE 5

norm. If µ is a signed measure on (T,B), the total variation norm ∥µ∥tv is de-

fined as ∥µ∥tv
def
= 1

2 sup{f,|f |1≤1} |µ(f)|, and the W -norm of µ is defined as ∥µ∥W
def
=

1
2 sup{g,|g|W≤1} |µ(g)|, where µ(f) denotes the integral

∫
T f(x)µ(dx). Given two Markov

kernels P,Q on (T,B), their product is the Markov kernel defined as PQ(x,A)
def
=∫

P (x,dy)Q(y,A). In particular we define Pn, the n-th power of P , as P 0(x,A)
def
=

δx(A) and Pn+1 = PPn, n ≥ 0, where δx(dt) stands for the Dirac mass at x. Note

that µ(PQ) = (µP)Q, and (µP)(f) = µ(Pf).

We also collect here our notations on sparse models. Throughout our parameter

space is Rp equipped with its Euclidean norm ∥·∥2 and inner product ⟨·, ·⟩. We also use

∥·∥0 which counts the number of non-zero elements, and ∥·∥∞ which returns the largest

absolute value. We set ∆
def
= {0, 1}p. Elements of ∆ are called sparsity structures.

For δ, δ′ ∈ ∆, we write δ ⊆ δ′ if δj ≤ δ′j for all 1 ≤ j ≤ p, and we write δ ⊇ δ′ if

δ′ ⊆ δ. Given δ ∈ ∆, and θ ∈ Rp, we write θδ to denote the component-wise product

of θ and δ, and δc
def
= 1− δ. We will also write [θ]δ = (θj , j ∈ {1 ≤ k ≤ p : δk = 1})

which collect the components of θ with corresponding components of δ equal to 1.

Conversely, assuming ∥δ∥0 > 0, and for u ∈ R∥δ∥0 , we define (u, 0)δ as the element of

Rp such that [(u, 0)δ]δ = u.

2. The asynchronous sampler

Probability distributions of the form (2) are commonly handled using Metropolis-

Hastings within Gibbs (Robert and Casella (2004); Brooks et al. (2011)). As a start

we follow the same approach, and derive an asymptotically exact algorithm that

alternates between an update of δ given θ, and an update of θ given δ. To update θ

given δ, we utilize the fact that given δ the selected components (denoted [θ]δ) and

the non-selected components (denoted [θ]δc) of θ are conditionally independent, and

that the components of [θ]δc are i.i.d. N(0, ρ−1
0). Assuming ∥δ∥0 > 0, it is clear from

(2) that the conditional distribution of [θ]δ given δ has density on R∥δ∥0 proportional

to

u 7→ exp
(
−ρ1

2
∥u∥22 + ℓ((u, 0)δ)

)
. (3)

We then naturally update [θ]δ using a Markov kernel on R∥δ∥ with invariant distri-

bution proportional to (3) that we denote Pδ. Any convenient MCMC algorithm can

be used here (Random Walk Metropolis, Metropolis adjusted Langevin, Hamiltonian

Monte Carlo, data-augmentation schemes, and many others), and one can leverage

the sparsity of δ for a fast computation of ℓ((u, 0)δ).

We use a Gibbs sampler to update δ given θ. It comes out from (2) that the

conditional distribution of δj given θ, δ−j is the Bernoulli distribution Ber(qj(δ, θ)),

6 YVES ATCHADÉ AND LIWEI WANG

with probability of success given by

qj(δ, θ)
def
=

(
1 + exp

(
a+

1

2
(ρ1 − ρ0)θ

2
j + ℓ(θδ(j,0))− ℓ(θδ(j,1))

))−1

, (4)

where a
def
= u log(p)+ 1

2 log(ρ0/ρ1), and where δ(j,0) (resp δ(j,1)) is the same as δ except

possibly at component j where δ
(j,0)
j = 0 (resp. δ

(j,1)
j = 1). Naturally, qj(δ, θ) does

not depend on δj . We update J randomly selected components of δ at each iteration.

Together, these two steps form an asymptotically exact MCMC algorithm to sample

from (2) that is our ideal sampler.

The computational cost of Algorithm 1 depends on the Markov kernel Pδ used in

(STEP 1). Suppose, as in most regression models, that the cost of computing the

log-likelihood of a δ-sparse model is O(n∥δ∥0). In that case, (STEP 2) of Algorithm 1

is performed at the cost O(Jn∥δ∥0). If we assume in addition that the main compu-

tational cost of Pδ is (one) evaluation of the log-likelihood function, then ignoring the

cost of generating univariate Gaussian random variables, we see that the computation

cost of the k-th iteration of Algorithm 1 is of order O(nJ∥δ(k)∥0). This cost increases
to O(nJ∥δ(k)∥0+n∥δ(k)∥20) (assuming ∥δ(k)∥0 ≤ n) when Pδ makes use of the gradient

of the log-likelihood, or when Pδ is an exact draw from the conditional distribution

of θ|δ – as in the linear regression model.

Algorithm 1. [Asymptotically Exact Sampler]

Draw (δ(0), θ(0)) from some initial distribution, and repeat the following steps for

k = 0, Given (δ(k), θ(k)) = (δ, θ) ∈ ∆× Rp:

(STEP 1): For all j such that δj = 0, draw independently θ̄j ∼ N(0, ρ−1
0).

Provided that ∥δ∥0 > 0, draw [θ̄]δ ∼ Pδ([θ]δ, ·), where Pδ is a Markov kernel

on R∥δ∥0 with invariant density proportional to (3).

(STEP 2): Set δ̄ = δ. Randomly and uniformly select a subset J ⊂ {1, . . . , p}
of size J .

• Update (δ̄J1 , . . . , δ̄JJ) sequentially: for j = 1, . . . , J , draw Vj ∼ Ber(qJj (δ̄, θ̄)),

where qj is as in (4), and set δ̄Jj = Vj .

(STEP 3): Set (δ(k+1), θ(k+1)) = (δ̄, θ̄).

2.1. Asynchronous approximation. Algorithm 1 becomes slow in problems where

n is large and there is no efficient way of computing the log-likelihood differences

ℓ(θδ(j,0)) − ℓ(θδ(j,1)) in (4). We propose to speed up this step of the algorithm by (a)

replacing the log-likelihood difference by an approximation, and (b) performing the

J updates asynchronously, and in parallel. To provide the motivation behind the

ASYNCHRONOUS MCMC SAMPLING FOR SPARSE BAYESIAN INFERENCE 7

method, consider a linear regression problem where ℓ(θ) = −1
2∥y − Xθ∥22, y ∈ Rn,

X ∈ Rn×p, with columns normalized to ∥Xj∥2 =
√
n. In that case the second order

Taylor approximation of ℓ is exact, and since θδ(j,1) = θδ(j,0) + θj(0, . . . , 0, 1, 0, . . . , 0)
T,

we have

ℓ(θδ(j,0))− ℓ(θδ(j,1)) = −θj ⟨Xj , y −Xθδ(j,0)⟩+
θ2jn

2
. (5)

Now, suppose that j is a relevant variable with true regression coefficient θ⋆j , say.

Suppose also that j is currently not selected (δj = 0). In that case, the corresponding

regression parameter θj is of order 1/
√
ρ0, since it is drawn fromN(0, ρ−1

0). Therefore,

and assuming that the regression errors are sub-Gaussian, it can be shown that with

ρ0 = n (as we advocate below),

−θj ⟨Xj , y −Xθδ(j,0)⟩ ≈ −θjθ⋆jn ≈ ±|θ⋆j |
√
n,

whereas the second order term θ2jn/2 is O(n/ρ0) = O(1). Furthermore, notice that

for θ close to θ⋆ and δ sparse, we can afford to replace δ((j,0) by some δ′ sparse that

satisfies δ′j = 0, since

− θj ⟨Xj , y −Xθδ(j,0)⟩ ≈ −θ2⋆jn, and

|θj | |⟨Xj , X(θδ′ − θδ(j,0))⟩ − ⟨Xj , y −Xθδ′⟩| ≲ ∥θδ′ − θδ(j,0)∥1max
j<k

| ⟨Xj , Xk⟩ |,

and the rightmost term in the last display can be made o(n). This discussion infor-

mally establishes two things: (a) we can safely replace the log-likelihood difference

ℓ(θδ(j,0)) − ℓ(θδ(j,1)) by −θj ⟨Xj , y −Xθδ(j,0)⟩, and (b) for θ close to θ⋆, we can safely

replace δ by an approximation or an ”old copy” (asynchronous update).

We extend this idea to the general model by using the one-dimensional quadratic

approximation:

ℓ(θδ(j,0))− ℓ(θδ(j,1)) ≈ −θj
∂ℓ

∂θj
(θδ(j,0))−

θ2j
2

(
∂ℓ

∂θj
(θδ(j,0))

)2

,

where we switch the sign of the quadratic term for increased sensitivity. In the linear

regression example discussed above, this corresponds to replacing the right-hand side

of (5) by

−θj ⟨Xj , y −Xθδ(j,0)⟩ −
θ2jn

2
.

