WEB-BASED SUPPORTING MATERIALS FOR "A FAST ASYNCHRONOUS MCMC SAMPLER FOR SPARSE BAYESIAN INFERENCE", BY YVES ATCHADÉ AND LIWEI WANG

Appendix A. Proof of Theorem 1

Throughout C_{0} denotes a generic constant whose value may change from one appearance to the next. We shall write $\Pi(\cdot)$ and $\tilde{\Pi}(\cdot)$ instead of $\Pi(\cdot \mid \mathcal{D})$ and $\tilde{\Pi}(\cdot \mid \mathcal{D})$ respectively. For any two Markov kernels P_{1} and P_{2} and for any integer $k \geq 1$, it is easily checked that

$$
\begin{equation*}
P_{1}^{k}=P_{2}^{k}+\sum_{j=1}^{k} P_{1}^{k-j}\left(P_{1}-P_{2}\right) P_{2}^{j-1} \tag{1}
\end{equation*}
$$

Using this identity, for any bounded measurable function $f: \Delta \times \mathbb{R}^{p} \rightarrow \mathbb{R}$, writing $\tilde{f}=f-\tilde{\Pi}(f)$, we have for any $k \geq 0$,

$$
\begin{align*}
\Pi(f)-\tilde{\Pi}(f)=\Pi(\tilde{f})=\Pi\left(K^{k} \tilde{f}\right)=\Pi & \left(\tilde{K}^{k} \tilde{f}\right)+\sum_{j=1}^{k} \Pi\left((K-\tilde{K}) \tilde{K}^{j-1} \tilde{f}\right) \\
& =\Pi\left(\tilde{K}^{k} \tilde{f}\right)+\Pi\left[(K-\tilde{K})\left(\sum_{j=0}^{k-1} \tilde{K}^{j} \tilde{f}\right)\right] . \tag{2}
\end{align*}
$$

Define

$$
g_{k} \stackrel{\text { def }}{=} \sum_{j=0}^{k-1} \tilde{K}^{j} \tilde{f}
$$

It follows from that for all $(\delta, \theta) \in \Delta \times \mathbb{R}^{p}$,

$$
\begin{equation*}
\left|g_{k}(\delta, \theta)\right| \leq C_{0}\|f\|_{\infty} V^{1 / 2}(\delta, \theta) \sum_{j=0}^{k-1} \tilde{\lambda}^{j} \leq \frac{C_{0}\|f\|_{\infty}}{1-\tilde{\lambda}} V^{1 / 2}(\delta, \theta) \tag{3}
\end{equation*}
$$

Recall that

$$
K\left((\delta, \theta) ;\left(\mathrm{d} \delta^{\prime}, \mathrm{d} \theta^{\prime}\right)\right)=K_{\delta}\left(\theta, \mathrm{d} \theta^{\prime}\right) \sum_{\mathrm{J}:|\mathrm{J}|=J}\binom{p}{J}^{-1} Q_{\theta^{\prime}, \mathrm{J}}\left(\delta, \mathrm{~d} \delta^{\prime}\right)
$$

where

$$
K_{\delta}\left(\theta, \mathrm{d} \theta^{\prime}\right) \stackrel{\text { def }}{=} P_{\delta}\left([\theta]_{\delta}, \mathrm{d}\left[\theta^{\prime}\right]_{\delta}\right) \prod_{j: \delta_{j}=0} \mathbf{N}\left(0, \rho_{0}^{-1}\right)\left(\mathrm{d} \theta_{j}^{\prime}\right)
$$

\tilde{K} has the same expression, but with Q replaced by \tilde{Q}. Therefore, using the fact that K_{δ} has invariant distribution $\Pi(\cdot \mid \delta)$, we have

$$
\begin{aligned}
& \Pi\left((K-\tilde{K}) g_{k}\right) \\
= & \sum_{\mathrm{J}:|\mathrm{J}|=J}\binom{p}{J}^{-1} \int_{\Delta \times \mathbb{R}^{p}} \Pi(\mathrm{~d} \delta, \mathrm{~d} \theta)\left\{\int_{\Delta} Q_{\theta, \mathrm{J}}\left(\delta, \mathrm{~d} \delta^{\prime}\right) g_{k}\left(\delta^{\prime}, \theta\right)-\int_{\Delta} \tilde{Q}_{\theta, \mathrm{J}}\left(\delta, \mathrm{~d} \delta^{\prime}\right) g_{k}\left(\delta^{\prime}, \theta\right)\right\}
\end{aligned}
$$

Without any loss generality we shall assume now that $\|f\|_{\infty}=1$. Using the last display and (2), we get that

$$
\begin{align*}
& |\Pi(f)-\tilde{\Pi}(f)| \leq C_{0} \tilde{\lambda}^{k} \\
+ & \sum_{\mathrm{J}:|\mathrm{J}|=J}\binom{p}{J}^{-1} \int_{\Delta \times \mathbb{R}^{p}} \Pi(\mathrm{~d} \delta, \mathrm{~d} \theta)\left|\int_{\Delta} Q_{\theta, \mathrm{J}}\left(\delta, \mathrm{~d} \delta^{\prime}\right) g_{k}\left(\delta^{\prime}, \theta\right)-\int_{\Delta} \tilde{Q}_{\theta, \mathrm{J}}\left(\delta, \mathrm{~d} \delta^{\prime}\right) g_{k}\left(\delta^{\prime}, \theta\right)\right| \tag{4}
\end{align*}
$$

