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Appendix A. Proof of Theorem 1

Throughout C0 denotes a generic constant whose value may change from one ap-

pearance to the next. We shall write Π(·) and Π̃(·) instead of Π(·|D) and Π̃(·|D)

respectively. For any two Markov kernels P1 and P2 and for any integer k ≥ 1, it is

easily checked that

P k
1 = P k

2 +
k∑

j=1

P k−j
1 (P1 − P2)P

j−1
2 . (1)

Using this identity, for any bounded measurable function f : ∆ × Rp → R, writing
f̃ = f − Π̃(f), we have for any k ≥ 0,

Π(f)− Π̃(f) = Π(f̃) = Π(Kkf̃) = Π(K̃kf̃) +

k∑
j=1

Π
(
(K − K̃)K̃j−1f̃

)
,

= Π(K̃kf̃) + Π

(K − K̃)

k−1∑
j=0

K̃j f̃

 . (2)

Define

gk
def
=

k−1∑
j=0

K̃j f̃ .

It follows from (10) that for all (δ, θ) ∈ ∆× Rp,

|gk(δ, θ)| ≤ C0∥f∥∞V 1/2(δ, θ)

k−1∑
j=0

λ̃j ≤ C0∥f∥∞
1− λ̃

V 1/2(δ, θ). (3)

Recall that

K((δ, θ); (dδ′, dθ′)) = Kδ(θ,dθ
′)
∑

J: |J|=J

(
p

J

)−1

Qθ′,J(δ, dδ
′),

where

Kδ(θ,dθ
′)

def
= Pδ([θ]δ,d[θ

′]δ)
∏

j: δj=0

N(0, ρ−1
0 )(dθ′j).

1
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K̃ has the same expression, but with Q replaced by Q̃. Therefore, using the fact that

Kδ has invariant distribution Π(·|δ), we have

Π
(
(K − K̃)gk

)
=

∑
J: |J|=J

(
p

J

)−1 ∫
∆×Rp

Π(dδ, dθ)

{∫
∆
Qθ,J(δ, dδ

′)gk(δ
′, θ)−

∫
∆
Q̃θ,J(δ, dδ

′)gk(δ
′, θ)

}
Without any loss generality we shall assume now that ∥f∥∞ = 1. Using the last

display and (2), we get that∣∣∣Π(f)− Π̃(f)
∣∣∣ ≤ C0λ̃

k

+
∑

J: |J|=J

(
p

J

)−1 ∫
∆×Rp

Π(dδ, dθ)

∣∣∣∣∫
∆
Qθ,J(δ, dδ

′)gk(δ
′, θ)−

∫
∆
Q̃θ,J(δ, dδ

′)gk(δ
′, θ)

∣∣∣∣ .
(4)

We split the integral
∫
∆×Rp over B and over Bc. For the part over Bc, we use the

Cauchy-Schwarz inequality, and (3) to write∣∣∣∣∫
Bc

Π(dδ, dθ)

∫
∆
Qθ,J(δ, dδ

′)gk(δ
′, θ)

∣∣∣∣
≤ Π(Bc)1/2

√∫
Π(dδ, dθ)|gk(δ, θ)|2 ≤ Π(Bc)1/2

C0

1− λ̃
Π(V |D)1/2.

Similarly,∣∣∣∣∫
Bc

Π(dδ, dθ)

∫
∆
Q̃θ,J(δ, dδ

′)gk(δ
′, θ)

∣∣∣∣
≤ Π(Bc)1/2

√∫
Π(dδ, dθ)

∫
∆
Q̃θ,J(δ, dδ′)|gk(δ′, θ)|2 ≤ Π(Bc)1/2

C0

1− λ̃
Π(V |D)1/2,

using (11). Finally, since gk is bounded on B by C0/(1− λ̃), we have∫
B
Π(dδ, dθ)

∣∣∣∣∫
∆
Qθ,J(δ, dδ

′)gk(δ
′, θ)−

∫
∆
Q̃θ,J(δ, dδ

′)gk(δ
′, θ)

∣∣∣∣
≤ C0

1− λ̃

∫
B
Π(dδ, dθ)

∥∥∥Qθ,J(δ, ·)− Q̃θ,J(δ, ·)
∥∥∥
tv
.

It follows that∣∣∣Π(f)− Π̃(f)
∣∣∣ ≤ C0λ̃

k +
C0

√
Π(Bc)

1− λ̃
+

C0

1− λ̃

∫
B
Π(dδ, dθ)

∥∥∥Qθ,J(δ, ·)− Q̃θ,J(δ, ·)
∥∥∥
tv
.

The result then follows by taking k → ∞. □
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Appendix B. Proof of Proposition 2

Throughout C0 denotes a generic constant. The Markov kernel of Algorithm 2 is

K̃((δ, θ); (dδ′, dθ′)) = Kδ(θ,dθ
′)
∑

J: |J|=J

(
p

J

)−1

Q̃θ′,J(δ, dδ
′),

where

Kδ(θ,dθ
′)

def
= Pδ([θ]δ, d[θ

′]δ)
∏

j: δj=0

N(0, ρ−1
0 )(dθ′j).

Recall that V (δ, θ) =
∑

j δjVj(θj). Given a selection J = {j1, . . . , jJ} ⊆ {1, . . . , p},
and ji ∈ J, we have∫

∆
Q̃θ,ji(δ, dδ

′)V (δ′, θ) = V (δ, θ)+q̃jiVji(θji)−δjiVji(θji) ≤ V (δ, θ)+(1−δji)Vji(θji),

where q̃j = q̃j(ϑ, θ). It follows that∫
∆
Q̃θ,J(δ, dδ

′)V (δ′, θ) ≤ V (δ, θ) +

J∑
i=1

Vji(θji)1{δji=0}. (5)

Note that in deriving (5) we did not use any specific information about the probability

q̃j . In particular the kernel Qθ,J also satisfies (5). Using (5) we have∫
Rp

Kδ(θ,dθ
′)

∫
∆
Q̃θ′,J(δ, dδ

′)V (δ′, θ′)

≤
∫
R∥δ∥0

Pδ([θ]δ,du)Vδ(u) +

J∑
i=1

∫
R
Vji(x)N(0, ρ−1

0 )(dx)

≤ λδV (δ, θ) + bδ + C0J,

where the first inequality uses the fact that under Kδ, when δj = 0 we update θj by

drawing from N(0, ρ−1
0 ). With λ = maxδ λδ, we conclude that∫

∆×Rp

K̃((δ, θ); (dδ′,dθ′))V (δ′, θ′) ≤ λV (δ, θ) + C0. (6)

Furthermore, K̃ is phi-irreducible and aperiodic by assumption, and the level sets

{(δ, θ) : V (δ, θ) ≤ b} are petite sets for K̃. Therefore, by Lemma 15.2.8, and Theorem

15.0.1 of Meyn and Tweedie (2009) K̃ admits a unique invariant distribution Π̃, and

(10) holds.
□
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Appendix C. Proof of Corollary 4

Throughout the subset J is fixed. Given θ ∈ Rp, and 1 ≤ j ≤ p, we recall that

Qθ,j(δ, δ
′) = qj(δ, θ)

δ′j (1− qj(δ, θ))
1−δ′j

∏
i ̸=j

1{δi=δ′i}, δ, δ′ ∈ ∆,

and we define Q̃θ,j as

Q̃θ,j(δ, δ
′)

def
= q̃j(ϑ, θ)

δ′j (1− q̃j(ϑ, θ))
1−δ′j

∏
i ̸=j

1{δi=δ′i}, δ, δ′ ∈ ∆,

where ϑ = ϑ(J, δ) is as defined in (7) in the main document, and depends on δ. As

Bernoulli updates, it is easy to see that total variational distance between Qθ,j(δ, ·)
and Q̃θ,j(δ, ·) is

∥Qθ,j(δ, ·)− Q̃θ,j(δ, ·)∥tv = |qj − q̃j | ≤ min (min(qj , q̃j), 1−max(qj , q̃j)) , (7)

where qj (resp. q̃j) is a short for qj(δ, θ) (resp. q̃j(ϑ, θ)). An analogous application of