To see why this is helpful, recall from the discussion above that if j is a significant

variable, then

−θj ⟨Xj , y −Xθδ(j,0)⟩ ≈ −θjθ⋆jn,

which dominates the quadratic term θ2jn/2 in (5). However, replacing the quadratic

term in (5) by −θ2jn/2 increases the probability of selecting Xj , but does not hurt

8 YVES ATCHADÉ AND LIWEI WANG

otherwise. This leads to the following approximation of qj(δ, θ) in (4) :

q̃j(δ, θ)
def
=

(
1 + exp

(
a+

1

2
(ρ1 − ρ0)θ

2
j − θjGj(θδ)−

θ2j
2
Gj(θδ)

2

))−1

,

where Gj(·)
def
=

∂ℓ

∂θj
(·). (6)

Suppose now that we randomly select a subset J of {1, . . . , p} as in (STEP 2) of

Algorithm 1, and we need to approximate the J terms qJj (δ, θ̄). Let ϑ = ϑ(J, δ) ∈
{0, 1}p defined as follows

ϑj =

{
δj if j /∈ J

0 otherwise .
(7)

We then approximate qj(δ, θ̄) by q̃j(ϑ, θ̄), leading to Algorithm 2. We first note that

the model ϑ corresponds to removing from δ, all the variables that are currently

selected to be updated. As a result, all the J probabilities q̃j(ϑ, θ) are computed

from the same gradient G(θϑ) = ∇ℓ(θϑ), which, crucially, does not depend on (δj)j∈J.

Therefore, the variables (Vj)1≤j≤J in (STEP 2) of Algorithm 2 are now conditional

independent Bernoulli random variables, and can be sampled in parallel (instead of

sequentially as in Algorithm 1).

Algorithm 2. [Asynchronous sampler]

Draw (δ(0), θ(0)) from some initial distribution, and repeat the following steps for

k = 0, Given (δ(k), θ(k)) = (δ, θ) ∈ ∆× Rp:

(STEP 1): For all j such that δj = 0, draw independently θ̄j ∼ N(0, ρ−1
0).

Provided that ∥δ∥0 > 0, draw [θ̄]δ ∼ Pδ([θ]δ, ·), where Pδ is a Markov kernel

on R∥δ∥0 with invariant density proportional to (3).

(STEP 2): Set δ̄ = δ. Randomly and uniformly select a subset J ⊂ {1, . . . , p}
of size J . Form the vector ϑ = ϑ(J, δ) as in (7).

• For 1 ≤ j ≤ J , draw independently Vj ∼ Ber(q̃Jj (ϑ, θ̄)), where q̃j is as in

(6).

• For 1 ≤ j ≤ J , set δ̄Jj = Vj .

(STEP 3): Set (δ(k+1), θ(k+1)) = (δ̄, θ̄).

To evaluate the computational cost, suppose that at the k-th iteration, sam-

pling from Pδ requires one log-likelihood function evaluation at the cost of order

O(n∥δ(k)∥0). Suppose also, as with many regression models, that J partial deriva-

tives of the log-likelihood (the functions Gj) can be computed at the cost of order

ASYNCHRONOUS MCMC SAMPLING FOR SPARSE BAYESIAN INFERENCE 9

O(n(∥δ(k)∥0 + J)). In that case, ignoring the cost of sampling Gaussian random vari-

ables, the overall cost of the k-th iteration of Algorithm 2 is O(n(∥δ(k)∥0 + J)) which

can be substantially better than O(nJ∥δ(k)∥0) achieved by Algorithm 1.

Algorithm 2 has several interesting connections. From a statistical perspective it

can be viewed as a Bayesian analog of the iterated sure independent screening (ISIS)

of (Fan and Lv (2008); Fan et al. (2009)). Sure independent screening is a statistical

inference algorithm that alternates between a fast component-wise variable screening

step (based on marginal correlation thresholding, or marginal maximum likelihood

estimate thresholding), and a model refit step. Algorithm 2 has the same structure:

(STEP 2) corresponds to the variable screening step – which boils down to residual

correlation in the linear regression case – followed by a refit step based on MCMC

draws. Unlike SIS that relies on hard-thresholding, the variable screening step of

Algorithm 2 uses the prior distribution to control sparsity.

Viewed through the lense of MCMC methods, Algorithm 2 appears as an ap-

proximate version of Algorithm 1 where the update of δ in (STEP 2) is replaced

by (an inexact form of) the asynchronous Gibbs sampler aka Hogwild! (Smola and

Narayanamurthy (2010); Johnson et al. (2013)), recently analyzed by De Sa et al.

(2016); Daskalakis et al. (2018).

2.1.1. On the update batch-size J . The update batch-size J plays a crucial role in

Algorithm 2. In Algorithm 1 the choice of J is not of great consequence: the invariant

distribution remains Π(·|D) for all J , and increasing J improves mixing (that is,

reduces the number of iterations to convergence), but increases the computational

cost per iteration. However in our proposed Algorithm 2, as J increases, the mixing

improves, but the limiting distribution diverges further away from Π(·|D), due to the

accumulation of errors in the asynchronous sampling. We extensively evaluate the

effect of J in Section 4.1.4, and we recommend scaling J as

J = min (n, αp) , with α ∈ (0, 1].

Since good approximation of the posterior is always important, we recommend con-

servative values of α (α = 0.1 or α = 0.01). For all the linear and logistic regression

simulations where p is in the range 1000−5000, we actually use a fixed value of J that

we set conservatively to J = 100. For the deep learning example where p ≈ 300, 000

we set J = 1, 000.

2.2. Further extension using stochastic gradient Langevin dynamics. Most

statistical problems require a full pass through the dataset to evaluate the likelihood

function and its derivatives. Therefore in big data problems the cost of computing the

likelihood and its gradient in Algorithm 2 may become a computational bottleneck.

10 YVES ATCHADÉ AND LIWEI WANG

Stochastic gradient Langevin dynamics (SGLD) algorithms have recently emerged as

very useful algorithms in such settings (Welling and Teh (2011); Ma et al. (2015)).

To be more specific, we suppose here that the log-likelihood function has the form

ℓ(θ)
def
=

n∑
i=1

ℓi(θ), θ ∈ Rp.

In that case, provided that the log-likelihood functions has a Lipschitz gradient,

one can naturally replace the Markov kernel Pδ in (STEP 1) of Algorithm 2 by SGLD

or its variants. The resulting algorithm is presented in Algorithm 3.

Algorithm 3. [Sparse Asynchronous SGLD]

Draw (δ(0), θ(0)) from some initial distribution, and repeat the following steps for

k = 0, Given (δ(k), θ(k)) = (δ, θ) ∈ ∆× Rp:

(STEP 1): For all j such that δj = 0, draw independently θ̄j ∼ N(0, ρ−1
0).

Provided that ∥δ∥0 > 0, randomly select a data mini-batch I ⊂ {1, . . . , n} of

size B, draw Z ∼ N(0, I∥δ∥0), and set

[θ̄]δ = [θ]δ + γ

(
−ρ1[θ]δ +

n

B

∑
i∈I

[∇ℓi(θδ)]δ

)
+
√
2γZ, (8)

where γ > 0 is the step-size.

(STEP 2): Set δ̄ = δ. Randomly and uniformly select a subset J ⊂ {1, . . . , p}
of size J . Form the vector ϑ = ϑ(J, δ) as in (7).

• For 1 ≤ j ≤ J , draw independently Vj ∼ Ber(q̂Jj (ϑ, θ̄)), where q̂j is as in

(9).

• For 1 ≤ j ≤ J , set δ̄Jj = Vj .

(STEP 3): Set (δ(k+1), θ(k+1)) = (δ̄, θ̄).

Note that one can also approximate the Bernoulli probability q̃j in (6) using the

selected mini-batch as follows. Given a mini-batch I ⊂ {1, . . . , n} of size B, 1 ≤ j ≤ p,

and (δ, θ) ∈ ∆× Rp, we set

q̂j(δ, θ)
def
=

(
1 + exp

(
a+

1

2
(ρ1 − ρ0)θ

2
j − θjĜj(θδ)−

θ2j
2
Ĝj(θδ)

2

))−1

,

where Ĝj(·) =
n

B

∂

∂θj

[∑
i∈I

ℓi

]
(·). (9)

We systematically make that choice in Algorithm 3. Using the same cost computing

assumption as above, and ignoring the cost of generating univariate Gaussian random

ASYNCHRONOUS MCMC SAMPLING FOR SPARSE BAYESIAN INFERENCE 11

variables, we see that in the linear regression case, the computation cost of the k-th

iteration of Algorithm 3 is now of order O(B(∥δ(k)∥0 + J)).