We split the integral $\int_{\Delta \times \mathbb{R}^{p}}$ over B and over B^{c}. For the part over B^{c}, we use the Cauchy-Schwarz inequality, and (3) to write

$$
\begin{aligned}
& \left|\int_{\mathrm{B}^{c}} \Pi(\mathrm{~d} \delta, \mathrm{~d} \theta) \int_{\Delta} Q_{\theta, \mathrm{J}}\left(\delta, \mathrm{~d} \delta^{\prime}\right) g_{k}\left(\delta^{\prime}, \theta\right)\right| \\
& \quad \leq \Pi\left(\mathrm{B}^{c}\right)^{1 / 2} \sqrt{\int \Pi(\mathrm{~d} \delta, \mathrm{~d} \theta)\left|g_{k}(\delta, \theta)\right|^{2}} \leq \Pi\left(\mathrm{B}^{c}\right)^{1 / 2} \frac{C_{0}}{1-\tilde{\lambda}} \Pi(V \mid \mathcal{D})^{1 / 2}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \left|\int_{\mathrm{B}^{c}} \Pi(\mathrm{~d} \delta, \mathrm{~d} \theta) \int_{\Delta} \tilde{Q}_{\theta, \mathrm{J}}\left(\delta, \mathrm{~d} \delta^{\prime}\right) g_{k}\left(\delta^{\prime}, \theta\right)\right| \\
& \quad \leq \Pi\left(\mathrm{B}^{c}\right)^{1 / 2} \sqrt{\int \Pi(\mathrm{~d} \delta, \mathrm{~d} \theta) \int_{\Delta} \tilde{Q}_{\theta, \mathrm{J}}\left(\delta, \mathrm{~d} \delta^{\prime}\right)\left|g_{k}\left(\delta^{\prime}, \theta\right)\right|^{2}} \leq \Pi\left(\mathrm{B}^{c}\right)^{1 / 2} \frac{C_{0}}{1-\tilde{\lambda}} \Pi(V \mid \mathcal{D})^{1 / 2}
\end{aligned}
$$

using (11). Finally, since g_{k} is bounded on B by $C_{0} /(1-\tilde{\lambda})$, we have

$$
\begin{aligned}
\int_{\mathrm{B}} \Pi(\mathrm{~d} \delta, \mathrm{~d} \theta) \mid \int_{\Delta} Q_{\theta, \mathrm{J}}\left(\delta, \mathrm{~d} \delta^{\prime}\right) g_{k}\left(\delta^{\prime}, \theta\right) & -\int_{\Delta} \tilde{Q}_{\theta, \mathrm{J}}\left(\delta, \mathrm{~d} \delta^{\prime}\right) g_{k}\left(\delta^{\prime}, \theta\right) \mid \\
& \leq \frac{C_{0}}{1-\tilde{\lambda}} \int_{\mathrm{B}} \Pi(\mathrm{~d} \delta, \mathrm{~d} \theta)\left\|Q_{\theta, \mathrm{J}}(\delta, \cdot)-\tilde{Q}_{\theta, \mathrm{J}}(\delta, \cdot)\right\|_{\mathrm{tv}}
\end{aligned}
$$

It follows that

$$
|\Pi(f)-\tilde{\Pi}(f)| \leq C_{0} \tilde{\lambda}^{k}+\frac{C_{0} \sqrt{\Pi\left(\mathrm{~B}^{c}\right)}}{1-\tilde{\lambda}}+\frac{C_{0}}{1-\tilde{\lambda}} \int_{\mathrm{B}} \Pi(\mathrm{~d} \delta, \mathrm{~d} \theta)\left\|Q_{\theta, \mathrm{J}}(\delta, \cdot)-\tilde{Q}_{\theta, \mathrm{J}}(\delta, \cdot)\right\|_{\mathrm{tv}}
$$

The result then follows by taking $k \rightarrow \infty$.

Appendix B. Proof of Proposition 2

Throughout C_{0} denotes a generic constant. The Markov kernel of Algorithm 2 is

$$
\tilde{K}\left((\delta, \theta) ;\left(\mathrm{d} \delta^{\prime}, \mathrm{d} \theta^{\prime}\right)\right)=K_{\delta}\left(\theta, \mathrm{d} \theta^{\prime}\right) \sum_{\mathrm{J}:|\mathrm{J}|=J}\binom{p}{J}^{-1} \tilde{Q}_{\theta^{\prime}, \mathrm{J}}\left(\delta, \mathrm{~d} \delta^{\prime}\right),
$$

where

$$
K_{\delta}\left(\theta, \mathrm{d} \theta^{\prime}\right) \stackrel{\text { def }}{=} P_{\delta}\left([\theta]_{\delta}, \mathrm{d}\left[\theta^{\prime}\right]_{\delta}\right) \prod_{j: \delta_{j}=0} \mathbf{N}\left(0, \rho_{0}^{-1}\right)\left(\mathrm{d} \theta_{j}^{\prime}\right) .
$$

Recall that $V(\delta, \theta)=\sum_{j} \delta_{j} V_{j}\left(\theta_{j}\right)$. Given a selection $\mathrm{J}=\left\{j_{1}, \ldots, j_{J}\right\} \subseteq\{1, \ldots, p\}$, and $j_{i} \in \mathrm{~J}$, we have

$$
\int_{\Delta} \tilde{Q}_{\theta, j_{i}}\left(\delta, \mathrm{~d} \delta^{\prime}\right) V\left(\delta^{\prime}, \theta\right)=V(\delta, \theta)+\tilde{q}_{j_{i}} V_{j_{i}}\left(\theta_{j_{i}}\right)-\delta_{j_{i}} V_{j_{i}}\left(\theta_{j_{i}}\right) \leq V(\delta, \theta)+\left(1-\delta_{j_{i}}\right) V_{j_{i}}\left(\theta_{j_{i}}\right),
$$

where $\tilde{q}_{j}=\tilde{q}_{j}(\vartheta, \theta)$. It follows that

$$
\begin{equation*}
\int_{\Delta} \tilde{Q}_{\theta, \mathrm{J}}\left(\delta, \mathrm{~d} \delta^{\prime}\right) V\left(\delta^{\prime}, \theta\right) \leq V(\delta, \theta)+\sum_{i=1}^{J} V_{j_{i}}\left(\theta_{j_{i}}\right) \mathbf{1}_{\left\{\delta_{j_{i}}=0\right\}} \tag{5}
\end{equation*}
$$