(1) then gives

∥∥∥Qθ,J(δ, ·)− Q̃θ,J(δ, ·)
∥∥∥
tv

≤
J−1∑
k=0

∫
∆
(Qθ,j1 × · · · ×Qθ,jk) (δ, dδ

′)
∣∣qj(δ′, θ)− q̃j(ϑ, θ)

∣∣ ,
where for k = 0 the product Qθ,j1:k

def
= Qθ,j1 × · · · ×Qθ,jk is the identity kernel. Note

that if (δ, θ) ∼ Π(·|D), and δ′|θ ∼ Qθ,j1:k(δ, ·), then (δ′, θ) ∼ Π(·|D). This implies that∫
B
Π(dδ, dθ)

∫
∆
Qθ,j1:k(δ, dδ

′)
∣∣qj(δ′, θ)− q̃j(ϑ, θ)

∣∣ ≤ Π(Bc|D)

+

∫
B
Π(dδ, dθ)

∫
∆
Qθ,j1:k(δ, dδ

′)
∣∣qj(δ′, θ)− q̃j(ϑ, θ)

∣∣1B(δ′, θ).
It then follows that∥∥∥Qθ,J(δ, ·)− Q̃θ,J(δ, ·)

∥∥∥
tv

≤ J Π(Bc|D)

+ J max
0≤k≤J−1

sup
(δ,θ)∈B

∫
∆
Qθ,j1:k(δ, dδ

′)
∣∣qj(δ′, θ)− q̃j(ϑ, θ)

∣∣1B(δ′, θ). (8)

Define ϵ
def
= (Y −Xθ⋆)/σ. Using the sub-Gaussianity of the regression error term

in H2-(2), and by a union bound argument, we can choose c > 0 depending solely on

the absolute constant c1 in H2-(2), such that

P⋆

(
max
1≤j≤p

|⟨Xj , ϵ⟩| >
√

cn log(p)

)
≤ 1

p
. (9)
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Take (δ, θ) ∈ B, and (δ′, θ) ∈ B, and suppose that ϵ satisfies max1≤j≤p |⟨Xj , ϵ⟩| ≤√
cn log(p). We show below that

∣∣qj(δ′, θ)− q̃j(ϑ, θ)
∣∣ ≤ max

(
e
−C1

(
nθ2⋆−(1+s⋆)

√
n log(p)

)
,

1√
n
e−(u−C(1+s⋆)) log(p)

)
. (10)

The corollary then follows by combining (10) and (8). It remains to show (10). We

consider separately the cases δ⋆,j = 1 and δ⋆,j = 0.

First, we suppose that δ⋆j = 1. We note that for all (δ, θ),

qj(δ, θ) =
1

1 + exp
(
a+ 1

2(ρ1 − ρ0)θ2j + ℓ(θδ(j,0))− ℓ(θδ(j,1))
)

≥ 1

1 + exp (a+ ℓ(θδ(j,0))− ℓ(θδ(j,1)))
≥ 1− exp (a+ ℓ(θδ(j,0))− ℓ(θδ(j,1))) .

Using (5) in the main document, we have

ℓ(θδ(j,0))− ℓ(θδ(j,1)) = − θj
σ2

⟨Xj , Y −Xθδ(j,0)⟩+
θ2jn

2σ2

= −θj
σ

⟨Xj , ϵ⟩ −
θjθ⋆jn

σ2
+

θj
σ2

p∑
k=1

(δ
(j,0)
k θk − δ

(j,0)
⋆k θ⋆k) ⟨Xk, Xj⟩+

θ2jn

2σ2
. (11)

For (δ, θ) ∈ B, and under H2, we have

ℓ(θδ(j,0))− ℓ(θδ(j,1)) ≤ −θjθ⋆jn

σ2
+

θ2jn

2σ2
+ C

(√
n log(p) + ∥δ∥0∥θ − θ⋆∥∞

√
n log(p)

)
,

and

−θjθ⋆jn+
θ2jn

2
≤ −

nθ2⋆j
2

+ C
(
log(p) +

√
n log(p)

)
.

Combining the last two inequalities yields,

ℓ(θδ(j,0))− ℓ(θδ(j,1)) ≤ −
nθ2⋆j
2

+ C
(√

n log(p) + s log(p)
)
,

for some constant C1. We conclude that for n ≥ s2 log(p),

qj(δ, θ) ≥ 1− e
a−C1

(
nθ2⋆−

√
n log(p)

)
,

for some constant C1. Similarly, for (δ, θ) ∈ B, and ϑ as in (7) of the main document

q̃j(ϑ, θ) ≥ 1− exp

(
a− θj

σ2
⟨Xj , Y −Xθϑ⟩

)
.
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As in (11),

− θj
σ2

⟨Xj , Y −Xθϑ⟩ = −θj
σ

⟨Xj , ϵ⟩ −
θjθ⋆jn

σ2
+

θj
σ2

p∑
k=1

(ϑkθk − δ
(j,0)
⋆k θ⋆k) ⟨Xk, Xj⟩

≤ −
nθ2⋆j
2

+ C
(√

n log(p) + (s− s⋆) log(p) + s⋆
√
n log(p)

)
−

nθ2⋆j
2

+ C(1 + s⋆)
√
n log(p)

We conclude that

q̃j(ϑ, θ) ≥ 1− e
a−C

(
nθ2⋆−(1+s⋆)

√
n log(p)

)
,

and since ea =
√
npu/σ, we get

|qj(δ, θ)− q̃j(ϑ, θ)| ≤
√
npu

σ
e
−C

(
nθ2⋆−(1+s⋆)

√
n log(p)

)
,

for some constant C.

Suppose now that δ⋆j = 0. The we use

qj(δ, θ) ≤ exp

(
−a+

ρ0θ
2
j

2
− (ℓ(θδ(j,0))− ℓ(θδ(j,1)))

)
.

Starting from (11), we obtain

ℓ(θδ(j,0))− ℓ(θδ(j,1)) ≤ C log(p).

It follows that

qj(δ, θ) ≤
σeC log(p)

√
npu

.

Similarly,

q̃j(ϑ, θ) ≤ exp

(
−a+

ρ20θ
2
j

2
+

nθ2j
2σ2

+
θj
σ2

⟨Xj , Y −Xθϑ⟩

)
,

and ∣∣∣∣ θjσ2
⟨Xj , Y −Xθϑ⟩

∣∣∣∣ ≤ C(1 + s⋆) log(p),

which leads to

|qj(δ, θ)− q̃j(ϑ, θ)| ≤
1√
npu

eC(1+s⋆) log(p).

Combining the two cases proves (10).
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Appendix D. Proof of Theorem 5

We recall that P and E denote the probability measure and expectation operator

of the Markov chains defined by Algorithms 1 and 2 (more specifically their coupling

distribution as constructed below), and P⋆ and E⋆ denote the probability measure

and expectation operator of the data Y as assumed in H2.

Throughout we will use C to denote a generic constant that depends only on the

constants appearing in H2 (σ2, ∥θ⋆∥∞, c0, c1 and c2). The actual value of C may vary

from one appearance to the next.

We use a similar argument as in De Sa et al. (2016). Let {δ(k), k ≥ 0} denote

the δ-marginal chain of Algorithm 2, and let {δ̌(k), k ≥ 0} be the δ-marginal chain

of Algorithm 1. These processes are also Markov chains because in both cases we

have taken Pδ = P̃δ to be an exact draw from the posterior conditional distribution

of θ given δ. We construct a coupling of {δ(k), k ≥ 0} and the stationary version of

{δ̌(k), k ≥ 0} as follows. First take δ(0) as the null model, and draw δ̌(0) ∼ Π(·|D),

the marginal distribution of δ in (2). For each k ≥ 0, given (δ(k), δ̌(k)), we do the

following.

(1) Given δ(k), δ̌(k), we independently draw θ(k) ∼ Π(·|δ(k),D), θ̌(k) ∼ Π(·|δ̌(k),D),

and we select a random subset J(k) = {J(k)1 , . . . , J
(k)
J } of size J from {1, . . . , p}.