3. Approximate correctness of Algorithm 2

In this section the dataset D is assumed fixed, and we shall omit the dependence

of the Markov kernels on D. Let K (resp. K̃) be the transition kernel of the Markov

chain generated by Algorithm 1 (resp. Algorithm 2). We first write the expression

of K and K̃ and introduce some useful notations in the process. Given θ ∈ Rp, and

j ∈ {1, . . . , p}, let Qθ,j be the Markov kernel on ∆ which, given δ ∈ ∆, leaves δi

unchanged for all i ̸= j, and update δj using a draw from Ber(qj(δ, θ)):

Qθ,j(δ, δ
′) = qj(δ, θ)

δ′j (1− qj(δ, θ))
1−δ′j

∏
i ̸=j

1{δi=δ′i}, δ, δ′ ∈ ∆.

Given J = {j1, . . . , jJ} ⊆ {1, . . . , p}, we multiply the Markov kernels Qθ,ji together to

form Qθ,J:

Qθ,J
def
= Qθ,j1 × · · · ×Qθ,jJ ,

where the Markov kernel multiplication is as defined in Section 1.4. We define simi-

larly Q̃θ,J as

Q̃θ,J(δ, δ
′)

def
=
∏
j /∈J

1{δ′j=δj}

J∏
i=1

q̃ji(ϑ, θ)
δ′ji (1− q̃ji(ϑ, θ))

1−δ′ji , δ, δ′ ∈ ∆,

where ϑ = ϑ(J, δ) is as defined in (7), and depends on δ. The Markov kernel K̃ of

algorithm 2 can then be written as

K̃((δ, θ); (dδ′, dθ′)) = Kδ(θ,dθ
′)
∑

J: |J|=J

(
p

J

)−1

Q̃θ′,J(δ, dδ
′),

where Kδ denotes the transition kernel of (STEP 1), which can be written as

Kδ(θ,dθ
′)

def
= Pδ([θ]δ,d[θ

′]δ)
∏

j: δj=0

N(0, ρ−1
0)(dθ′j),

where N(µ, σ2)(dx) denotes the probability measure of the Gaussian distribution

N(µ, σ2) on R. The Markov kernel K of Algorithm 1 has the same structure, but

with Q̃θ,J replaced by Qθ,J. The kernels K and K̃ have the same structure, and

therefore the same irreducibility and aperiodicity properties. By construction, the

invariant distribution of K is Π(·|D). In general, it is not possible to deduce the

existence of an invariant distribution for K̃ from the shared similarity between K

and K̃. However, we will show that if K̃ has an invariant distribution Π̃, say, and

is geometrically ergodic, then the proximity between Π̃ and Π is guaranteed by the

12 YVES ATCHADÉ AND LIWEI WANG

proximity of K and K̃. This is a standard Davis-Kahan type result for Markov chains

that has also been derived by others in the literature (Pillai and Smith (2015); Rudolf

and Schweizer (2018); Johndrow and Mattingly (2018)). What makes our version

worth stating here is that it can leverage the posterior contraction of Π. Our approach

is similar to (Pillai and Smith (2015)), but differs substantially in the details. We

shall make the following geometric ergodicity assumption on K̃.

H1. The Markov kernel K̃ possesses a unique invariant distribution Π̃, and there

exist λ̃ ∈ (0, 1), a function V : ∆ × Rp → [1,∞), a constant C0 such that for all

(δ, θ) ∈ ∆× Rp, and all k ≥ 0,

∥K̃k((δ, θ), ·)− Π̃∥tv ≤ C0λ̃
kV 1/2(δ, θ). (10)

Theorem 1. Suppose that H1 holds, and Π(V |D) < ∞. Suppose also that there exist

B ⊂ ∆× Rp, and a finite constant C0 such that

sup
(δ,θ)∈B

V (δ, θ) < ∞, and

∫
∆
Q̃θ,J(δ, dδ

′)V (δ′, θ) ≤ C0V (δ, θ), (11)

for all (δ, θ), and any subset J, with |J| = J . Then there exists a finite constant C1

such that

∥Π̃(·|D)−Π(·|D)∥tv

≤ C1

1− λ̃

(
Π(Bc|D)1/2 + max

J: |J|=J

∫
B
Π(dδ, dθ)

∥∥∥Qθ,J(δ, ·)− Q̃θ,J(δ, ·)
∥∥∥
tv

)
, (12)

where λ̃ is as in H1, and Bc denotes the complement of B in ∆× Rp.

The proof of Theorem 1 is provided in Appendix Section A. When the set B is

a sparse neighborhood of the true parameter θ⋆, and J small, we expect the total

variation distance between Qθ,J and Q̃θ,J to be small (see Corollary 4 for a bound in

the linear regression case). By posterior contraction the term Π(Bc|D) is also small.

Hence, the main implication of the theorem is that for J well-chosen, our proposed

methodology works well for sparse modeling problems where the posterior distribution

has good posterior contraction properties around the truth. However bounding the

terms on the right-hand side of (12) is in general a non-trivial task. Another limitation

of Theorem 1 is the reliance on the geometric ergodicity assumption H1, and the

appearance of the spectral gap 1 − λ̃ (which depends in general on n and p) on the

right-hand side of (12). We leave these challenging technical issues for possible future

research.

Assumption H1 is usually established by showing that K̃ satisfies a uniform mi-

norization condition, or a geometric drift condition (Meyn and Tweedie (2009)).

ASYNCHRONOUS MCMC SAMPLING FOR SPARSE BAYESIAN INFERENCE 13

Checking these conditions, in turn, boils down to analyzing the kernels Pδ. For

instance it can be easily shown that if each Pδ satisfies a uniform minorization con-

dition, then H1 holds. To see this, suppose that for each δ ∈ ∆, with ∥δ∥0 > 0, there

exists a probability measure νδ on R∥δ∥0 that is absolutely continuous with respect to

the Lebesgue measure on R∥δ∥0 with a positive density, and ϵδ > 0 such that

Pδ(u,dv) ≥ ϵδνδ(dv), for all u ∈ R∥δ∥0 .

Then, we set

ν̄δ(dθ)
def
= νδ(d[θ]δ)

∏
j: δj=0

N(0, ρ−1
0)(dθj), and ν̄

def
= min

δ
ν̄δ,

where for two measures µ1, µ2 with density f1, f2 respectively, min(µ1, µ2) is the

measure with density min(f1, f2). For δ = (0, . . . , 0)T, we define ν̄δ as Kδ(θ,dθ
′) =∏p

j=1N(0, ρ−1
0)(dθ′j), and hence ϵδ = 1. Note that under the stated assumptions, each

ν̄δ has a positive density with respect to the Lebesgue measure on Rp. Therefore,

ν̄ is a non-trivial measure. It then follows from its definition that K̃ satisfies the

minorization

K̃(δ, θ; Ā) =
∑

J: |J|=J

(
p

J

)−1 ∫
Rp

Kδ(θ,dθ
′)

∫
∆
Q̃θ′,J(δ, dδ

′)1Ā(δ
′, θ′)

≥ ϵ
∑

J: |J|=J

(
p

J

)−1 ∫
Rp

ν̄(dθ′)

∫
∆
min
δ∈∆

Qθ′,J(δ, dδ
′)1Ā(δ

′, θ′)

= ϵµ(Ā), (13)

where ϵ = minδ∈∆ ϵδ > 0. Hence K̃ satisfies a uniform minorization, and by Theorem

16.0.2 of Meyn and Tweedie (2009), H1 holds with V ≡ 1. This uniform minorization

analysis applies in the particular case (as in linear regression) where Pδ corresponds

to taking an exact draw from the conditional distribution of θ|δ. Assumption H1 can

also be shown to hold if the kernels Pδ satisfy a geometric drift condition as we show

next. We refer the reader to Meyn and Tweedie (2009) Section 5.5.2 for the definition

of a petite set. The proof of the following result is provided in Appendix Section B.

Proposition 2. Suppose that K̃ is phi-irreducible and aperiodic, and for each 1 ≤
j ≤ p there exists Vj : R → [1,∞), with maxj

∫
Vj(x)e

−ρ−1
0 x2/2dx < ∞, such that the

following holds. For each δ ∈ ∆, with ∥δ∥0 > 0, there exist λδ ∈ [0, 1), bδ < ∞ such

that

P̃δVδ(u) ≤ λδVδ(u) + bδ, u ∈ R∥δ∥0 ,

14 YVES ATCHADÉ AND LIWEI WANG

where Vδ(u)
def
= V (δ, (u, 0)δ), and V (δ, θ)

def
=
∑p

j=1 δjVj(θj). Furthermore, suppose

that the level sets {(δ, θ) ∈ ∆ × Rp : V (δ, θ) ≤ b} for b ≥ 0 are petite sets for K̃.

Then H1 holds with V .

3.1. Approximate correctness for linear regression models. In this section we

take a closer look at Algorithm 2 in the case of linear regression models. Given some

random response Y ∈ Rn, and a nonrandom design matrix X ∈ Rn×p, we consider in

this section a log-likelihood function given by

ℓ(θ) = − 1

2σ2
∥Y −Xθ∥22, θ ∈ Rp, (14)

for a known constant σ2. We write Xj to denote the j-th column of X, and Xδ to

denote the sub-matrix of X comprised of the columns of X for which δj = 1. Without

any loss of generality we assume throughout that

∥Xj∥2 =
√
n. (15)

We also make the following assumption.