Note that in deriving (5) we did not use any specific information about the probability \tilde{q}_{j}. In particular the kernel $Q_{\theta, \mathrm{J}}$ also satisfies (5). Using (5) we have

$$
\begin{aligned}
\int_{\mathbb{R}^{p}} K_{\delta}\left(\theta, \mathrm{d} \theta^{\prime}\right) & \int_{\Delta} \tilde{Q}_{\theta^{\prime}, \mathrm{J}}\left(\delta, \mathrm{~d} \delta^{\prime}\right) V\left(\delta^{\prime}, \theta^{\prime}\right) \\
& \leq \int_{\mathbb{R}^{\|\delta\|_{0}}} P_{\delta}\left([\theta]_{\delta}, \mathrm{d} u\right) V_{\delta}(u)+\sum_{i=1}^{J} \int_{\mathbb{R}} V_{j_{i}}(x) \mathbf{N}\left(0, \rho_{0}^{-1}\right)(\mathrm{d} x) \\
& \leq \lambda_{\delta} V(\delta, \theta)+b_{\delta}+C_{0} J,
\end{aligned}
$$

where the first inequality uses the fact that under K_{δ}, when $\delta_{j}=0$ we update θ_{j} by drawing from $\mathbf{N}\left(0, \rho_{0}^{-1}\right)$. With $\lambda=\max _{\delta} \lambda_{\delta}$, we conclude that

$$
\begin{equation*}
\int_{\Delta \times \mathbb{R}^{p}} \tilde{K}\left((\delta, \theta) ;\left(\mathrm{d} \delta^{\prime}, \mathrm{d} \theta^{\prime}\right)\right) V\left(\delta^{\prime}, \theta^{\prime}\right) \leq \lambda V(\delta, \theta)+C_{0} . \tag{6}
\end{equation*}
$$

Furthermore, \tilde{K} is phi-irreducible and aperiodic by assumption, and the level sets $\{(\delta, \theta): V(\delta, \theta) \leq b\}$ are petite sets for \tilde{K}. Therefore, by Lemma 15.2.8, and Theorem 15.0.1 of Meyn and Tweedie (2009) \tilde{K} admits a unique invariant distribution $\tilde{\Pi}$, and (10) holds.

Appendix C. Proof of Corollary 4

Throughout the subset J is fixed. Given $\theta \in \mathbb{R}^{p}$, and $1 \leq j \leq p$, we recall that

$$
Q_{\theta, j}\left(\delta, \delta^{\prime}\right)=q_{j}(\delta, \theta)^{\delta_{j}^{\prime}}\left(1-q_{j}(\delta, \theta)\right)^{1-\delta_{j}^{\prime}} \prod_{i \neq j} \mathbf{1}_{\left\{\delta_{i}=\delta_{i}^{\prime}\right\}}, \quad \delta, \delta^{\prime} \in \Delta,
$$

and we define $\tilde{Q}_{\theta, j}$ as

$$
\tilde{Q}_{\theta, j}\left(\delta, \delta^{\prime}\right) \stackrel{\text { def }}{=} \tilde{q}_{j}(\vartheta, \theta)^{\delta_{j}^{\prime}}\left(1-\tilde{q}_{j}(\vartheta, \theta)\right)^{1-\delta_{j}^{\prime}} \prod_{i \neq j} \mathbf{1}_{\left\{\delta_{i}=\delta_{i}^{\prime}\right\}}, \quad \delta, \delta^{\prime} \in \Delta,
$$

where $\vartheta=\vartheta(\mathrm{J}, \delta)$ is as defined in (7) in the main document, and depends on δ. As Bernoulli updates, it is easy to see that total variational distance between $Q_{\theta, j}(\delta, \cdot)$ and $\tilde{Q}_{\theta, j}(\delta, \cdot)$ is

$$
\begin{equation*}
\left\|Q_{\theta, j}(\delta, \cdot)-\tilde{Q}_{\theta, j}(\delta, \cdot)\right\|_{\mathrm{tv}}=\left|q_{j}-\tilde{q}_{j}\right| \leq \min \left(\min \left(q_{j}, \tilde{q}_{j}\right), 1-\max \left(q_{j}, \tilde{q}_{j}\right)\right), \tag{7}
\end{equation*}
$$

where q_{j} (resp. \tilde{q}_{j}) is a short for $q_{j}(\delta, \theta)$ (resp. $\tilde{q}_{j}(\vartheta, \theta)$). An analogous application of (1) then gives

$$
\left\|Q_{\theta, \mathrm{J}}(\delta, \cdot)-\tilde{Q}_{\theta, \mathrm{J}}(\delta, \cdot)\right\|_{\mathrm{tv}} \leq \sum_{k=0}^{J-1} \int_{\Delta}\left(Q_{\theta, j_{1}} \times \cdots \times Q_{\theta, j_{k}}\right)\left(\delta, \mathrm{d} \delta^{\prime}\right)\left|q_{j}\left(\delta^{\prime}, \theta\right)-\tilde{q}_{j}(\vartheta, \theta)\right|,
$$

where for $k=0$ the product $Q_{\theta, j_{1: k}} \stackrel{\text { def }}{=} Q_{\theta, j_{1}} \times \cdots \times Q_{\theta, j_{k}}$ is the identity kernel. Note that if $(\delta, \theta) \sim \Pi(\cdot \mid \mathcal{D})$, and $\delta^{\prime} \mid \theta \sim Q_{\theta, j_{1: k}}(\delta, \cdot)$, then $\left(\delta^{\prime}, \theta\right) \sim \Pi(\cdot \mid \mathcal{D})$. This implies that

$$
\begin{aligned}
& \int_{\mathrm{B}} \Pi(\mathrm{~d} \delta, \mathrm{~d} \theta) \int_{\Delta} Q_{\theta, j_{1: k}}\left(\delta, \mathrm{~d} \delta^{\prime}\right)\left|q_{j}\left(\delta^{\prime}, \theta\right)-\tilde{q}_{j}(\vartheta, \theta)\right| \leq \Pi\left(\mathrm{B}^{c} \mid \mathcal{D}\right) \\
& \quad+\int_{\mathrm{B}} \Pi(\mathrm{~d} \delta, \mathrm{~d} \theta) \int_{\Delta} Q_{\theta, j_{1: k}}\left(\delta, \mathrm{~d} \delta^{\prime}\right)\left|q_{j}\left(\delta^{\prime}, \theta\right)-\tilde{q}_{j}(\vartheta, \theta)\right| \mathbf{1}_{\mathrm{B}}\left(\delta^{\prime}, \theta\right)
\end{aligned}
$$