(2) We define ϑ ∈ ∆ as ϑi = 0 if i ∈ J(k), and ϑi = δ
(k)
i otherwise. We also define

ϑ(0) = δ(k), and ϑ̌(0) = δ̌(k). For each r ∈ {1, . . . , J}, given J
(k)
r = j, we then

do the following.

(a) We draw (d
(k)
r , ď

(k)
r ) from the maximal coupling of Ber(q̃j(ϑ, θ

(k))) and

Ber(qj(ϑ̌
(r−1), θ̌(k))), where qj and q̃j are given by (4) and (6) respectively.

(b) We set ϑ
(r)
j = d

(k)
r , ϑ̌

(r)
j = ď

(k)
r , and ϑ

(r)
i = ϑ

(r−1)
i , ϑ̌

(r)
i = ϑ̌

(r−1)
i , for i ̸= j.

(3) Set δ(k+1) = ϑ(J), and δ̌(k+1) = ϑ̌(J).

By construction, the marginal chain {δ(k) k ≥ 0} (resp. {δ̌(k) k ≥ 0}) from the

above construction is the asynchronous sampler from Algorithm 2 (resp. a stationary

version of Algorithm 1). By the coupling inequality

E⋆

[
max

j: δ⋆j=1
|P(δ(k)j = 1)−Π(δj = 1|D)|

]
≤ E⋆

[
max

j: δ⋆j=1
P(δ(k)j ̸= δ̌

(k)
j )

]
. (12)

Hence the main part of the proof consists in bounding the right-hand side of the

last display. We do this in paragraph (e). Paragraphs (a)-(d) collect some needed

implications of H2.

(a) Restricted eigenvalues. Given s > 0, Let δ ∈ ∆ be such that 0 < ∥δ∥0 ≤ s,

and let u ∈ R∥δ∥0 . Using | ⟨Xi, Xj⟩ | ≤
√

c0n log(p) from H2-(1), and ∥Xj∥2 =
√
n,
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we have

u′(X ′
δXδ)u ≥ n∥u∥22 −

√
c0n log(p)

∑
i ̸=j

|uiuj | ≥
(
n− s

√
c0n log(p)

)
∥u∥22.

We conclude that if the sample size satisfies n ≥ 4c0s
2 log(p), then

λmin

(
X ′

δXδ

)
≥ n

2
, for all δ ∈ ∆, s. t. 0 < ∥δ∥0 ≤ s, (13)

where λmin(A) denotes the smallest eigenvalue of A.

(b) Implications of the sub-Gaussian regression errors. For δ ∈ ∆, we

define

Lδ
def
= In +

1

σ2
XδX

′
δ.

We convene that Lδ = In, for δ = 0. Clearly, ∥L−1
δ ∥2 ≤ 1. Given s ≥ 0 (here we allow

s to be 0), and for some constant c > 0, we set

Es
def
=

{
y ∈ Rn : max

1≤j≤p
max

δ: ∥δ∥0≤s
σ−1

∣∣〈L−1
δ Xj , y −Xθ⋆

〉∣∣ ≤√c(1 + s)n log(p)

}
.

Using the sub-Gaussianity of the regression error term in H2-(2), and by a union

bound argument, we can choose c > 0 depending solely on the absolute constant c1

in H2-(2), such that for all s ≥ 0,

P⋆ (Y /∈ Es) ≤ p

s∑
j=0

(
p

j

)
c1 exp

(
−c(1 + s)n log(p)

2n

)
≤ c1p

s+1

p
c(1+s)

2

≤ 1

p
, (14)

where we use the fact that
∑s

j=0

(
p
j

)
≤ 2ps. Throughout the proof, whenever we use

the event Es, the constant c is always taken as above.

(c) Sparse MCMC output. It will be important in the proof to guarantee that the

Markov chain {δ(k), k ≥ 1} remains in the set ∆s
def
= {δ ∈ ∆ : ∥δ∥0 ≤ s} for some

small value of s. The following result may be improved, but will serve the purpose.

Let

s1
def
= s⋆ + 2 log(p).

We show in Lemma 1 that under the sample size condition (19), and u taken large

enough as in (19), it holds

1E0(Y )max
k≥0

P
(
∥δ(k)∥0 > s1

)
≤ 1

p
. (15)
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(d) Posterior contraction. We show below that the posterior distribution Π(·|D)

puts most probability mass on sparse super-sets of δ⋆. More precisely, by Lemma 3

we can find constants C1, C2 that depends only on the constants appearing in H2

(σ2, ∥θ⋆∥∞, c0, c1 and c2) such that for n, p such that n ≥ C1(1 + s3⋆) log(p), it holds

E⋆

[
1Es⋆ (Y )Π(C|D)

]
≥ 1− 2

p
,

where

C def
= {δ ∈ ∆ : δ ⊇ δ⋆, and ∥δ∥0 ≤ C2(1 + s⋆)} .

We set

s2
def
= C2(1 + s⋆).

Furthermore the linear regression setting implies that the conditional posterior dis-

tribution of θ|δ is given by

[θ]δc | δ
i.i.d.∼ N(0, ρ−1

0 ), and [θ]δ | δ ∼ N
(
θ̂δ, σ

2
(
σ2ρ1I∥δ∥0 +X ′

δXδ

)−1
)
, (16)

where

θ̂δ
def
= Argmaxu∈R∥δ∥0

[
− 1

2σ2
∥y −Xδu∥22 −

ρ1
2
∥u∥22

]
=
(
X ′

δXδ + ρ1σ
2I∥δ∥0

)−1
X ′

δy.

Therefore, if for some M > 0 we set

Bδ
def
=

{
θ ∈ Rp : ∥θ − θδ∥∞ ≤

√
M log(p)

ρ0
and ∥θδ − θ̂δ∥∞ ≤

√
Mσ log(p)

n

}
,

then, provided that n ≥ Cs2 log(p), for some constant C, by the restricted eigenvalue

bound in (13), and by Gaussian tail bounds and a union bound argument, for all

δ ∈ ∆s, we have

Π (Bc
δ|δ,D) ≤ 4

p−1+M/2
≤ 1

p
, (17)

by taking M > 2 appropriately.

(e) Main arguments of the proof. With s1 as in Paragraph (c) and s2 as in

Paragraph (d), we set

s
def
= max(s1, s2).

Fix Y ∈ Es⋆ , and fix some arbitrary component j such that δ⋆j = 1. We first note that

δ
(k+1)
j ̸= δ̌

(k+1)
j if and only if j ∈ J(k), and the corresponding Bernoulli’s (d

(k)
r , ď

(k)
r )
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are different, or δ
(k)
j ̸= δ̌

(k)
j , and j /∈ J(k). We write this as

P
[
δ
(k+1)
j ̸= δ̌

(k+1)
j |δ(k), δ̌(k)

]
= 1{

δ
(k)
j ̸=δ̌

(k)
j

}(1− J

p

)
+

J∑
r=1

P
[
J(k)r = j, d(k)r ̸= ď(k)r |δ(k), δ̌(k)

]

= 1{
δ
(k)
j ̸=δ̌

(k)
j

}(1− J

p

)
+

1

p

J∑
r=1

P
[
d(k)r ̸= ď(k)r |J(k)r = j, δ(k), δ̌(k)

]
,

where we use the fact that P(J(k)r = j|δ(k), δ̌(k)) = 1/p. With s1, s2 as above, we

introduce the set T def
= ∆s1 × Cs2 where,

∆s1
def
= {δ ∈ ∆ : ∥δ∥0 ≤ s1} , and Cs2

def
= {δ ∈ ∆ : δ ⊇ δ⋆, ∥δ∥0 ≤ s2} .

It follows that

P
[
δ
(k+1)
j ̸= δ̌

(k+1)
j |δ(k), δ̌(k)

]
≤ 1{

δ
(k)
j ̸=δ̌

(k)
j

}(1− J

p

)
+ 1T(δ

(k), δ̌(k))
1

p

J∑
r=1

P
[
d(k)r ̸= ď(k)r |J(k)r = j, δ(k), δ̌(k)

]
+

J

p
1Tc(δ(k), δ̌(k)).