H2. (1) There exists an absolute constant c0 < ∞ such that

max
j ̸=k

|⟨Xj , Xk⟩| ≤
√

c0n log(p). (16)

(2) There exist a parameter value θ⋆ ∈ Rp (with sparsity support denoted δ⋆, and

ℓ0 norm s⋆
def
= ∥δ⋆∥0), such that

E⋆ [Y −Xθ⋆] = 0, P⋆ [|⟨u, Y −Xθ⋆⟩| > σt] ≤ c1e
− t2

2∥u∥22 , (17)

for all u ∈ Rn, t ∈ R, and some absolute constant c1.

(3) As n, p → ∞, the ratios ∥θ⋆∥∞/ log(p) and n/p remain bounded from above

by some absolute constant c2.

Remark 3. Assumption H2-(2) assumes that the regression errors are sub-Gaussian.

(2)-(3) are mild assumptions. Assumption H2-(1) is also a standard assumption

is sparse signal recovery and assumes a weak correlation between any two distinct

columns of X (Candès and Plan (2009)). □

In what follows we write P and E to denote the probability measure and expectation

operator of the Markov chains defined by the algorithms, and we write P⋆ and E⋆

for the probability measure and expectation operator related to the data generating

distribution as assumed in H2.

ASYNCHRONOUS MCMC SAMPLING FOR SPARSE BAYESIAN INFERENCE 15

We set

θ⋆
def
= min

j: δ⋆j=1
|θ⋆j |.

In the linear regression considered here, the conditional distribution of θ given

δ has a closed-form Gaussian distribution. We can thus assume that (STEP 1) of

Algorithm 2 is performed by taking a draw directly from the conditional distribution

of θ given δ. In this case, K̃ satisfies a uniform minorization as discussed in (13), and

assumption H1 holds with V ≡ 1. Hence Theorem 5 directly applies and gives the

following corollary. The proof is given in Section C of the supplement.

Corollary 4. Consider the linear regression model presented above and assume H2.

Suppose that

ρ1 = 1, and ρ0 =
n

σ2
.

Let B = {(δ, θ) : δ⋆ ⊆ δ, ∥δ∥0 ≤ s, and ∥θδ − θ⋆∥∞ ≤ c2
√
log(p)/n} for some

constant s ≥ s⋆ such that n ≥ s2 log(p), and some constant c2. Then there exists a

finite constants C1, C2 and λ̃ ∈ [0, 1) such that with probability at least 1− 1/p

∥Π̃(·|D)−Π(·|D)∥tv ≤ C1

1− λ̃

[
Π(Bc|D)1/2 + JΠ(Bc|D)

]
+

C1J

1− λ̃
max

(
e
−C2

(
nθ2⋆−(1+s⋆)

√
n log(p)

)
,

1√
n
e−(u−C2(1+s⋆)) log(p)

)
(18)

The result captures our main intuition: if θ⋆ is sparse and the posterior contracts

towards θ⋆, then the limiting distribution of the asynchronous sampler can remain

close to Π(·|D) by choosing u ≥ C2(1 + s⋆) and n large enough such that nθ2⋆ >

(1 + s⋆)
√

n log(p). However, even in the current linear regression setting, the bound

in (18) is not fully informative. For instance we still need to establish that Π(Bc|D)

is small1. Furthermore, bounding the spectral gap of K̃ that appears in the bound

(18) remains challenging. To circumvent some of these limitations, in the next result

we analyze directly the Markov chain {δ(k), k ≥ 0} produced by Algorithm 2. The

result has also the advantage of estimating the mixing time of Algorithm 2.

Theorem 5. Consider the linear regression model presented above and assume H2.

Suppose that

ρ1 = 1, and ρ0 =
n

σ2
.

1Although the estimation rate in the sup-norm in high-dimensional linear regression is known to

be of order
√

log(p)/n, establishing this for posterior distribution is not trivial, and has not been

done to the best of our knowledge.

16 YVES ATCHADÉ AND LIWEI WANG

Let P denote the distribution of the Markov chain {δ(k), k ≥ 0} generated by Algorithm

2, and started from the null model (∥δ(0)∥0 = 0). We can find constants C1, C2, C3, C4

that depend only on σ2, ∥θ⋆∥∞, c0, c1, and c2, such that for all n, p ≥ 2, if

n ≥ C1max
(
θ−2
⋆ (1 + s3⋆) log(p), (log(p))

3
)
, and u ≥ C2(1 + s⋆)

2, (19)

it holds for all k ≥ 1,

E⋆

[
max

j: δ⋆j=1

∣∣∣P(δ(k)j = 1)−Π(δj = 1|D)
∣∣∣]

≤
(
1− 3

10

J

p

)k

+ exp
(
−C3θ⋆

√
n+ C4J

√
log(p)

)
+

10

p
. (20)

The proof of Theorem 5 is provided in Appendix Section D. The bound in (20)

gives a mixing time bound for the Markov chain {δ(k), k ≥ 0}, where convergence to

stationarity is measured using a (sliced) total variation distance on the relevant one-

dimensional marginal distributions. Importantly, the result shows that Algorithm 2

converges faster for larger values of J . Furthermore, letting k → ∞, (20) implies that

E⋆

[
max

j: δ⋆j=1

∣∣∣Π̃(δj = 1|D)−Π(δj = 1|D)
∣∣∣] ≤ exp

(
−C3θ⋆

√
n+ C4J

√
log(p)

)
+

10

p
.

Hence, when J = o(
√

n/ log(p)), the result shows that in linear regression models

the limiting distribution of Algorithm 2 recovers correctly the relevant components

of the signal. However our numerical simulations suggest that the condition J =

o(
√

n/ log(p)) is too restrictive, and in fact the algorithm continues to behave well

for much larger values of J (see Section 4.1.4 for more details).

The first part of (19) imposes some minimum sample size requirement. We noted

empirically that the mixing time of Algorithm 2 degrades for small values of the sample

size n, particularly in logistic regression models. This suggests that (19) – which may

not be optimal – represents some genuine information limit of the problem. In limited

data settings we recommend combining Algorithm 2 with simulated tempering or

related methods for improved mixing. However in the interest of space, we do not

pursue these tempering ideas here. The dependence of (19) on θ⋆ is the so-called β-min

condition that is commonly needed for correct model selection (see Meinshausen and

Yu (2009) for discussion). It is similar to the high signal-to-noise ratio condition of

Yang et al. (2016), and has also appeared elsewhere in the analysis of high-dimensional

MCMC samplers (Atchadé (2022)).

With the same proof strategy, we believe that Theorem 5 can be extended to

statistical models that possess the restricted strong concavity property (Negahban

et al. (2012)), under the additional assumption that one can sample exactly from the

conditional distribution of θ given δ. We did not pursue this because of the limited

ASYNCHRONOUS MCMC SAMPLING FOR SPARSE BAYESIAN INFERENCE 17

applicability: the exact sampling assumption is highly unrealistic for non-Gaussian

models. Extending Theorem 5 to cases where a Markov kernel is used in (STEP 1)

is more challenging, but is likely to still hold if the Markov kernel has a strong drift

toward the level sets of the target distribution. We leave this for potential future

research.

4. Numerical illustration

4.1. Linear regression. We investigate several aspects of Algorithm 1 and Algo-

rithm 2 with a simulated linear regression example. Here is the simulation set up. We

generate X ∈ Rn×p with independent rows drawn from Np(0,Σ), where Σij = ϱ|j−i|,

where ϱ ∈ {0, 0.9}. Then we draw Y ∼ Nn(Xθ⋆, σIn), with σ = 1, and with a sparse

θ⋆ with first 10 components uniformly drawn from (−3,−2) ∪ (2, 3). We scale the

sample size as n = p/2 (unless specified otherwise), for values of p that depend on

the experiments. For all the results we set

ρ0 = n, ρ1 = 1, and u = 1.5.

Unless stated otherwise, we set J = 100 for both samplers. We initialize all the

MCMC samplers the same way and as follows. We randomly and uniformly select a

subset J ⊂ {1, . . . , p} of size 100. For j ∈ J we set δj = 1 and draw θj ∼ N(0, ρ−1
1),

whereas for j /∈ J, we set δj = 0 and θj = 0..

We call Algorithm 1 the exact sampler (Exact), and we call Algorithm 2 the asyn-

chronous sampler (ASYN).

4.1.1. Comparison of mixing times. We first compare the mixing times of the exact

and the asynchronous samplers. We estimate empirically the mixing times using the

coupling methodology of Biswas et al. (2019). We refer the reader to Appendix E for

a description of the estimation method and the coupled chain used. To estimate the

mixing times we replicated the coupled chains 50 times, and we estimate the mixing

times for p = 1, 000 to p = 5, 000 by increment of 500. The estimated mixing times

are given on Figure 1, and indeed shows a linear trend, which is consistent with the

conclusion of Theorem 5. The results also show that the asynchronous sampler mixes

slightly faster than Algorithm 1.