It then follows that

$$
\begin{align*}
\| Q_{\theta, \mathrm{J}}(\delta, \cdot)- & \tilde{Q}_{\theta, \mathrm{J}}(\delta, \cdot) \|_{\mathrm{tv}} \leq J \Pi\left(\mathrm{~B}^{c} \mid \mathcal{D}\right) \\
& +J \max _{0 \leq k \leq J-1} \sup _{(\delta, \theta) \in \mathrm{B}} \int_{\Delta} Q_{\theta, j_{1: k}}\left(\delta, \mathrm{~d} \delta^{\prime}\right)\left|q_{j}\left(\delta^{\prime}, \theta\right)-\tilde{q}_{j}(\vartheta, \theta)\right| \mathbf{1}_{\mathrm{B}}\left(\delta^{\prime}, \theta\right) . \tag{8}
\end{align*}
$$

Define $\epsilon \stackrel{\text { def }}{=}\left(Y-X \theta_{\star}\right) / \sigma$. Using the sub-Gaussianity of the regression error term in $\mathrm{H} 2(2)$, and by a union bound argument, we can choose $c>0$ depending solely on the absolute constant c_{1} in $\mathrm{H} 2(2)$, such that

$$
\begin{equation*}
\mathbb{P}_{\star}\left(\max _{1 \leq j \leq p}\left|\left\langle X_{j}, \epsilon\right\rangle\right|>\sqrt{c n \log (p)}\right) \leq \frac{1}{p} . \tag{9}
\end{equation*}
$$

Take $(\delta, \theta) \in \mathrm{B}$, and $\left(\delta^{\prime}, \theta\right) \in \mathrm{B}$, and suppose that ϵ satisfies $\max _{1 \leq j \leq p}\left|\left\langle X_{j}, \epsilon\right\rangle\right| \leq$ $\sqrt{c n \log (p)}$. We show below that

$$
\begin{equation*}
\left|q_{j}\left(\delta^{\prime}, \theta\right)-\tilde{q}_{j}(\vartheta, \theta)\right| \leq \max \left(e^{-C_{1}\left(n \theta_{\star}^{2}-\left(1+s_{\star}\right) \sqrt{n \log (p)}\right)}, \frac{1}{\sqrt{n}} e^{-\left(\mathrm{u}-C\left(1+s_{\star}\right)\right) \log (p)}\right) \tag{10}
\end{equation*}
$$

The corollary then follows by combining (10) and (8). It remains to show (10). We consider separately the cases $\delta_{\star, j}=1$ and $\delta_{\star, j}=0$.
First, we suppose that $\delta_{\star j}=1$. We note that for all (δ, θ),

$$
\begin{aligned}
q_{j}(\delta, \theta) & =\frac{1}{1+\exp \left(\mathrm{a}+\frac{1}{2}\left(\rho_{1}-\rho_{0}\right) \theta_{j}^{2}+\ell\left(\theta_{\delta^{(j, 0)}}\right)-\ell\left(\theta_{\delta^{(j, 1)}}\right)\right)} \\
& \geq \frac{1}{1+\exp \left(\mathrm{a}+\ell\left(\theta_{\delta^{(j, 0)}}\right)-\ell\left(\theta_{\left.\delta^{(j, 1)}\right)}\right)\right.} \geq 1-\exp \left(\mathrm{a}+\ell\left(\theta_{\delta^{(j, 0)}}\right)-\ell\left(\theta_{\delta^{(j, 1)}}\right)\right)
\end{aligned}
$$

Using (5) in the main document, we have

$$
\begin{align*}
\ell\left(\theta_{\delta^{(j, 0)}}\right) & -\ell\left(\theta_{\delta^{(j, 1)}}\right)=-\frac{\theta_{j}}{\sigma^{2}}\left\langle X_{j}, Y-X \theta_{\delta^{(j, 0)}}\right\rangle+\frac{\theta_{j}^{2} n}{2 \sigma^{2}} \\
& =-\frac{\theta_{j}}{\sigma}\left\langle X_{j}, \epsilon\right\rangle-\frac{\theta_{j} \theta_{\star j} n}{\sigma^{2}}+\frac{\theta_{j}}{\sigma^{2}} \sum_{k=1}^{p}\left(\delta_{k}^{(j, 0)} \theta_{k}-\delta_{\star k}^{(j, 0)} \theta_{\star k}\right)\left\langle X_{k}, X_{j}\right\rangle+\frac{\theta_{j}^{2} n}{2 \sigma^{2}} . \tag{11}
\end{align*}
$$

For $(\delta, \theta) \in \mathrm{B}$, and under H 2 , we have

$$
\ell\left(\theta_{\delta(j, 0)}\right)-\ell\left(\theta_{\delta(j, 1)}\right) \leq-\frac{\theta_{j} \theta_{\star j} n}{\sigma^{2}}+\frac{\theta_{j}^{2} n}{2 \sigma^{2}}+C\left(\sqrt{n \log (p)}+\|\delta\|_{0}\left\|\theta-\theta_{\star}\right\|_{\infty} \sqrt{n \log (p)}\right)
$$

and

$$
-\theta_{j} \theta_{\star j} n+\frac{\theta_{j}^{2} n}{2} \leq-\frac{n \theta_{\star j}^{2}}{2}+C(\log (p)+\sqrt{n \log (p)})
$$

Combining the last two inequalities yields,

$$
\ell\left(\theta_{\delta(j, 0)}\right)-\ell\left(\theta_{\delta^{(j, 1)}}\right) \leq-\frac{n \theta_{\star j}^{2}}{2}+C(\sqrt{n \log (p)}+s \log (p))
$$

for some constant C_{1}. We conclude that for $n \geq s^{2} \log (p)$,

$$
q_{j}(\delta, \theta) \geq 1-e^{\mathrm{a}-C_{1}\left(n \theta_{*}^{2}-\sqrt{n \log (p)}\right)},
$$

for some constant C_{1}. Similarly, for $(\delta, \theta) \in \mathrm{B}$, and ϑ as in (7) of the main document

$$
\tilde{q}_{j}(\vartheta, \theta) \geq 1-\exp \left(\mathrm{a}-\frac{\theta_{j}}{\sigma^{2}}\left\langle X_{j}, Y-X \theta_{\vartheta}\right\rangle\right) .
$$