Let us set

A(k) def
= P

(
(δ(k), δ̌(k)) /∈ T

)
, I(k)

r,j (θ, θ̌)
def
= P

(
d(k)r ̸= ď(k)r |J(k)r = j, δ(k), δ̌(k), θ, θ̌

)
.

Taking expectation on both sides of the last inequality, we get

P
(
δ
(k+1)
j ̸= δ̌

(k+1)
j

)
≤

(
1− J

p

)
P
(
δ
(k)
j ̸= δ̌

(k)
j

)
+

JA(k)

p

+
1

p

J∑
r=1

E
[
1T(δ

(k), δ̌(k))P
(
dr ̸= ďr|J(k)r = j, δ(k), δ̌(k)

)]
,

=

(
1− J

p

)
P
(
δ
(k)
j ̸= δ̌

(k)
j

)
+

JA(k)

p
(18)

+
1

p

J∑
r=1

E
[
1T(δ

(k), δ̌(k))

∫
I(k)
r,j (θ, θ̌)Π(dθ|δ

(k),D)Π(dθ̌|δ̌(k),D)

]
.
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We establish the following claim below

1T(δ
(k), δ̌(k))

∫
I(k)
r,j (θ, θ̌)Π(dθ|δ(k),D)Π(dθ̌|δ̌(k),D)

≤
(
e−C

√
nθ⋆ +

1

p

)
+

7

10
1{δ(k)j ̸=δ̌

(k)
j }. (19)

Using (19) in (18), we obtain

P
(
δ
(k+1)
j ̸= δ̌

(k+1)
j

)
≤
(
1− J

p

)
P
(
δ
(k)
j ̸= δ̌

(k)
j

)
+

JA(k)

p

+
J

p

(
e−C

√
nθ⋆ +

1

p

)
+

7

10

J

p
P
(
δ
(k)
j ̸= δ̌

(k)
j

)
≤
(
1− 3

10

J

p

)
P
(
δ
(k)
j ̸= δ̌

(k)
j

)
+

J

p

(
A(k) + e−C

√
nθ⋆ +

1

p

)
. (20)

Iterating (20) yields

max
j: δ⋆j=1

P
(
δ
(k)
j ̸= δ̌

(k)
j

)
≤
(
1− 3

10

J

p

)k

+
10

3

(
e−C

√
nθ⋆ +

1

p

)

+
J

p

k−1∑
t=0

(
1− 3

10

J

p

)t

A(k−t). (21)

Recall that

A(k) def
= P

(
(δ(k), δ̌(k)) /∈ T

)
≤ P(∥δ(k)∥0 > s1) + Π(Cc

s2 |D),

where Cc
s2

def
= ∆ \ Cs2 . By Lemma 1 and Lemma 3 below, we have

1Es⋆ (Y )max
k≥0

P(∥δ(k)∥0 > s1) ≤
1

p
, and E⋆

[
1Es⋆ (Y )Π(Cc

s2 |D)
]
≤ 1

p
.

Taking the expectation over the data Y in (21), and using the last display and

(12), we deduce that

E⋆

[
1Es⋆ (Y ) max

j: δ⋆j=1

∣∣∣P(δ(k)j = 1)−Π(δj = 1|D)
∣∣∣] ≤ (1− 3

10

J

p

)k

+
10

3

(
e−C

√
nθ⋆ +

1

p
+

2

p

)
≤
(
1− 3

10

J

p

)k

+ 10

(
e−C

√
nθ⋆ +

1

p

)
. (22)

It remains only to establish the claim (19).

Proof of Claim (19). We consider two cases.
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Case 1: δ
(k)
j ̸= δ̌

(k)
j . Since δ̌(k) ∈ Cs1 (which implies that δ̌

(k)
j = 1), we must then

have δ
(k)
j = 0, and δ̌

(k)
j = 1. Set

S def
=

{
(θ, θ̌) ∈ Rp × Rp : θ ∈ Bδ(k) , θ̌ ∈ Bδ̌(k) , and

√
1

100ρ0
≤ sign(θ⋆j)θj ≤

√
4

ρ0

}
.

It follows from (17) and the fact that θ
(k)
j |{δ(k)j = 0} ∼ N(0, ρ−1

0 ) that for (δ(k), δ̌(k)) ∈
T,

P
(
(θ(k), θ̌(k)) /∈ S|δ(k), δ̌(k)

)
≤ 4

pM/2
+

3

5
≤ 7

10
. (23)

First we note that for (θ, θ̌) ∈ S, |θj | ≤ 2/
√
ρ0 ≤ Cn−1/2. Whereas for i ̸= j and

δ
(k)
i = 0, we have |θi| ≤

√
M log(p)/n, and if δ

(k)
i = 1, using (17), and Lemma 2-(1),

|θi| = |θi − θ̂i|+ |θ̂i − θ⋆i|+ |θ⋆i| ≤ C

√
log(p)

n
+ C

√
log(p)

n
+ ∥θ⋆∥∞ ≤ C,

under the sample size condition (19). Using the expression q̃j in (6), and since ρ0 ≥ ρ1,

and ignoring the nonpositive quadratic term, we have

1− q̃j(ϑ, θ) ≤ exp

(
a− θj

σ2
⟨Xj , y −Xθϑ⟩

)
.

We write

⟨Xj , y −Xθϑ⟩ = [⟨Xj , Xθδ(k)⟩ − ⟨Xj , Xθϑ⟩] + ⟨Xj , y −Xθδ(k)⟩ .

Since |θi| ≤ C, for δ
(k)
i = 1, we have

|⟨Xj , Xθϑ⟩ − ⟨Xj , Xθδ(k)⟩| =

∣∣∣∣∣∣∣
∑

r∈J(k):r ̸=j, δ
(k)
r =1

⟨Xj , Xr⟩ θr

∣∣∣∣∣∣∣
≤ Cmin(J, s1)

√
n log(p).

We can rewrite the last display as

|⟨Xj , y −Xθϑ⟩ − ⟨Xj , y −Xθδ(k)⟩| ≤ Cmin(J, s1)
√

n log(p).

We further expand the term ⟨Xj , y −Xθδ(k)⟩ as

⟨Xj , y −Xθδ(k)⟩ = ⟨Xj , y −Xθ⋆⟩+ ⟨Xj , Xθ⋆ −Xδ(k) [θ⋆]δ(k)⟩

+ ⟨Xj , Xδ(k)([θ⋆]δ(k) − [θ]δ(k))⟩ .

Note that

⟨Xj , Xθ⋆ −Xδ[θ⋆]δ(k)⟩ = nθ⋆j +
∑

r: δ⋆r=1,δ
(k)
r =0

θ⋆r ⟨Xj , Xr⟩ .
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For θ ∈ Bδ(k) ,

|⟨Xj , Xδ(k)([θ⋆]δ(k) − [θ]δ(k))⟩| ≤ s1
√
c0n log(p)∥[θ⋆]δ(k) − [θ]δ(k)∥∞

≤ Cs1
√
n log(p)

(
∥[θ⋆]δ(k) − θ̂δ(k)∥∞ +

√
log(p)

n

)
≤ C(1 +m(δ(k)))s1 log(p),

where the last inequality uses Lemma 2. Using this, and since δ⋆j = 1, for θ ∈ Bδ(k)

we have

|⟨Xj , y −Xθϑ⟩ − nθ⋆j | ≤ Cmin(s1, J)
√

n log(p) + | ⟨Xj , y −Xθ⋆⟩ |

+
∑

r: δ⋆r=1,δ
(k)
r =0

|θ⋆r ⟨Xj , Xr⟩|+ C(1 +m(δ(k)))s1 log(p)

≤ C (s⋆ +min(J, s1))
√
n log(p), (24)

using the sample size condition n ≥ s21 log(p). Since |θj | ≤ Cn−1/2, we conclude that

|θj || ⟨Xj , y −Xθϑ⟩ − nθ⋆j | ≤ C (s⋆ +min(J, s1))
√
log(p).