We also look at the sample path of the penalized log-likelihood

ℓ̄(θ, δ|Y ′, X ′)
def
= − 1

2σ2
∥Y ′ −X ′θδ∥22 −

ρ1
2
∥θδ∥22,

18 YVES ATCHADÉ AND LIWEI WANG

evaluated on a test dataset (Y ′, X ′) (generated independently from the training

set (Y,X) but from the same model) along the MCMC iterations. By posterior

contraction, we expect ℓ̄(θ(k), δ(k)|Y ′, X ′) to concentrate around ℓ̄(θ⋆, δ⋆|Y ′, X ′) as

k → ∞. The speed with which ℓ̄(θ(k), δ(k)|Y ′, X ′) approaches ℓ̄(θ⋆, δ⋆|Y ′, X ′) during

the MCMC sampling is another empirical indication of mixing. Figures 2 and 3 show

the averages of 50 penalized log-likelihood sample paths (for each MCMC sample we

generate a new training and test datasets with the same θ⋆). These averaged sample

paths offer another look into the mixing of the samplers that is consistent with the

empirical mixing times estimates.

4.1.2. Comparison in terms of statistical performance. Since the target distribution

of the asynchronous sampler is biased, we investigate more systematically the bias by

comparing the relative errors. On a given MCMC run we evaluate the accuracy of

the parameter estimation by computing

E def
=

1

Niter−N0

Niter∑
k=N0+1

∥θ(k) · δ(k) − θ⋆∥2
∥θ⋆∥2

, (21)

for a burn-in N0 that we set at N0 = Niter − 1000, where Niter is the number of

MCMC iterations. For this comparison we run the MCMC samplers for Niter =

max(2000, p−2000) number of iterations. Figure 4 and 5 show the distributions of the

relative errors E produced by Algorithm 1 and 2 for p ∈ {1000, 5000}, and ϱ ∈ {0, 0.9}.
These boxplots are based on 50 MCMC replications. Again, the difference remains

small, even in the case ϱ = 0.9. We note that, since we scale n = p/2, and kept

s⋆ = 10, the simulation results are better for p = 5, 000 than for p = 1, 000.

4.1.3. Comparison with Sparsevb. We now compare our proposed sampler with the

Sparsevb of Ray and Szabó (2021), a mean-field variational Bayes (VB) approxima-

tion for sparse high-dimensional linear regression. We generate the data as above

with p = 1000, and ϱ = 0.9. We compare the algorithms in terms of the relative

error E in (21), and in terms of running time, using 50 MCMC/VB replications (each

replication is based on independently generated data from the same model). For the

comparison we use the R package Sparsevb provided by the author with its default

parametrization. We calculate the mixing time for Sparsevb using its default crite-

rion, i.e. when maximum absolute differences between binary entropies of successive

iterates is smaller than a prespecified tolerance. Figure 6 shows that Asyn tracks

Exact better than Sparsevb, and is faster (although of course, part of the difference

in running time may be software-induced such as difference in coding, or differences

between R and Matlab).

ASYNCHRONOUS MCMC SAMPLING FOR SPARSE BAYESIAN INFERENCE 19

1000 2000 3000 4000 5000

dimension

100

200

300

400

500

600
e

s
ti
m

a
te

d
 m

ix
in

g
 t

im
e

no correlation

exact

asyn

1000 2000 3000 4000 5000

dimension

200

300

400

500

600

700

800

e
s
ti
m

a
te

d
 m

ix
in

g
 t

im
e

high correlation

exact

asyn

Figure 1. Estimated mixing time for a linear regression example.

Figure on the left (resp. right) is ϱ = 0 (resp. ϱ = 0.9).

0 200 400 600 800 1000

iterations

-10

-8

-6

-4

-2

0

p
e

n
a

liz
e

d
 l
o

g
-l
ik

e
lih

o
o

d

10
4 p = 1000

EXACT

ASYN

Target Value

0 500 1000 1500 2000

iterations

-2

-1.5

-1

-0.5

0
p

e
n

a
liz

e
d

 l
o

g
-l
ik

e
lih

o
o

d
10

5 p = 5000

EXACT

ASYN

Target Value

Figure 2. Averaged sample paths of penalized log-likelihood values

in linear regression with ϱ = 0

4.1.4. Dependence on J. Here we explore how the update batch size parameter J

affects the sampler. We fix p = 1000, and ϱ = 0.9, and we vary J from J = 10

to J = 1000 by increment of 10 until 100 and then by increment of 100. In this

experiment we depart from the choice n = p/2, by setting either n = 1000 or n = 150.

Given J , we evaluate the mixing of Algorithm 1 and Algorithm 2 using the coupled-

chain methodology of Biswas et al. (2019) used above, that we describe in Appendix

E, with 50 replications of the coupled chains (for a given dataset Y,X). And we

evaluate the statistical performance of the sampler using

E ′ def=
1

Niter−N0

Niter∑
k=N0+1

∥θ(k) · δ(k) − θ⋆∥∞.

20 YVES ATCHADÉ AND LIWEI WANG

0 200 400 600 800 1000

iterations

-14

-12

-10

-8

-6

-4

-2

0

p
e

n
a

liz
e

d
 l
o

g
-l
ik

e
lih

o
o

d

10
4 p = 1000

EXACT

ASYN

Target Value

0 500 1000 1500 2000 2500 3000

iterations

-5

-4

-3

-2

-1

0

p
e

n
a

liz
e

d
 l
o

g
-l
ik

e
lih

o
o

d

10
5 p = 5000

EXACT

ASYN

Target Value

Figure 3. Averaged sample paths of penalized log-likelihood values

in linear regression with ϱ = 0.9

Exact Asyn

6.28

6.3

6.32

6.34

6.36

6.38

6.4

6.42

6.44

re
la

ti
v
e
 e

rr
o
r

10
-3 p = 1000, no correlation

Exact Asyn

3.54

3.56

3.58

3.6

3.62

3.64

3.66
re

la
ti
v
e
 e

rr
o
r

10
-3 p = 5000, no correlation

Figure 4. Distributions of the relative error (21) in linear regression

with ϱ = 0. Based on 50 MCMC sample paths replications.

Exact Asyn

0.0238

0.024

0.0242

0.0244

0.0246

0.0248

re
la

ti
v
e
 e

rr
o
r

p = 1000, high correlation

Exact Asyn
0.012

0.0121

0.0122

0.0123

0.0124

0.0125

re
la

ti
v
e
 e

rr
o
r

p = 5000, high correlation

Figure 5. Distributions of the relative error (21) in linear regression

with ϱ = 0.9. Based on 50 MCMC sample paths replications.

ASYNCHRONOUS MCMC SAMPLING FOR SPARSE BAYESIAN INFERENCE 21

Exact Asyn Sparsevb

0.02

0.04

0.06

0.08

0.1

0.12
re

la
ti
v
e
 e

rr
o
r

p = 1000, high correlation

Exact Asyn Sparsevb

0

2

4

6

8

10

12

14

16

m
ix

in
g
 t
im

e
(s

e
c
o
n
d
)

p = 1000, high correlation

Figure 6. Relative error and Estimated mixing time for a linear re-

gression example. Figure on the left (resp. right) is relative error

(resp. Mixing time).

We obtain the distribution of E ′ and the distribution of the mixing time from 50

replications (each with a new dataset drawn from the same model). Figure 7 and 9

show the behavior of Algorithm 1 (the exact sampler) as we change J . As expected

the statistical performance of the sampler is unchanged, and the mixing improved

as J increases (with increased computational cost per iteration, not reported here).

Figure 8 and 10 show the behavior of the asynchronous sampler (Algorithm 2) as we

vary J . Here also the mixing improves as J increases, as predicted by Theorem 5, but

the statistical performance degrades as J increases, as expected and as predicted by

Theorem 5. Comparing Figure 8 and 10, we note also that the bias of the asynchronous

sampler increases as the sample sample size n decreases, as predicted by the bound

in Theorem 5. We note however that there is a large range of values from J = 40 to

J = 400 where the performance of the algorithm remains very good for both values

of n. In other words, J is not hard to tune.

In summary, the parameter J allows the user to trade statistical accuracy for

computational speed. In all our simulations, we have conservatively set J = 100.

A more aggressive scaling that works also well is to set J = min(αp, n), where we

recommend α ∈ (0, 0.1].