As in (11),

$$
\begin{array}{r}
-\frac{\theta_{j}}{\sigma^{2}}\left\langle X_{j}, Y-X \theta_{\vartheta}\right\rangle=-\frac{\theta_{j}}{\sigma}\left\langle X_{j}, \epsilon\right\rangle-\frac{\theta_{j} \theta_{\star j} n}{\sigma^{2}}+\frac{\theta_{j}}{\sigma^{2}} \sum_{k=1}^{p}\left(\vartheta_{k} \theta_{k}-\delta_{\star k}^{(j, 0)} \theta_{\star k}\right)\left\langle X_{k}, X_{j}\right\rangle \\
\leq-\frac{n \theta_{\star j}^{2}}{2}+C\left(\sqrt{n \log (p)}+\left(s-s_{\star}\right) \log (p)+s_{\star} \sqrt{n \log (p)}\right) \\
-\frac{n \theta_{\star j}^{2}}{2}+C\left(1+s_{\star}\right) \sqrt{n \log (p)}
\end{array}
$$

We conclude that

$$
\tilde{q}_{j}(\vartheta, \theta) \geq 1-e^{\mathrm{a}-C\left(n \theta_{\star}^{2}-\left(1+s_{\star}\right) \sqrt{n \log (p)}\right)}
$$

and since $e^{\mathrm{a}}=\sqrt{n} p^{\mathrm{u}} / \sigma$, we get

$$
\left|q_{j}(\delta, \theta)-\tilde{q}_{j}(\vartheta, \theta)\right| \leq \frac{\sqrt{n} p^{\mathrm{u}}}{\sigma} e^{-C\left(n \underline{\theta}_{\star}^{2}-\left(1+s_{\star}\right) \sqrt{n \log (p)}\right)},
$$

for some constant C.
Suppose now that $\delta_{\star j}=0$. The we use

$$
q_{j}(\delta, \theta) \leq \exp \left(-\mathrm{a}+\frac{\rho_{0} \theta_{j}^{2}}{2}-\left(\ell\left(\theta_{\delta^{(j, 0)}}\right)-\ell\left(\theta_{\delta^{(j, 1)}}\right)\right)\right) .
$$

Starting from 11], we obtain

$$
\ell\left(\theta_{\delta^{(j, 0)}}\right)-\ell\left(\theta_{\delta(j, 1)}\right) \leq C \log (p) .
$$

It follows that

$$
q_{j}(\delta, \theta) \leq \frac{\sigma e^{C \log (p)}}{\sqrt{n} p^{\mathrm{u}}}
$$

Similarly,

$$
\tilde{q}_{j}(\vartheta, \theta) \leq \exp \left(-\mathrm{a}+\frac{\rho_{0}^{2} \theta_{j}^{2}}{2}+\frac{n \theta_{j}^{2}}{2 \sigma^{2}}+\frac{\theta_{j}}{\sigma^{2}}\left\langle X_{j}, Y-X \theta_{\vartheta}\right\rangle\right),
$$

and

$$
\left|\frac{\theta_{j}}{\sigma^{2}}\left\langle X_{j}, Y-X \theta_{\vartheta}\right\rangle\right| \leq C\left(1+s_{\star}\right) \log (p)
$$

which leads to

$$
\left|q_{j}(\delta, \theta)-\tilde{q}_{j}(\vartheta, \theta)\right| \leq \frac{1}{\sqrt{n} p^{\mathrm{u}}} e^{C\left(1+s_{\star}\right) \log (p)} .
$$

Combining the two cases proves 10 .

Appendix D. Proof of Theorem 5

We recall that \mathbb{P} and \mathbb{E} denote the probability measure and expectation operator of the Markov chains defined by Algorithms 1 and 2 (more specifically their coupling distribution as constructed below), and \mathbb{P}_{\star} and \mathbb{E}_{\star} denote the probability measure and expectation operator of the data Y as assumed in H 2 .

Throughout we will use C to denote a generic constant that depends only on the constants appearing in $\mathrm{H} 2\left(\sigma^{2},\left\|\theta_{\star}\right\|_{\infty}, c_{0}, c_{1}\right.$ and $\left.c_{2}\right)$. The actual value of C may vary from one appearance to the next.

We use a similar argument as in De Sa et al. (2016). Let $\left\{\delta^{(k)}, k \geq 0\right\}$ denote the δ-marginal chain of Algorithm 2, and let $\left\{\check{\delta}^{(k)}, k \geq 0\right\}$ be the δ-marginal chain of Algorithm 1. These processes are also Markov chains because in both cases we have taken $P_{\delta}=\tilde{P}_{\delta}$ to be an exact draw from the posterior conditional distribution of θ given δ. We construct a coupling of $\left\{\delta^{(k)}, k \geq 0\right\}$ and the stationary version of $\left\{\check{\delta}^{(k)}, k \geq 0\right\}$ as follows. First take $\delta^{(0)}$ as the null model, and draw $\breve{\delta}^{(0)} \sim \Pi(\cdot \mid \mathcal{D})$, the marginal distribution of δ in (22). For each $k \geq 0$, given $\left(\delta^{(k)}, \check{\delta}^{(k)}\right)$, we do the following.
(1) Given $\delta^{(k)}, \check{\delta}^{(k)}$, we independently draw $\theta^{(k)} \sim \Pi\left(\cdot \mid \delta^{(k)}, \mathcal{D}\right), \check{\theta}^{(k)} \sim \Pi\left(\cdot \mid \check{\delta}^{(k)}, \mathcal{D}\right)$, and we select a random subset $\mathrm{J}^{(k)}=\left\{\mathrm{J}_{1}^{(k)}, \ldots, \mathrm{J}_{J}^{(k)}\right\}$ of size J from $\{1, \ldots, p\}$.
(2) We define $\vartheta \in \Delta$ as $\vartheta_{i}=0$ if $i \in J^{(k)}$, and $\vartheta_{i}=\delta_{i}^{(k)}$ otherwise. We also define $\vartheta^{(0)}=\delta^{(k)}$, and $\check{\vartheta}^{(0)}=\check{\delta}^{(k)}$. For each $r \in\{1, \ldots, J\}$, given $\mathrm{J}_{r}^{(k)}=j$, we then do the following.
(a) We draw $\left(d_{r}^{(k)}, \breve{d}_{r}^{(k)}\right)$ from the maximal coupling of $\operatorname{Ber}\left(\tilde{q}_{j}\left(\vartheta, \theta^{(k)}\right)\right)$ and $\operatorname{Ber}\left(q_{j}\left(\check{\vartheta}^{(r-1)}, \check{\theta}^{(k)}\right)\right)$, where q_{j} and \tilde{q}_{j} are given by (4) and (6) respectively.
(b) We set $\vartheta_{j}^{(r)}=d_{r}^{(k)}, \check{\vartheta}_{j}^{(r)}=\breve{d}_{r}^{(k)}$, and $\vartheta_{i}^{(r)}=\vartheta_{i}^{(r-1)}, \breve{\vartheta}_{i}^{(r)}=\breve{\vartheta}_{i}^{(r-1)}$, for $i \neq j$.
(3) Set $\delta^{(k+1)}=\vartheta^{(J)}$, and $\breve{\delta}^{(k+1)}=\check{\vartheta}^{(J)}$.