It follows that for (θ, θ̌) ∈ S,

θj
σ2

⟨Xj , y −Xθϑ⟩ ≥
nθ⋆jθj
σ2

− C (s⋆ +min(J, s1))
√
log(p)

≥ |θ⋆j |
√
n

10σ2
− C (s⋆ +min(J, s1))

√
log(p) ≥ |θ⋆j |

√
n

20σ2
− CJ

√
log(p),

under the sample size condition (19). Hence, since a = u log(p) + log(ρ0)/2, for

(θ, θ̌) ∈ S

1−q̃j(ϑ, θ) ≤ exp

(
u log(p) +

1

2
log
( n

σ2

)
−

√
nθ⋆
20σ

)
≤ exp

(
−C1

√
nθ⋆ + C2J

√
log(p)

)
.

(25)

We handle 1− qj(ϑ̌
(r−1), θ) similarly: since ρ0 ≥ ρ1,

1− qj(ϑ̌
(r−1), θ̌) ≤ exp

(
a+

nθ̌2j
2σ2

− θ̌j
σ2

〈
Xj , y −Xθ̌(ϑ̌(r−1))(j,0)

〉)
.

The inequality (24) remains valid when applied to θ̌ and (ϑ̌(r−1))(j,0) (but with

min(J, s1) replaced by J), and yields∣∣∣〈Xj , y −Xθ̌(ϑ̌(r−1))(j,0)

〉
− nθ⋆j

∣∣∣ ≤ C (s⋆ + J)
√

n log(p),
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leading to

− θ̌j
σ2

〈
Xj , y −Xθ̌(ϑ̌(r−1))(j,0)

〉
≤ − n

σ2
θ2⋆j +

nθ⋆j
σ2

|θ̌j − θ⋆j |+ C (s⋆ + J)
√
n log(p)

≤ n

σ2
θ2⋆j + C (s⋆ + J)

√
n log(p),

where we use Lemma 2 to derive the bound |θ̌j − θ⋆j | ≤
(
|θ̌j − θ̂j |+ |θ̂j − θ⋆j |

)
≤

C
√
n/ log(p). The same bound implies that

nθ̌2j
2σ2

=
nθ2⋆j
2σ2

+
n(θ̌2j − θ2⋆j)

2σ2
≤

nθ2⋆j
2σ2

+ C
√
n log(p).

We conclude that

nθ̌2j
2σ2

− θ̌j
σ2

〈
Xj , y −Xθ̌(ϑ̌(r−1))(j,0)

〉
≤ −

nθ2⋆j
2σ2

+ C (s⋆ + J)
√

n log(p) ≤ −
nθ⋆

2

4σ2
+ CJ

√
n log(p),

under the sample size condition (19). Hence

1− qj(ϑ̌
(r−1), θ̌) ≤ exp

(
a−

nθ⋆
2

4σ2

)
≤ exp

(
−
nθ⋆

2

8σ2
+ CJ

√
n log(p)

)
≤ exp

(
−C1

√
nθ⋆ + C2J

√
log(p)

)
, (26)

using again the sample size condition (19). Since the Bernoulli random variables d
(k)
r

and ď
(k)
r are maximally coupled, (25) and (26) imply that for (δ(k), δ̌(k)) ∈ T, and

δ
(k)
j ̸= δ̌

(k)
k ,∫

I(k)
r,j (θ, θ̌)Π(dθ|δ

(k),D)Π(dθ̌|δ̌(k),D) ≤ exp
(
−C1

√
nθ⋆ + C2J

√
log(p)

)
+

7

10
. (27)

Case 2: δ
(k)
j = δ̌

(k)
j . Since δ̌(k) ∈ Cs1 , we must then have δ

(k)
j = δ̌

(k)
j = 1. Here we

define the set S as

S def
=
{
(θ, θ̌) ∈ Rp × Rp : θ ∈ Bδ(k) , θ̌ ∈ Bδ̌(k)

}
.

It follows from (17) that for (δ(k), δ̌(k)) ∈ T,

P
(
(θ(k), θ̌(k)) /∈ S|δ(k), δ̌(k)

)
≤ 4

p1−M/2
. (28)

For (δ(k), δ̌(k)) ∈ T, and (θ, θ̌) ∈ S, the calculations on 1 − qj(ϑ̌
(r−1), θ̌) remain valid,

and we have

1− qj(ϑ̌
(r−1), θ̌) ≤ e−Cnθ2⋆+CJ

√
n log(p).
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For δ
(k)
j = 1, and θ ∈ Bδ(k) , it follows from (24) that

θj ⟨Xj , y −Xθϑ⟩ ≥
nθ2⋆j
σ2

− C (s⋆ +min(J, s1))
√
n log(p) ≥ nθ2⋆

2σ2
− CJ

√
n log(p),

under the sample size condition (19). We deduce that

1− q̃j(ϑ, θ) ≤ exp

(
a− θj

σ2
⟨Xj , y −Xθϑ⟩

)
≤ exp

(
a− nθ2⋆

2σ2
+ CJ

√
n log(p)

)
≤ exp

(
−C1

√
nθ⋆ + C2J

√
log(p)

)
.

The last two majorations on 1 − qj(ϑ̌
(r−1), θ̌) and 1 − q̃j(ϑ, θ), and (28) implies that

for δ
(k)
j = δ̌

(k)
j ,∫

I(k)
r,j (θ, θ̌)Π(dθ|δ

(k),D)Π(dθ̌|δ̌(k),D) ≤ e−Cnθ2⋆ +
4

p1−M/2
. (29)

The claim (19) follows from (25) and (29) together.
□

D.1. Technical lemmas.

Lemma 1. Assume H2, and let E0 as in (14). Let {δ(k), k ≥ 0} be the δ-marginal

chain generated by Algorithm 2 for the linear regression posterior. There exists a

constant C > 0 that depends only on c (in the definition of E0) and the constants in

H2 such that for

u ≥ C(1 + s2⋆), and n ≥
(
∥δ(0)∥0 + s⋆ + 2 log(p)

)2
log(p), (30)

it holds

1E0(Y )P
(
∥δ(k)∥0 > ∥δ(0)∥0 + s⋆ + 2 log(p)

)
≤
(
p− s⋆
2p

)s−∥δ(0)∥0−s⋆

≤ 1

p
.

Proof. Fix Y ∈ E0. Set s1
def
= ∥δ(0)∥0 + s⋆ + 2 log(p). Referring to the coupling

construction at the beginning of the proof, the event {∥δ(k)∥0 > s1}means that we can

find at least s1 −∥δ(0)∥0 − s⋆ terms among {(δ(t), J(t)r , d
(t)
r ), 1 ≤ t ≤ k− 1, 1 ≤ r ≤ J}

where ∥δ(t)∥0 ≤ s1, J
(t)
r ∈ {j : δ⋆j = 0, and δ

(t)
j = 0}, and d

(t)
r = 1.

P
(
J(t)r ∈ {j : δ⋆j = 0, and δ

(t)
j = 0}|δ(t)

)
≤ 1− s⋆

p
.

We show next that on the event ∥δ(t)∥0 ≤ s1, and J
(t)
r ∈ {j : δ⋆j = 0, and δ

(t)
j = 0},

P
(
d(t)r = 1|δ(t), J(t)r = j

)
≤ 1

2
, (31)
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to conclude that

P
(
∥δ(k)∥0 > s1

)
≤
(
p− s⋆
2p

)s1−∥δ(0)∥0−s⋆

≤ exp
(
−(s1 − ∥δ(0)∥0 − s⋆) log(2)

)
≤ 1

p
,

which would end the proof. In order to prove (31), for some absolute constant m > 0,

let

S def
=

{
θ ∈ Rp : θ ∈ Bδ(t) , and |θj | ≤

√
m

ρ0

}
.