4.2. Logistic regression. We also illustrate the behavior of the proposed algorithms

on logistic regression models. We use the same data generating set up for the regres-

sors X ∈ Rn×p and true signal θ⋆ as above with ϱ ∈ {0, 0.9}, and we set n = p/2. We

draw the response as Yi ∼ Ber(pi), with pi =
(
1 + exp−⟨xi,θ⋆⟩

)−1
, where xi denotes

the i-th row of X. In this model we cannot draw exactly from the posterior condi-

tional distribution of θ given δ. Hence we implemented Algorithm 1 and Algorithm

22 YVES ATCHADÉ AND LIWEI WANG

 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

J

0.07

0.08

0.09

0.1

0.11

0.12
a
b
s
o
lu

te
 e

rr
o
r

Eact

 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

J

2

4

6

8

10

12

14

ru
n
n
in

g
 t
im

e

Exact

Figure 7. Absolute error and mixing time of Exact sampler with

different J , linear regression, p = 1000, n = 1000, ϱ = 0.9

 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

J

0.07

0.08

0.09

0.1

0.11

0.12

0.13

a
b
s
o
lu

te
 e

rr
o
r

Asyn

 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

J

0

5

10

15

20

ru
n
n
in

g
 t
im

e

Asyn

Figure 8. Absolute error and mixing time of Asyn sampler with dif-

ferent J , linear regression, p = 1000, n = 1000, ϱ = 0.9

 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

J

0.15

0.2

0.25

0.3

0.35

0.4

a
b
s
o
lu

te
 e

rr
o
r

Exact

 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

J

0

200

400

600

800

1000

1200

1400

ru
n
n
in

g
 t
im

e

Exact

Figure 9. Absolute error and mixing time of Exact sampler with

different J , linear regression, p = 1000, n = 150, ϱ = 0.9

ASYNCHRONOUS MCMC SAMPLING FOR SPARSE BAYESIAN INFERENCE 23

 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

J

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a
b
s
o
lu

te
 e

rr
o
r

Asyn

 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

J

0

200

400

600

800

1000

ru
n
n
in

g
 t
im

e

Asyn

Figure 10. Absolute error and mixing time of Asyn sampler with

different J , linear regression, p = 1000, n = 150, ϱ = 0.9

2 with Pδ taken as (one iteration of) the Metropolis Adjusted Langevin (MaLa) al-

gorithm (Roberts and Tweedie (1996)), with a step-size fixed to γ = 0.01. In this

example we also implement Algorithm 3 using a mini-batch of size B = 100, and a

step-size fixed to γ = 0.005. These step-size and mini-batch size values were selected

by trial and error. As with most MCMC samplers, implementing these algorithms

on different models would require some tuning of step-size values. Adaptive MCMC

methods may be considered (Atchadé et al. (2011)), but we do not pursue this here.

For all the algorithms, we set J = 100, and we initialize all the algorithms from the

lasso estimate of θ. We call Algorithm 3 the sparse asynchronous SGLD sampler

(SA-SGLD).

We compare the proposed algorithms with a mean-field variational approximation

of the posterior distribution (2), and with the skinny-Gibbs sampler of (Narisetty

et al. (2018)). Before presenting the results, we briefly describe these methods.

4.2.1. Variational approximation. We compare the proposed algorithms with a mean

field variational approximation (VA) of (2), using the VA family

p∏
j=1

Ber(αj)(dδj)N(µj , v
2
j)(dθj),

with parameter (αj , µj , v
2
j)1≤j≤p, that we estimate by minimizing the ELBO objective

function using stochastic gradient descent, following (Kingma and Welling (2014)).

In the stochastic gradient descent we use a constant step-size of 0.001, we estimate

the gradient by drawing small sample of size 100 from the VA family and small mini-

batch of size 100 from the dataset. We stop the stochastic gradient descent when the

24 YVES ATCHADÉ AND LIWEI WANG

maximum relative change satisfies

max

(
∥α(k) − α(k−1)∥2

∥α(k)∥2
,
∥µ(k) − µ(k−1)∥2

∥µ(k)∥2
,
∥v(k) − v(k−1)∥2

∥v(k)∥2

)
≤ 0.0025. (22)

And we evaluate the accuracy of the produced solution by computing on the last

iteration the relative error
∥µ(k) · α(k) − θ⋆∥2

∥θ⋆∥2
.

For a fair comparison we also initialize µ(0) from the same lasso estimate. The finding

reported below are robust to the choices of mini-batch size, and stopping criterion in

(22).

4.2.2. Skinny Gibbs. We also use this example to compare our method with the skinny

Gibbs sampler of (Narisetty et al. (2018)), an approximate Gibbs sampler for high-

dimensional logistic regression models which replaces the high dimensional covariance

matrix with a sparse approximation. The comparison is performed using the R package

skinnybasad provided by the authors, with its default parametrization. However, for

a fair comparison we use the same lasso initialization as above.

4.2.3. Evaluation metrics and results. As with the linear regression example we com-

pare the quality of the approximation by computing the relative error of each method

using (21). The boxplots of these relative errors for different values of p and ϱ are

shown on Figure 11-12. We observe from these results that our method remains on a

par with the exact method, and outperforms VA and the skinny Gibbs, particularly

in the high correlation case.

Next, we compare the computational cost and mixing times of the MCMC algo-

rithms. We estimate empirically the mixing time of a sampler as the first time when

its relative error (21) becomes smaller than a prescribed value τ . However, since the

algorithms have different relative errors in the limit, we proceed as follows. We run

each sampler for a large number of iterations (equals to 5p), and calculate its average

relative error (21) after burn-in, that we then use as τ . We then estimate the mixing

time of the sampler as the first time where the relative error (21) is smaller or equal

to τ . For this comparison, we focus on the low correlation case where ϱ = 0.0 (in the

high correlation setting VA and skinny Gibbs do not provide accurate approximation

of the posterior). We estimate these mixing times for the dimension p ranging from

1000 to 5000, with an increment of 500. For each p we run 50 simulations and take

the median.

ASYNCHRONOUS MCMC SAMPLING FOR SPARSE BAYESIAN INFERENCE 25

Exact Asyn SA-SGLD VA S-Gibbs
0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
e
la

ti
v
e
 E

rr
o
r

p = 1000, no correlation

Exact Asyn SA-SGLD VA S-gibbs

0.06

0.08

0.1

0.12

0.14

0.16

0.18

R
e
la

ti
v
e
 E

rr
o
r

p = 5000, no correlation

Figure 11. Relative error for logistic regression, with ϱ = 0

Exact Asyn SA-SGLD VA S-Gibbs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
la

ti
v
e
 E

rr
o
r

p = 1000, high correlation

Exact Asyn SA-SGLD VA S-Gibbs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e
la

ti
v
e
 E

rr
o
r

p = 5000, high correlation

Figure 12. Relative error for logistic Regression, with ϱ = 0.9

p/n Complexity/iteration 1000/500 2000/1000 5000/2500

Exact O(nJ∥δ(k)∥0) 5.25s 35.13s 1360.09s

Asyn O(n(∥δ(k)∥0 + J)) 0.71s 2.19s 99.04s

SA-SGLD O(B(∥δ(k)∥0 + J)) 0.24s 1.44s 30.12s

Skinny-Gibbs O(n(p ∨ ∥δ(k)∥20)) 10.50s 87.27s 1154.40s

VA O(B · J · p) 4.05s 34.42s 1243.82s

Table 1. Running times per iterations

Figure 13 shows the mixing times in terms of the number of iterations and the actual

running times, and Table 1 shows the running times per iteration. We observe that the

skinny-Gibbs sampler has very short mixing times. However, its cost per iteration is of

order O(np). As a results its overall running time has the same scaling as the running

time of the exact sampler, and both are more expensive than the asynchronous and

SA-SGLD samplers. We also notice that the mixing times (in terms of number of

26 YVES ATCHADÉ AND LIWEI WANG

1000 2000 3000 4000 5000

p

0

0.5

1

1.5

2

2.5

3

3.5

4

it
e
ra

ti
o
n
s

10
4 mixing iterations

S-Gibbs

Exact

Asyn

SA-SGLD

1000 2000 3000 4000 5000

p

0

200

400

600

800

1000

1200

1400

ru
n
in

g
 t
im

e
(s

)

mixing times

S-Gibbs

Exact

Asyn

SA-SGLD

Figure 13. Mixing times in number of iterations (left), and in total

running time. A mixing time is defined as first time when relative

error is smaller than τ , with lasso initialization, where τ is obtained

from an initial long run.

iterations) for the Exact and Asyn samplers are similar, which is consistent with the

results in the linear regression scenario. We also notice that overall the SA-SGLD

sampler is not significantly faster than the asynchronous sampler. This is because,

although the cost per iteration of SA-SGLD is much smaller, the algorithm typically

requires a much longer mixing time.

4.3. Illustration with a deep neural network model. There is a growing interest

in sparse deep learning (Gale et al. (2019); Frankle and Carbin (2019)). Most existing

approach for estimating sparse deep learning models are frequentist. Bayesian deep

learning can greatly facilitate uncertainty quantification in model predictions. As a

proof of concept we apply Algorithm 3 to an image classification problem using the

MNIST-FASHION dataset (Xiao et al. (2017)), and the deep neural network Lenet-5

(LeCun et al. (2010)). The MNIST-FASHION dataset2 consists of 60, 000 data points

(yi,xi) (plus another set of 10, 000 test samples), where yi ∈ {1, . . . , 10} encodes

the class of a fashion item (T-shirt, trouser, etc), and xi is a 28 × 28 image of the

item. We model the class outcome yi as independent random variables draws from a

multinomial distribution:

yi ∼ M(Fθ(xi)), i = 1, . . . , n,

with class probabilities proportional to exp(Fθ(xi)), where Fθ : R28×28 → R10 is

a lenet-5 neural network. We actually use a slightly modified lenet-5 architecture

2The data can be downloaded from https://www.kaggle.com/datasets/zalando-research/

fashionmnist, or from the python package keras.

https://www.kaggle.com/datasets/zalando-research/fashionmnist
https://www.kaggle.com/datasets/zalando-research/fashionmnist

ASYNCHRONOUS MCMC SAMPLING FOR SPARSE BAYESIAN INFERENCE 27

x

co
n
v
6
+
R
eL

U

m
a
x
p
o
o
l 2

co
n
v
1
6
+
R
eL

U

m
ax

p
o
o
l 2

fc
7
8
4
×
3
0
0

fc
3
0
0
×
2
0
0

fc
2
0
0
×
1
0

Fθ(x)

Figure 14. Illustration of the lenet-5 architecture.

obtained by replacing the tanh activation function by the ReLU function, and by

enlarging the fully-connected layers. We refer the reader to Figure 14 for the ar-

chitecture of the network, and to Zhang et al. (2019) for an introduction to neural

network modeling. The total number of parameter is p = 298, 650. For stability in

the learned structures we did not sparsify the convolutional layers (specifically, we

keep their corresponding δj set to 1).