By construction, the marginal chain $\left\{\delta^{(k)} k \geq 0\right\}$ (resp. $\left\{\check{\delta}^{(k)} k \geq 0\right\}$) from the above construction is the asynchronous sampler from Algorithm 2 (resp. a stationary version of Algorithm (1). By the coupling inequality

$$
\begin{equation*}
\mathbb{E}_{\star}\left[\max _{j: \delta_{\star j}=1}\left|\mathbb{P}\left(\delta_{j}^{(k)}=1\right)-\Pi\left(\delta_{j}=1 \mid \mathcal{D}\right)\right|\right] \leq \mathbb{E}_{\star}\left[\max _{j: \delta_{\star j}=1} \mathbb{P}\left(\delta_{j}^{(k)} \neq \check{\delta}_{j}^{(k)}\right)\right] \tag{12}
\end{equation*}
$$

Hence the main part of the proof consists in bounding the right-hand side of the last display. We do this in paragraph (e). Paragraphs (a)-(d) collect some needed implications of H_{2}.
(a) Restricted eigenvalues. Given $s>0$, Let $\delta \in \Delta$ be such that $0<\|\delta\|_{0} \leq s$, and let $u \in \mathbb{R}^{\|\delta\|_{0}}$. Using $\left|\left\langle X_{i}, X_{j}\right\rangle\right| \leq \sqrt{c_{0} n \log (p)}$ from H 2 (1), and $\left\|X_{j}\right\|_{2}=\sqrt{n}$,
we have

$$
u^{\prime}\left(X_{\delta}^{\prime} X_{\delta}\right) u \geq n\|u\|_{2}^{2}-\sqrt{c_{0} n \log (p)} \sum_{i \neq j}\left|u_{i} u_{j}\right| \geq\left(n-s \sqrt{c_{0} n \log (p)}\right)\|u\|_{2}^{2}
$$

We conclude that if the sample size satisfies $n \geq 4 c_{0} s^{2} \log (p)$, then

$$
\begin{equation*}
\lambda_{\min }\left(X_{\delta}^{\prime} X_{\delta}\right) \geq \frac{n}{2}, \text { for all } \delta \in \Delta, \text { s. t. } 0<\|\delta\|_{0} \leq s \tag{13}
\end{equation*}
$$

where $\lambda_{\min }(A)$ denotes the smallest eigenvalue of A.
(b) Implications of the sub-Gaussian regression errors. For $\delta \in \Delta$, we define

$$
L_{\delta} \stackrel{\text { def }}{=} I_{n}+\frac{1}{\sigma^{2}} X_{\delta} X_{\delta}^{\prime} .
$$

We convene that $L_{\delta}=I_{n}$, for $\delta=0$. Clearly, $\left\|L_{\delta}^{-1}\right\|_{2} \leq 1$. Given $s \geq 0$ (here we allow s to be 0), and for some constant $c>0$, we set

$$
\mathcal{E}_{s} \stackrel{\text { def }}{=}\left\{y \in \mathbb{R}^{n}: \max _{1 \leq j \leq p} \max _{\delta:\|\delta\|_{0} \leq s} \sigma^{-1}\left|\left\langle L_{\delta}^{-1} X_{j}, y-X \theta_{\star}\right\rangle\right| \leq \sqrt{c(1+s) n \log (p)}\right\} .
$$

Using the sub-Gaussianity of the regression error term in $\mathrm{H} 2(2)$, and by a union bound argument, we can choose $c>0$ depending solely on the absolute constant c_{1} in $\mathrm{H}_{2}^{2}(2)$, such that for all $s \geq 0$,

$$
\begin{equation*}
\mathbb{P}_{\star}\left(Y \notin \mathcal{E}_{s}\right) \leq p \sum_{j=0}^{s}\binom{p}{j} c_{1} \exp \left(-\frac{c(1+s) n \log (p)}{2 n}\right) \leq \frac{c_{1} p^{s+1}}{p^{\frac{c(1+s)}{2}}} \leq \frac{1}{p}, \tag{14}
\end{equation*}
$$

where we use the fact that $\sum_{j=0}^{s}\binom{p}{j} \leq 2 p^{s}$. Throughout the proof, whenever we use the event \mathcal{E}_{s}, the constant c is always taken as above.
(c) Sparse MCMC output. It will be important in the proof to guarantee that the Markov chain $\left\{\delta^{(k)}, k \geq 1\right\}$ remains in the set $\Delta_{s} \stackrel{\text { def }}{=}\left\{\delta \in \Delta:\|\delta\|_{0} \leq s\right\}$ for some small value of s. The following result may be improved, but will serve the purpose. Let

$$
s_{1} \stackrel{\text { def }}{=} s_{\star}+2 \log (p) .
$$

We show in Lemma 1 that under the sample size condition (19), and u taken large enough as in (19), it holds

$$
\begin{equation*}
\mathbf{1}_{\mathcal{E}_{0}}(Y) \max _{k \geq 0} \mathbb{P}\left(\left\|\delta^{(k)}\right\|_{0}>s_{1}\right) \leq \frac{1}{p} \tag{15}
\end{equation*}
$$