As seen in (17), we can choose m such that Π(θ /∈ S|δ(t),D) ≤ 1
4 . Fix j such that

δ⋆j = 0 and δ
(t)
j = 0. Recalling the expression of q̃j in (6), it follows then that

P
(
d(t)r = 1|J(t)r = j, δ(t)

)
≤ 1

4
+∫

S
exp

(
−a+

θ2j
2
(ρ0 − ρ1) +

θj
σ2

⟨Xj , y −Xθϑ⟩+
θ2j
2σ4

⟨Xj , y −Xθϑ⟩2
)
Π(θ|δ(t),D)dθ.

Then we write

⟨Xj , y −Xθϑ⟩ = ⟨Xj , y −Xθ⋆⟩+ ⟨Xj , Xθ⋆ −Xθϑ⟩

= ⟨Xj , y −Xθ⋆⟩+
∑
r ̸=j

⟨Xj , Xr⟩ (θ⋆r − θrϑr).

The last summation does not include j because θ⋆j = 0, and J
(t)
r = j, which implies

that ϑj = 0. Since θ ∈ S, we see that |θ⋆r − θrϑr| ≤ C for all r, for some constant C.

If δ⋆r = 0, then |θr| ≤ C
√

log(p)/n. It follows that for Y ∈ E0,

|θj ⟨Xj , y −Xθϑ⟩| ≤ |θj |

(√
cn log(p) + Cs⋆

√
c0n log(p) + Cs1

√
log(p)

n

√
c0n log(p)

)
≤ C|θj |

(
s⋆
√
n log(p) + s1 log(p)

)
≤ Cs⋆

√
log(p),

under the sample size condition n ≥ s21 log(p). Hence taking u > C(1 + s⋆)
2 large

enough, it follows that

P
(
d(t)r = 1|J(t)r = j, δ(t)

)
≤ 1

4
+∫

S
exp

(
−u log(p)− 1

2
log
( n

σ2

)
+ C(1 + s⋆)

2 log(p)

)
Π(θ|δ(t),D)dθ+

1

4
≤ 1

4
+
1

4
≤ 1

2
.

□
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Lemma 2. Assume H2, and let E0 as in (14). Fix 0 < s1 ≤ p. Then we can find

constants C,C ′ that depends only on σ2, ∥θ⋆∥∞, c0, and c (in the definition of E0) such
that for n ≥ Cs21 log(p), the following holds. For all δ ∈ ∆ such that ∥δ∥0 ≤ s1,

∥θ̂δ − [θ⋆]δ∥∞ ≤ C ′ (1 +m(δ))

√
log(p)

n
, (32)

where m(δ)
def
= |{k : δ⋆k = 1, δk = 0}|, and θ̂δ as in (16).

Proof. The proof follows (Lounici (2008) Theorem 1). Fix Y ∈ E0. The first order

optimality condition of θ̂δ is given by −ρ1θ̂δ + X ′
δ(Y − Xδ θ̂δ)/σ

2 = 0, which can be

rewritten as(
ρ1I∥δ∥0 +

1

σ2
X ′

δXδ

)
([θ⋆]δ−θ̂δ)−ρ1[θ⋆]δ+

1

σ2
X ′

δ(Xθ⋆−Xδ[θ⋆]δ)+
1

σ2
X ′

δ(Y−Xθ⋆) = 0.

We deduce that∥∥∥∥(ρ1I∥δ∥0 + 1

σ2
X ′

δXδ

)
([θ⋆]δ − θ̂δ)

∥∥∥∥
∞

≤ ρ1∥θ⋆∥∞

+
1

σ2
max

k: δk=1

∑
j: δ⋆j=1,δj=0

|θ⋆j || ⟨Xj , Xk⟩ |+
1

σ

√
cn log(p)

≤ C(1 +m(δ))
√
n log(p).

Using this conclusion and the restricted strong convexity in (13), for n ≥ Cs21 log(p),

we have

n

2
∥θ̂δ − [θ⋆]δ∥22 ≤ (θ̂δ − [θ⋆]δ)

′
(
ρ1I∥δ∥0 +

1

σ2
X ′

δXδ

)
(θ̂δ − [θ⋆]δ)

≤ C(1 +m(δ))
√
n log(p)∥θ̂δ − [θ⋆]δ∥1

≤ Cs
1/2
1 (1 +m(δ))

√
n log(p)∥θ̂δ − [θ⋆]δ∥2,

which implies that

∥θ̂δ − [θ⋆]δ∥2 ≤ C(1 +m(δ))

√
s1 log(p)

n
.

On the other hand for j such that δj = 1,((
ρ1I∥δ∥0 +

1

σ2
X ′

δXδ

)
([θ⋆]δ − θ̂δ)

)
j

= (ρ1 +
n

σ2
)
(
θ̂δ − [θ⋆]δ

)
j

+
1

σ2

∑
k ̸=j: δk=1

⟨Xk, Xj⟩
(
θ̂δ − [θ⋆]δ

)
k
,
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which we use to deduce that

∥θ̂δ−[θ⋆]δ∥∞ ≤ σ2

n

∥∥∥∥(ρ1I∥δ∥0 + 1

σ2
X ′

δXδ

)
([θ⋆]δ − θ̂δ)

∥∥∥∥
∞
+
1

n

√
c0n log(p)∥θ̂δ−[θ⋆]δ∥1

≤ C(1 +m(δ))

√
log(p)

n
+ s

1/2
1

√
c0 log(p)

n
∥θ̂δ − [θ⋆]δ∥2

≤ C(1 +m(δ))

√
log(p)

n
+ C(1 +m(δ))

√
log(p)

n

√
s21 log(p)

n

≤ C(1 +m(δ))

√
log(p)

n
,

under the stated sample size condition. □

We show in the next result that the posterior distribution puts most of its proba-

bility mass on models that contain the true model δ⋆.

Lemma 3. Assume H2, and let Es⋆ be as in (14). Then we can find constants C1, C2

that depends only on σ2, ∥θ⋆∥∞, c0, c1 c2 and c (in the definition of Es⋆) such that for

n ≥ C1θ
−2
⋆ (1 + s3⋆) log(p), it holds

E⋆

[
1Es⋆ (Y )Π(C|D)

]
≥ 1− 3

p
,

where

C def
= {δ ∈ ∆ : δ ⊇ δ⋆, and ∥δ∥0 ≤ C2(1 + s⋆)} .

Proof. By Lemma 5, there exist positive constant C1, C2 that depends only on c0, c2,

and c such that for n ≥ C1s
2
⋆ log(p),

E⋆ [1E0(Y )Π (∥δ∥0 > C2(1 + s⋆) | D)] ≤ 2

p
.

We set

s
def
= C2(1 + s⋆),

and A def
= {δ : δ ⊉ δ⋆, ∥δ∥0 ≤ s}, so that

∆ = Cs ∪ A ∪ {δ ∈ ∆ : ∥δ∥0 > s} .

Therefore,

E⋆

[
1Es⋆ (Y )Π(Cs|D)

]
≥ 1− 2

p
− E⋆

[
1Es⋆ (Y )Π (A|D)

]
.

To finish the proof we will establish that for Y ∈ Es⋆ , Π (A|D) ≤ 1
p . To that end, let

P def
= {δ(0) ∈ ∆ : δ(0) ⊆ δ⋆, δ

(0) ̸= δ⋆}, and for each δ(0) ∈ P, we set

A(δ(0))
def
=
{
δ ∈ ∆ : δ ⊇ δ(0), ∥δ∥0 ≤ s, and δ⋆j = 0 whenever (δj = 1, and δ

(0)
j = 0)

}
.
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We then write

Π(A|D) = Π(δ⋆|D)
∑

δ(0)∈P

Π(δ(0)|D)

Π(δ⋆|D)

∑
δ∈A(δ(0))

Π(δ|D)

Π(δ(0)|D)
. (33)

For any subset δ, ϑ ∈ ∆, we have

Π(δ|D)

Π(ϑ|D)
=

(
1

pu

√
ρ1
2π

)∥δ∥0−∥ϑ∥0 ∫
R∥δ∥0 exp

(
−ρ1

2 ∥u∥
2
2 − 1

2σ2 ∥Y −Xδu∥22
)
du∫

R∥ϑ∥0 exp
(
−ρ1

2 ∥u∥
2
2 − 1

2σ2 ∥Y −Xϑu∥22
)
du

.