For the Bayesian inference we use the hyper-parameter u = 50, ρ0 = n, ρ1 = 1. We

apply Algorithm 3 with SGLD on the selected components of θ with a fixed step-size

γ = 10−7. We set J = 1, 000 (with stratified sampling accross the layer), and a batch

size B = 100. We initialize the sampler from the full model with all components

active, and the parameter θ initialized using the default initialization in Matlab. We

then run Algorithm 3 for Niter = 250, 000 iterations and we use the first 150, 000 as

burn-in. The running time took about 4.9 hours on a 8-core computer node with

a NVIDIA TESLA V100 GPU system with 384 GB GPU memory, using MATLAB

2021a.

During the MCMC, at each iteration k, and for each i in the test sample we

define the prediction accurary as A
(k)
i

def
= 1{ŷ(k)i =yi}

, where ŷ
(k)
i ∼ M(Fθ(k)·δ(k)(xi)).

We average these prediction accuracies to get Ā
(k)

. We also average the prediction

accuracies within each group of items to get Ā
(k)

(g), g = 1, . . . , 10. To save time we

actually compute these statistics only every 100 iterations. Figure 15 plots {Ā(k)
, k}

and the model sparsity {∥δ(k)∥0/p, k} along the MCMC iterations, and Figure 16

shows the boxplots of the {Ā(k)
(g), k} for each g. Table 2 shows the posterior sparsity

and posterior average accuracy, and includes a comparison to Monte Carlo dropout

(Gal and Ghahramani (2016)). The results shows that it is possible to significantly

compress deep learning models with only modest loss of performance.

28 YVES ATCHADÉ AND LIWEI WANG

0 200 400 600 800 1000
iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ar

sit
y

Accuracy/Sparsity of Lenet-5 on fashion-MNIST

Accuracy
Sparsity

Figure 15. Prediction accuracy on test sample and sparsity along

MCMC run.

Sparsity Accuracy

SA-SGLD 1.00 (0.00) 86.5 (0.45)

MC Dropout 100 88.65 (0.06)

Table 2. Estimated posterior sparsity and prediction accuracy on

test sample (in percentage)

The computational cost (per iteration) of the algorithm is roughly twice that of

stochastic gradient descent, its frequentist counterpart. Note however that this cost

can potentially be further reduced by exploiting sparsity (as we did with linear and

logistic regression models). We did not pursue this here because MATLAB 2021a that

we used for this project does not support sparse deep learning computation.

We end with some words of caution. We are presenting this example mainly as an

exploratory exercise in the potential of the proposed framework, without much theo-

retical guarantee. In particular, due to the poor general understanding of deep neural

network models, we currently cannot say much about the properties of the limiting

distribution of Algorithm 3. Furthermore, due to the highly multimodal nature of the

likelihood surface of deep neural network models, we cannot guarantee either that the

algorithm has mixed and is correctly sampling from its limiting distribution. More

research is needed on these issues.

ASYNCHRONOUS MCMC SAMPLING FOR SPARSE BAYESIAN INFERENCE 29

0.7

0.75

0.8

0.85

A
c
c
u

ra
c
y

Tshirt/top

0.93

0.94

0.95

0.96

0.97

Trouser

0.7

0.75

0.8

0.85

Pullover

0.8

0.85

0.9

Dress

0.65

0.7

0.75

0.8

0.85

Coat

0.88

0.9

0.92

0.94

0.96

A
c
c
u

ra
c
y

Sandal

0.45

0.5

0.55

0.6

0.65

0.7

Shirt

0.88

0.9

0.92

0.94

0.96

Sneaker

0.94

0.95

0.96

0.97

Bag

0.9

0.92

0.94

0.96

Ankle boot

Figure 16. Distribution of posterior predictive accuracy on MNIST-

Fashion test samples. Averaged within each class of item.

5. Some concluding remarks

We have proposed a fast MCMC algorithm for the Bayesian analysis of sparse

high-dimensional models. The algorithm operates as a form of Bayesian iterated sure

independent screening, resulting in tremendous speed. In linear regression models we

show that the algorithm mixes quickly to a limiting distribution that recovers cor-

rectly the main underlying signal. In limited sample size problems the algorithm can

be advantageously combined with tempering techniques (such as simulated tempering

or related ideas) for better mixing properties. Such extensions could also be partic-

ularly useful in deep learning where the resulting posterior distributions are known

to be highly multimodal. One interesting aspect of the MCMC analysis in this work

(which extends from De Sa et al. (2016)), is the use of a metric weaker than the total

variation metric and more directly pertinent for the statistical analysis. Exploring

more systematically these ideas could be of broader theoretical interest.

References

Atchadé, Y. (2022). Approximate spectral gaps for markov chains in high-

dimensions. SIAM Journal on Mathematics of Data Science .

Atchade, Y. and Bhattacharyya, A. (2019). An approach to large-scale quasi-

bayesian inference with spike-and-slab priors.

Atchadé, Y., Fort, G., Moulines, E. and Priouret, P. (2011). Adaptive

Markov chain Monte Carlo: theory and methods. In Bayesian time series models.

Cambridge Univ. Press, Cambridge, 32–51.

30 YVES ATCHADÉ AND LIWEI WANG

Atchade, Y. A. (2017). On the contraction properties of some high-dimensional

quasi-posterior distributions. Ann. Statist. 45 2248–2273.

Bhadra, A., Datta, J., Li, Y. and Polson, N. (2020). Horseshoe regularisation

for machine learning in complex and deep models1. International Statistical Review

88 302–320.

Bhattacharya, A., Chakraborty, A. and Mallick, B. K. (2016). Fast sam-

pling with gaussian scale mixture priors in high-dimensional regression. Biometrika

asw042.

Biswas, N., Bhattacharya, A., Jacob, P. E. and Johndrow, J. E. (2021). Cou-

pled markov chain monte carlo for high-dimensional regression with half-t priors.

Biswas, N., Jacob, P. E. and Vanetti, P. (2019). Estimating convergence of

markov chains with l-lag couplings.

Blei, D. M., Kucukelbir, A. andMcAuliffe, J. D. (2016). Variational Inference:

A Review for Statisticians. ArXiv e-prints arXiv:1601.00670.

Brooks, S., Gelman, A., Jones, G. andMeng, X.-L. (2011). Handbook of Markov

Chain Monte Carlo. CRC press.

Bühlmann, P. and van de Geer, S. (2011). Statistics for high-dimensional data.

Springer Series in Statistics, Springer, Heidelberg. Methods, theory and applica-

tions.

Candès, E. J. and Plan, Y. (2009). Near-ideal model selection by l1 minimization.

The Annals of Statistics 37 2145 – 2177.

Carvalho, C. M., Polson, N. G. and Scott, J. G. (2010). The horseshoe

estimator for sparse signals. Biometrika 97 465–480.

Castillo, I., Schmidt-Hieber, J. and van der Vaart, A. (2015). Bayesian linear

regression with sparse priors. Ann. Statist. 43 1986–2018.

Daskalakis, C., Dikkala, N. and Jayanti, S. (2018). Hogwild!-gibbs can be

panaccurate.

De Sa, C., Olukotun, K. and Ré, C. (2016). Ensuring rapid mixing and low bias

for asynchronous gibbs sampling. In Proceedings of the 33rd International Confer-

ence on International Conference on Machine Learning - Volume 48. ICML’16.

Fan, J. and Lv, J. (2008). Sure independence screening for ultrahigh dimensional

feature space. Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 70 849–911.

URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.

1467-9868.2008.00674.x

Fan, J., Samworth, R. andWu, Y. (2009). Ultrahigh dimensional feature selection:

Beyond the linear model. J. Mach. Learn. Res. 10 2013–2038.

https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2008.00674.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2008.00674.x

ASYNCHRONOUS MCMC SAMPLING FOR SPARSE BAYESIAN INFERENCE 31

Frankle, J. and Carbin, M. (2019). The lottery ticket hypothesis: Finding sparse,

trainable neural networks. In International Conference on Learning Representa-

tions.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Rep-

resenting model uncertainty in deep learning. In Proceedings of The 33rd Inter-

national Conference on Machine Learning (M. F. Balcan and K. Q. Weinberger,

eds.), vol. 48 of Proceedings of Machine Learning Research. PMLR.