(d) Posterior contraction. We show below that the posterior distribution $\Pi(\cdot \mid \mathcal{D})$ puts most probability mass on sparse super-sets of δ_{\star}. More precisely, by Lemma 3 we can find constants C_{1}, C_{2} that depends only on the constants appearing in H 2 $\left(\sigma^{2},\left\|\theta_{\star}\right\|_{\infty}, c_{0}, c_{1}\right.$ and $\left.c_{2}\right)$ such that for n, p such that $n \geq C_{1}\left(1+s_{\star}^{3}\right) \log (p)$, it holds

$$
\mathbb{E}_{\star}\left[\mathbf{1}_{\mathcal{E}_{s_{\star}}}(Y) \Pi(\mathcal{C} \mid \mathcal{D})\right] \geq 1-\frac{2}{p}
$$

where

$$
\mathcal{C} \stackrel{\text { def }}{=}\left\{\delta \in \Delta: \delta \supseteq \delta_{\star}, \quad \text { and } \quad\|\delta\|_{0} \leq C_{2}\left(1+s_{\star}\right)\right\}
$$

We set

$$
s_{2} \stackrel{\text { def }}{=} C_{2}\left(1+s_{\star}\right)
$$

Furthermore the linear regression setting implies that the conditional posterior distribution of $\theta \mid \delta$ is given by

$$
\begin{equation*}
[\theta]_{\delta^{c}} \mid \delta \stackrel{i . i . d .}{\sim} \mathbf{N}\left(0, \rho_{0}^{-1}\right), \quad \text { and } \quad[\theta]_{\delta} \mid \delta \sim \mathbf{N}\left(\hat{\theta}_{\delta}, \sigma^{2}\left(\sigma^{2} \rho_{1} I_{\|\delta\|_{0}}+X_{\delta}^{\prime} X_{\delta}\right)^{-1}\right) \tag{16}
\end{equation*}
$$

where

$$
\hat{\theta}_{\delta} \stackrel{\text { def }}{=} \operatorname{Argmax}_{u \in \mathbb{R}^{\| \delta} \|_{0}}\left[-\frac{1}{2 \sigma^{2}}\left\|y-X_{\delta} u\right\|_{2}^{2}-\frac{\rho_{1}}{2}\|u\|_{2}^{2}\right]=\left(X_{\delta}^{\prime} X_{\delta}+\rho_{1} \sigma^{2} I_{\|\delta\|_{0}}\right)^{-1} X_{\delta}^{\prime} y
$$

Therefore, if for some $M>0$ we set

$$
\mathrm{B}_{\delta} \stackrel{\text { def }}{=}\left\{\theta \in \mathbb{R}^{p}:\left\|\theta-\theta_{\delta}\right\|_{\infty} \leq \sqrt{\frac{M \log (p)}{\rho_{0}}} \quad \text { and } \quad\left\|\theta_{\delta}-\hat{\theta}_{\delta}\right\|_{\infty} \leq \sqrt{\frac{M \sigma \log (p)}{n}}\right\}
$$

then, provided that $n \geq C s^{2} \log (p)$, for some constant C, by the restricted eigenvalue bound in (13), and by Gaussian tail bounds and a union bound argument, for all $\delta \in \Delta_{s}$, we have

$$
\begin{equation*}
\Pi\left(\mathrm{B}_{\delta}^{c} \mid \delta, \mathcal{D}\right) \leq \frac{4}{p^{-1+M / 2}} \leq \frac{1}{p} \tag{17}
\end{equation*}
$$

by taking $M>2$ appropriately.
(e) Main arguments of the proof. With s_{1} as in Paragraph (c) and s_{2} as in Paragraph (d), we set

$$
s \stackrel{\text { def }}{=} \max \left(s_{1}, s_{2}\right)
$$

Fix $Y \in \mathcal{E}_{s_{\star}}$, and fix some arbitrary component j such that $\delta_{\star j}=1$. We first note that $\delta_{j}^{(k+1)} \neq \check{\delta}_{j}^{(k+1)}$ if and only if $j \in \mathrm{~J}^{(k)}$, and the corresponding Bernoulli's $\left(d_{r}^{(k)}, \check{d}_{r}^{(k)}\right)$
are different, or $\delta_{j}^{(k)} \neq \check{\delta}_{j}^{(k)}$, and $j \notin \mathbf{J}^{(k)}$. We write this as

$$
\begin{aligned}
& \mathbb{P}\left[\delta_{j}^{(k+1)} \neq \check{\delta}_{j}^{(k+1)} \mid \delta^{(k)}, \check{\delta}^{(k)}\right] \\
& =\mathbf{1}_{\left\{\delta_{j}^{(k)} \neq \check{\delta}_{j}^{(k)}\right\}}\left(1-\frac{J}{p}\right)+\sum_{r=1}^{J} \mathbb{P}\left[J_{r}^{(k)}=j, d_{r}^{(k)} \neq \check{d}_{r}^{(k)} \mid \delta^{(k)}, \check{\delta}^{(k)}\right] \\
& \quad=\mathbf{1}_{\left\{\delta_{j}^{(k)} \neq \check{\delta}_{j}^{(k)}\right\}}\left(1-\frac{J}{p}\right)+\frac{1}{p} \sum_{r=1}^{J} \mathbb{P}\left[d_{r}^{(k)} \neq \check{d}_{r}^{(k)} \mid J_{r}^{(k)}=j, \delta^{(k)}, \check{\delta}^{(k)}\right],
\end{aligned}
$$

where we use the fact that $\mathbb{P}\left(\mathrm{J}_{r}^{(k)}=j \mid \delta^{(k)}, \check{\delta}^{(k)}\right)=1 / p$. With s_{1}, s_{2} as above, we introduce the set $\mathbb{T} \stackrel{\text { def }}{=} \Delta_{s_{1}} \times \mathcal{C}_{s_{2}}$ where,

$$
\Delta_{s_{1}} \stackrel{\text { def }}{=}\left\{\delta \in \Delta:\|\delta\|_{0} \leq s_{1}\right\}, \quad \text { and } \quad \mathcal{C}_{s_{2}} \stackrel{\text { def }}{=}\left\{\delta \in \Delta: \delta \supseteq \delta_{\star},\|\delta\|_{0} \leq s_{2}\right\} .
$$