We calculate that for any δ ∈ ∆,

∫
R∥δ∥0

exp

(
−ρ1

2
∥u∥22 −

1

2σ2
∥Y −Xδu∥22

)
du =

(
2π

ρ1

)∥δ∥0/2 e
− 1

2σ2 Y
′
(
In+

1
ρ1σ

2XδX
′
δ

)−1
Y√

det
(
In + 1

ρ1σ2XδX
′
δ

) .

And we deduce, using ρ1 = 1, that

Π(δ|D)

Π(ϑ|D)
=

(
1

pu

)∥δ∥0−∥ϑ∥0
e

1
2σ2 (Y ′L−1

ϑ Y−Y ′L−1
δ Y )

√
det (Lϑ)

det (Lδ)
, (34)

where

Lδ
def
= In +

1

σ2
XδX

′
δ.

Suppose that ϑ ⊇ δ, and ∥ϑ∥0 ≤ s1. In that case

Lϑ = Lδ +
1

σ2
Xϑ−δX

′
ϑ−δ.

and by the determinant lemma (det(A+ UV ′) = det(A) det(Im + V ′A−1U) valid for

any invertible matrix A ∈ Rn×n, and U, V ∈ Rn×m), and using the lower bound on

the smallest eigenvalue of Lδ resulting from (13), we have

1 ≤ det (Lϑ)

det (Lδ)
= det

(
Iϑ−δ +

1

σ2
X ′

ϑ−δL
−1
δ Xϑ−δ

)
≤ (1 + 2∥ϑ− δ∥0)∥ϑ−δ∥0 .

We use this to deduce from (34) that when ϑ ⊇ δ, and ∥ϑ∥0 ≤ s, it holds

pu∥ϑ−δ∥0e
1

2σ2 (Y ′L−1
ϑ Y−Y ′L−1

δ Y ) ≤ Π(δ|D)

Π(ϑ|D)

≤ pu∥ϑ−δ∥0 (1 + 2s)∥ϑ−δ∥0 e
1

2σ2 (Y ′L−1
ϑ Y−Y ′L−1

δ Y ). (35)

By the Woodbury formula which states that any set of matrices U, V,A,C with match-

ing dimensions, (A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1, we have

Y ′L−1
ϑ Y − Y ′L−1

δ Y = − 1

σ2
y′L−1

δ Xϑ−δ

(
I∥ϑ−δ∥0 +

1

σ2
X ′

ϑ−δL
−1
δ Xϑ−δ

)−1

Xϑ−δL
−1
δ y.
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It follows from Equation (37) of Lemma 4 that for any non-zero vector u ∈ R∥ϑ−δ∥0 ,

u′X ′
ϑ−δL

−1
δ Xϑ−δu ≥ n

2
∥u∥22 − C0

√
n log(p)∥u∥21 ≥

n

4
∥u∥22,

for some absolute constant C0, provided that n ≥ 4C2
0s

2 log(p). We deduce that for

δ ⊆ ϑ, ∥ϑ∥0 ≤ s, it holds

∥Y ′L−1
δ Xϑ−δ∥22

σ2(1 + ∥ϑ− δ∥0n)
≤ Y ′L−1

δ Y − Y ′L−1
ϑ Y ≤

4∥Y ′L−1
δ Xϑ−δ∥22
σ2n

. (36)

We put (36) and (35) to write the second summation of (33) as

∑
δ∈A(δ(0))

Π(δ|D)

Π(δ(0)|D)
=

s−∥δ(0)∥0∑
k=0

∑
δ∈A(δ(0)): ∥δ∥0=∥δ(0)∥0+k

Π(δ|D)

Π(δ(0)|D)

≤
s−∥δ(0)∥0∑

k=0

∑
δ∈A(δ(0)): ∥δ∥0=∥δ(0)∥0+k

(
1

pu

)k

exp

2
∥∥∥Y ′L−1

δ(0)
Xδ−δ(0)

∥∥∥2
2

σ4n

 .

We can write Y = σV +
∑

k: δ⋆k=1 θ⋆kXk, where V = (Y −Xθ⋆)/σ. Fix a component

i such that (δ − δ(0))i = 1. Note that we have δ
(0)
i = 0, and δ⋆i = 0. We can then

write

Y ′L−1
δ(0)

Xi = σV ′L−1
δ(0)

Xi +
∑

k: δ⋆k=1

θ⋆kX
′
kL

−1
δ(0)

Xi.

Therefore, by (37) from Lemma 4, we have

|Y ′L−1
δ(0)

Xi| ≤ C1

√
(1 + s⋆)n log(p) + C1(s⋆ − ∥δ(0)∥0)

√
n log(p).

It follows that ∥∥∥Y ′L−1
δ(0)

Xδ−δ(0)

∥∥∥2
2

σ4n
≤ C1k(1 + s2⋆) log(p),

for some constant C1. Therefore,

∑
δ∈A(δ(0))

Π(δ|D)

Π(δ(0)|D)
≤ pC1s(1+s2⋆)

s−∥δ(0)∥0∑
k=0

(
p− ∥δ(0)∥0

k

)(
1

pu

)k

≤ 2pC1s(1+s2⋆),

by choosing u > 2, assuming p ≥ 2. The last display, with (33) and (35) yield

Π(A|D) ≤ 2pC1s(1+s2⋆)
∑

δ(0)∈P

Π(δ(0)|D)

Π(δ⋆|D)

≤ 2pC1s(1+s2⋆)
s⋆−1∑
k=0

∑
δ(0)∈P: ∥δ(0)∥0=s⋆−k

pku(1 + 2s)k exp

−

∥∥∥Y ′L−1
δ(0)

Xδ⋆−δ(0)

∥∥∥2
2

2σ4(1 + kn)

 .
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As above, given i such that δ⋆i = 1, we write

Y ′L−1
δ(0)

Xi = σV ′L−1
δ(0)

Xi + θ⋆iX
′
iL

−1
δ(0)

Xi +
∑

k ̸=i: δ⋆k=1

θ⋆kX
′
kL

−1
δ(0)

Xi,

and using Lemma 4, we deduce that

|Y ′L−1
δ(0)

Xi| ≥
n|θ⋆i|
2

− C1

√
(1 + s⋆)n log(p) ≥ n|θ⋆|

4
,

under the sample size condition n ≥ C2(1 + s⋆) log(p)/θ
2
⋆. Hence∥∥∥Y ′L−1

δ(0)
Xδ⋆−δ(0)

∥∥∥2
2

2σ4(1 + kn)
≥ nθ2⋆

64σ4
,

so that

Π(A|D) ≤ 2pC1s(1+s2⋆)e−
nθ2⋆
64σ4

s⋆−1∑
k=0

(
s⋆
k

)
(1 + 2s)k

≤ 2pC1s(1+s2⋆)e−
nθ2⋆
64σ4

s⋆−1∑
k=0

(C1(1 + s⋆))
k

≤ 2pC1s(1+s2⋆)e−
nθ2⋆
64σ4 (C1(1 + s⋆))

s⋆

≤ 2 exp

(
− nθ2⋆
64σ4

+ C1(1 + s3⋆) log(p)

)
≤ exp

(
− nθ2⋆
128σ4

)
≤ 1

p
,

for n ≥ C2θ
−2
⋆ (1 + s3⋆) log(p), for some constant C2. This ends the proof.