Gale, T., Elsen, E. and Hooker, S. (2019). The state of sparsity in deep neural

networks. ArXiv abs/1902.09574.

George, E. I. and McCulloch, R. E. (1997). Approaches to bayesian variable

selection. Statist. Sinica 7 339–373.

Ghosh, S., Yao, J. andDoshi-Velez, F. (2019). Model selection in bayesian neural

networks via horseshoe priors. Journal of Machine Learning Research 20 1–46.

Hastie, T., Tibshirani, R. and Wainwright, M. (2015). Statistical Learning with

Sparsity: The Lasso and Generalizations. Chapman and Hall/CRC.

Johndrow, J., Orenstein, P. and Bhattacharya, A. (2020). Scalable approxi-

mate mcmc algorithms for the horseshoe prior. Journal of Machine Learning Re-

search 21.

Johndrow, J. E. and Mattingly, J. C. (2018). Error bounds for approximations

of markov chains used in bayesian sampling.

Johnson, M. J., Saunderson, J. and Willsky, A. S. (2013). Analyzing hogwild

parallel gaussian gibbs sampling. In Proceedings of the 26th International Confer-

ence on Neural Information Processing Systems - Volume 2. NIPS’13.

Kingma, D. P. and Welling, M. (2014). Auto-Encoding Variational Bayes. In 2nd

International Conference on Learning Representations, ICLR 2014, Banff, AB,

Canada, April 14-16, 2014, Conference Track Proceedings.

LeCun, Y., Cortes, C. and Burges, C. (2010). Mnist handwritten digit database.

ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2.

Louizos, C., Ullrich, K. and Welling, M. (2017). Bayesian compression for deep

learning. In Proceedings of the 31st International Conference on Neural Information

Processing Systems. NIPS’17.

Ma, Y.-A., Chen, T. and Fox, E. B. (2015). A complete recipe for stochastic

gradient mcmc. In Proceedings of the 28th International Conference on Neural

Information Processing Systems - Volume 2. NIPS’15, MIT Press, Cambridge, MA,

USA.

Meinshausen, N. and Yu, B. (2009). Lasso-type recovery of sparse representations

for high-dimensional data. Ann. Statist. 37 246–270.

32 YVES ATCHADÉ AND LIWEI WANG

Meyn, S. and Tweedie, R. L. (2009). Markov chains and stochastic stability. 2nd

ed. Cambridge University Press, Cambridge.

Mitchell, T. J. and Beauchamp, J. J. (1988). Bayesian variable selection in linear

regression. Journal of the american statistical association 83 1023–1032.

Narisetty, N. N., Shen, J. and He, X. (2018). Skinny gibbs: A consistent and

scalable gibbs sampler for model selection. Journal of the American Statistical

Association .

Negahban, S. N., Ravikumar, P., Wainwright, M. J. and Yu, B. (2012). A

unified framework for high-dimensional analysis ofm-estimators with decomposable

regularizers. Statistical Science 27 538–557.

Neiswanger, W., Wang, C. and Xing, E. P. (2014). Asymptotically exact, embar-

rassingly parallel mcmc. In Proceedings of the Thirtieth Conference on Uncertainty

in Artificial Intelligence. AUAI Press, Arlington, Virginia, USA.

Piironen, J. and Vehtari, A. (2017). Sparsity information and regularization in

the horseshoe and other shrinkage priors. Electronic Journal of Statistics 11 5018

– 5051.

Pillai, N. S. and Smith, A. (2015). Ergodicity of approximate mcmc chains with

applications to large data sets.

Rajaratnam, B., Sparks, D., Khare, K. and Zhang, L. (2019). Uncertainty

quantification for modern high-dimensional regression via scalable bayesian meth-

ods. Journal of Computational and Graphical Statistics 28 174–184.

Ray, K. and Szabó, B. (2021). Variational bayes for high-dimensional linear regres-

sion with sparse priors. Journal of the American Statistical Association 1–12.

Robert, C. P. and Casella, G. (2004). Monte Carlo statistical methods. 2nd ed.

Springer Texts in Statistics, Springer-Verlag, New York.

Roberts, G. and Tweedie, R. (1996). Exponential convergence of langevin distri-

butions and their discrete approximations. Bernoulli 2 341–363.

Rockova, V. and George, E. I. (2018). The spike-and-slab lasso. Journal of the

American Statistical Association 113 431–444.

Rudolf, D. and Schweizer, N. (2018). Perturbation theory for Markov chains via

Wasserstein distance. Bernoulli 24 2610 – 2639.

Smola, A. and Narayanamurthy, S. (2010). An architecture for parallel topic

models. Proc. VLDB Endow. 3 703–710.

Srivastava, S. and Xu, Y. (2021). Distributed bayesian inference in linear mixed-

effects models. Journal of Computational and Graphical Statistics 30 594–611.

Tran, M.-N., Nguyen, N., Nott, D. and Kohn, R. (2020). Bayesian deep net

glm and glmm. Journal of Computational and Graphical Statistics 29 97–113.

ASYNCHRONOUS MCMC SAMPLING FOR SPARSE BAYESIAN INFERENCE 33

Wainwright, M. J. (2019). High-Dimensional Statistics: A Non-Asymptotic View-

point. Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge

University Press.

Welling, M. and Teh, Y. W. (2011). Bayesian learning via stochastic gradient

langevin dynamics. In Proceedings of the 28th International Conference on Inter-

national Conference on Machine Learning. ICML’11, Omnipress, USA.

Xiao, H., Rasul, K. and Vollgraf, R. (2017). Fashion-mnist: a novel

image dataset for benchmarking machine learning algorithms. arXiv preprint

arXiv:1708.07747 .

Xue, J. and Liang, F. (2019). Double-parallel monte carlo for bayesian analysis of

big data. Statistics and Computing 29.

Yang, Y., Wainwright, M. J. and Jordan, M. I. (2016). On the computational

complexity of high-dimensional bayesian variable selection. Ann. Statist. 44 2497–

2532.

Zhang, A., Lipton, Z. C., Li, M. and Smola, A. J. (2019). Dive into Deep

Learning. http://www.d2l.ai.

Zhang, F. and Gao, C. (2020). Convergence rates of variational posterior distribu-

tions. The Annals of Statistics 48 2180 – 2207.

http://www.d2l.ai

34 YVES ATCHADÉ AND LIWEI WANG

(1) Figure 1: Estimated mixing time for a linear regression example. Figure on

the left (resp. right) is ϱ = 0 (resp. ϱ = 0.9).

(2) Figure 2: Averaged sample paths of penalized log-likelihood values in linear

regression with ϱ = 0

(3) Figure 3: Averaged sample paths of penalized log-likelihood values in linear

regression with ϱ = 0.9

(4) Figure 4: Distributions of the relative error (21) in linear regression with

ϱ = 0. Based on 50 MCMC sample paths replications.

(5) Figure 5: Distributions of the relative error (21) in linear regression with

ϱ = 0.9. Based on 50 MCMC sample paths replications.

(6) Figure 6: Relative error and Estimated mixing time for a linear regression

example. Figure on the left (resp. right) is relative error (resp. Mixing time).

(7) Figure 7: Absolute error and mixing time of Exact sampler with different J ,

linear regression, p = 1000, n = 1000, ϱ = 0.9

(8) Figure 8: Absolute error and mixing time of Asyn sampler with different J ,

linear regression, p = 1000, n = 1000, ϱ = 0.9

(9) Figure 9: Absolute error and mixing time of Exact sampler with different J ,

linear regression, p = 1000, n = 150, ϱ = 0.9

(10) Figure 10: Absolute error and mixing time of Asyn sampler with different J ,

linear regression, p = 1000, n = 150, ϱ = 0.9

(11) Figure 11: Relative error for logistic regression, with ϱ = 0

(12) Figure 12: Relative error for logistic Regression, with ϱ = 0.9

(13) Figure 13: Mixing times in number of iterations (left), and in total running

time. A mixing time is defined as first time when relative error is smaller than

τ , with lasso initialization, where τ is obtained from an initial long run.

(14) Figure 14: Illustration of the lenet-5 architecture.

(15) Figure 15: Prediction accuracy on test sample and sparsity along MCMC run.

(16) Figure 16: Distribution of posterior predictive accuracy on MNIST-Fashion

test samples. Averaged within each class of item.

	1. Introduction
	1.1. Main contributions
	1.2. Related work
	1.3. Outline
	1.4. Notations

	2. The asynchronous sampler
	2.1. Asynchronous approximation
	2.2. Further extension using stochastic gradient Langevin dynamics

	3. Approximate correctness of Algorithm 2
	3.1. Approximate correctness for linear regression models

	4. Numerical illustration
	4.1. Linear regression
	4.2. Logistic regression
	4.3. Illustration with a deep neural network model

	5. Some concluding remarks
	References