□

Lemma 4. Assume H2, and fix s > 0. There exist constants C1, C2 that depends

only on σ, κ, c0 and ∥θ⋆∥∞ such that for n ≥ C1s
2 log(p), the following holds. For all

δ ∈ ∆s, and for all pair j ̸= k, such that δj = 0, it holds

|X ′
jL

−1
δ Xk| ≤ C2

(
1 +

∥δ∥1/20

n
1{δk=1}

)√
n log(p), and X ′

jL
−1
δ Xj ≥

n

2
. (37)

Proof. Applying the Woodbury identity to Lδ, we have

L−1
δ = In − 1

σ2
Xδ

(
I∥δ∥0 +

1

σ2
X ′

δXδ

)−1

X ′
δ. (38)

It follows that

X ′
jL

−1
δ Xk = ⟨Xj , Xk⟩ −

1

σ2
X ′

jXδ

(
I∥δ∥0 +

1

σ2
X ′

δXδ

)−1

X ′
δXk.
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Under the sample size condition, by (13), we have∣∣∣∣∣ 1σ2
X ′

jXδ

(
I∥δ∥0 +

1

σ2
X ′

δXδ

)−1

X ′
δXk

∣∣∣∣∣ ≤ 2∥X ′
δXj∥2∥X ′

δXk∥2
σ2n

.

By assumption δj = 0. If δk = 0, then

∥X ′
δXj∥2∥X ′

δXk∥2 ≤
√

c0∥δ∥0n log(p)
√

c0∥δ∥0n log(p),

and we deduce that

|X ′
jL

−1
δ Xk| ≤

√
c0n log(p) +

2c0∥δ∥0 log(p)
σ2

≤ C
√
n log(p),

provided that n ≥ s2 log(p). Suppose now that δk = 1. Note that starting from (38)

we can also write

X ′
δL

−1
δ Xj =

(
I∥δ∥0 +

1

σ2
X ′

δXδ

)−1

X ′
δXj .

This implies that if δk = 1, then

|X ′
jL

−1
δ Xk| ≤

2∥X ′
δXj∥2
n

≤
2
√

c0∥δ∥0n log(p)

n
≤ C2

√
∥δ∥0 log(p)

n
,

which establishes the first part of (37). When j = k, we get

X ′
jL

−1
δ Xj ≥ n− 2c0∥δ∥0 log(p)

σ2
≥ n

2
,

under the sample size condition n ≥ 2c0s log(p)/σ
2.

□

Lemma 5. Assume H2, and let E0 as in (14). There exist positive constant C1, C2

that depends only on c0, c2, and c (in the definition of E0) such that for n ≥ C1s
2
⋆ log(p),

E⋆ [1E0(Y )Π (∥δ∥0 > (1 + C2)s⋆ | D)] ≤ 2

p
.

Proof. The lemma follows from Theorem 2.2 of Atchade and Bhattacharyya (2019),

applied with ρ̄ = 2
√
cn log(p)/σ, and κ̄ = s⋆n. The sub-Gaussian assumption in

H2-(1) implies that Equation (2.1) of Atchade and Bhattacharyya (2019) holds with

r0 = n/(2σ2ρ̄) under the sample size condition. Then using the assumption in H2 that

n/p and ∥θ⋆∥∞/ log(p) remain bounded from above by c2, we checked that Equation

2.2 of Atchade and Bhattacharyya (2019) is satisfies for some absolute constant c0. □
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Appendix E. Description of the coupled chains for mixing time

estimation

We describe here the specific coupled Markov chain employed to estimate the mix-

ing time plots presented in Section 4.1. We describe the method for Algorithm 1.

Algorithm 2 proceeds similarly.

We start with a brief description of the method. Let {X(t), t ≥ 0} be the Markov

chain generated by Algorithm 1, where X(t) = (δ(t), θ(t)) ∈ X. Let K denote the tran-

sition kernel of the Markov chain {X(t), t ≥ 0}. The basic idea of the method is to

construct a coupling Ǩ of K with itself: that is, a transition kernel on X×X such that

Ǩ((x, y), A×X) = K(x,A), Ǩ((x, y),X×B) = K(y,B), for all x, y ∈ X, and all mea-

surable sets A,B. The coupling Ǩ is constructed in such a way that Ǩ((x, x),D) = 1,

where D def
= {(x, x) : x ∈ X}. The method then proceeds as follows. Fix a lag L ≥ 1.

Draw X(0) ∼ Π(0), Y (0) ∼ Π(0) (where Π(0) is the initial distribution as given in the

initialization step in Algorithm 1). Draw X(L)|(X(0), Y (0)) ∼ KL(X(0), ·). Then for

any k ≥ 1, draw,

(X(L+k), Y (k))|
{
(X(L+k−1), Y (k−1)), . . . , (X(L), Y (0))

}
∼ Ǩ

(
(X(L+k−1), Y (k−1)), ·

)
.

Setting

τ (L)
def
= inf

{
k > L : X(k) = Y (k−L)

}
,

it then holds under some ergodicity assumptions on P (see Biswas et al. (2019)) that

∥Π(t) −Π∥tv ≤ E

[
max

(
0,

⌈
τ (L) − L− t

L

⌉)]
, (39)

where ⌈x⌉ denote the smallest integer above x. The implication of (39) is that we

can empirically upper bound the left hand side of (39) by simulating multiple copies

of the joint chain as described above and then approximating the expectation on the

right hand side of (39) by Monte Carlo. We refer the reader to Biswas et al. (2019)

for more details on the construction of such coupled kernels.

We modify Algorithm 1 to construct the coupled kernel P̌ . Let (δ(1,t), θ(1,t)) and

let (δ(2,t), θ(2,t)) denote the states of the two chains at time t. At some iteration t ≥ 1,

given (δ(1,L+t), θ(1,L+t)) = (δ(1), θ(1)) and (δ(2,t), θ(2,t)) = (δ(2), θ(2)), we now describe

how to generate the next state of the coupled chain.

In step 1, to update δ(1) and δ(2), we first make use of the same randomly drawn

subset J. For i = 1, 2, drawing δ̄(i) ∼ Q
(J)
θ (δ(i), ·) is equivalent to let δ̄

(i)
−J = δ

(i)
−J, and

for any j ∈ J, draw δ̄
(i)
j ∼ Ber(q

(i)
j ) which we implement in the following way. We

first draw a common uniform number uj ∼ Uniform(0, 1), then we obtain δ̄
(i)
j =

1{q(i)j ≤ uj} for i = 1, 2.
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In step 2, to update θ(1) and θ(2), for simplicity, we partition the indices {1, . . . , p}
into four groups: Gab = {j : δ̄

(1)
j = a, δ̄

(2)
j = b} for a, b = 0, 1.

To update the components of θ
(1)
G00

and θ
(2)
G00

, for any j ∈ G00 we first draw a common

standard normal random variables Zj , and then obtain θ̄
(i)
j = ρ

− 1
2

0 Zj for i = 1, 2.

To update the components of θ
(1)
G01

and θ
(2)
G01

, Since in linear regression, [θ]δ | δ ∼
N(θ̂δ,Σ), where θ̂δ is describled in (16) and Σ = σ2(σ2ρ1I∥δ∥0)

−1, we then have

θ(1) | δ(1) ∼ N(θ̂(1),Σ(1)) and θ(2) | δ(2) ∼ N(θ̂(2),Σ(2)), respectively. Then with the

property of gaussian random variables, we have θ
(2)
G01

∼ N(θ̂
(2)
G01

,Σ
(2)
G01

), where θ̂
(2)
G01

are the G01 components of θ̂(2) and Σ
(2)
G01

is the submatrix of Σ(2) with G01 rows and

columns. With θ
(1)
G01

∼ N(0, ρ−1
0 I∥δG01

∥0), we draw the maximal coupling of these two

gaussian distributions to update θ̄
(1)
G01

and θ̄
(2)
G01

. A similar updating procedure is used

for the components of θ̄
(1)
G10

and θ̄
(2)
G10

.

For components of θ
(1)
G11

and θ
(2)
G11

, since we have θ
(1)
G11

∼ N(θ̂
(1)
G11

,Σ
(1)
G11

), where θ̂
(1)
G11

are the G11 components of θ̂(1) and Σ
(1)
G11

is the submatrix of Σ(1) with G11 rows and

columns, and similarly θ
(2)
G11

∼ N(θ̂
(2)
G11

,Σ
(2)
G11

), we could construct another maximal

coupling to update θ̄
(1)
G11

and θ̄
(2)
G11

.
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