It follows that

$$
\begin{aligned}
& \mathbb{P}\left[\delta_{j}^{(k+1)} \neq \check{\delta}_{j}^{(k+1)} \mid \delta^{(k)}, \check{\delta}^{(k)}\right] \\
& \leq \mathbf{1}_{\left\{\delta_{j}^{\left.(k) \neq \delta_{j}^{(k)}\right\}}\right\}}\left(1-\frac{J}{p}\right)+\mathbf{1}_{\mathbb{T}}\left(\delta^{(k)}, \check{\delta}^{(k)}\right) \frac{1}{p} \sum_{r=1}^{J} \mathbb{P}\left[d_{r}^{(k)} \neq \check{d}_{r}^{(k)}| |_{r}^{(k)}=j, \delta^{(k)}, \check{\delta}^{(k)}\right] \\
& \\
& +\frac{J}{p} \mathbf{1}_{\mathbb{T}^{c}\left(\delta^{(k)}, \check{\delta}^{(k)}\right)} .
\end{aligned}
$$

Let us set

$$
A^{(k)} \stackrel{\text { def }}{=} \mathbb{P}\left(\left(\delta^{(k)}, \check{\delta}^{(k)}\right) \notin \mathbb{T}\right), \mathcal{I}_{r, j}^{(k)}(\theta, \check{\theta}) \stackrel{\text { def }}{=} \mathbb{P}\left(d_{r}^{(k)} \neq \check{d}_{r}^{(k)} \mid \mathrm{J}_{r}^{(k)}=j, \delta^{(k)}, \check{\delta}(k), \theta, \check{\theta}\right) .
$$

Taking expectation on both sides of the last inequality, we get

$$
\begin{align*}
\mathbb{P}\left(\delta_{j}^{(k+1)} \neq \check{\delta}_{j}^{(k+1)}\right) \leq & \left(1-\frac{J}{p}\right) \mathbb{P}\left(\delta_{j}^{(k)} \neq \check{\delta}_{j}^{(k)}\right)+\frac{J A^{(k)}}{p} \\
& +\frac{1}{p} \sum_{r=1}^{J} \mathbb{E}\left[\mathbf{1}_{\mathbb{T}}\left(\delta^{(k)}, \check{\delta}^{(k)}\right) \mathbb{P}\left(d_{r} \neq \check{d}_{r} \mid J_{r}^{(k)}=j, \delta^{(k)}, \check{\delta}^{(k)}\right)\right] \\
= & \left(1-\frac{J}{p}\right) \mathbb{P}\left(\delta_{j}^{(k)} \neq \check{\delta}_{j}^{(k)}\right)+\frac{J A^{(k)}}{p} \tag{18}\\
& +\frac{1}{p} \sum_{r=1}^{J} \mathbb{E}\left[\mathbf{1}_{\mathbb{T}}\left(\delta^{(k)}, \check{\delta}^{(k)}\right) \int \mathcal{I}_{r, j}^{(k)}(\theta, \check{\theta}) \Pi\left(\mathrm{d} \theta \mid \delta^{(k)}, \mathcal{D}\right) \Pi\left(\mathrm{d} \check{\theta} \mid \check{\delta}^{(k)}, \mathcal{D}\right)\right] .
\end{align*}
$$

We establish the following claim below

$$
\begin{align*}
& \mathbf{1}_{\mathbb{T}}\left(\delta^{(k)}, \check{\delta}^{(k)}\right) \int \mathcal{I}_{r, j}^{(k)}(\theta, \check{\theta}) \Pi\left(\mathrm{d} \theta \mid \delta^{(k)}, \mathcal{D}\right) \Pi\left(\mathrm{d} \check{\theta} \mid \check{\delta}^{(k)}, \mathcal{D}\right) \\
& \leq\left(e^{-C \sqrt{n} \underline{\theta}_{\star}}+\frac{1}{p}\right)+\frac{7}{10} \mathbf{1}_{\left\{\delta_{j}^{(k)} \neq \check{\delta}_{j}^{(k)}\right\}} \tag{19}
\end{align*}
$$

Using (19) in (18), we obtain

$$
\begin{align*}
\mathbb{P}\left(\delta_{j}^{(k+1)} \neq \check{\delta}_{j}^{(k+1)}\right) & \leq\left(1-\frac{J}{p}\right) \mathbb{P}\left(\delta_{j}^{(k)} \neq \check{\delta}_{j}^{(k)}\right)+\frac{J A^{(k)}}{p} \\
& +\frac{J}{p}\left(e^{-C \sqrt{n} \underline{\theta}_{\star}}+\frac{1}{p}\right)+\frac{7}{10} \frac{J}{p} \mathbb{P}\left(\delta_{j}^{(k)} \neq \check{\delta}_{j}^{(k)}\right) \\
\leq & \left(1-\frac{3}{10} \frac{J}{p}\right) \mathbb{P}\left(\delta_{j}^{(k)} \neq \check{\delta}_{j}^{(k)}\right)+\frac{J}{p}\left(A^{(k)}+e^{-C \sqrt{n} \underline{\theta}_{\star}}+\frac{1}{p}\right) \tag{20}
\end{align*}
$$

Iterating 20 yields

$$
\begin{align*}
& \max _{j: \delta_{\star j}=1} \mathbb{P}\left(\delta_{j}^{(k)} \neq \check{\delta}_{j}^{(k)}\right) \leq\left(1-\frac{3}{10} \frac{J}{p}\right)^{k}+\frac{10}{3}\left(e^{-C \sqrt{n} \underline{\theta}_{\star}}+\frac{1}{p}\right) \\
&+\frac{J}{p} \sum_{t=0}^{k-1}\left(1-\frac{3}{10} \frac{J}{p}\right)^{t} A^{(k-t)} \tag{21}
\end{align*}
$$

Recall that

$$
A^{(k)} \stackrel{\text { def }}{=} \mathbb{P}\left(\left(\delta^{(k)}, \check{\delta}^{(k)}\right) \notin \mathbb{T}\right) \leq \mathbb{P}\left(\left\|\delta^{(k)}\right\|_{0}>s_{1}\right)+\Pi\left(\mathcal{C}_{s_{2}}^{c} \mid \mathcal{D}\right)
$$

where $\mathcal{C}_{s_{2}}^{c} \stackrel{\text { def }}{=} \Delta \backslash \mathcal{C}_{s_{2}}$. By Lemma 1 and Lemma 3 below, we have

$$
\mathbf{1}_{\mathcal{E}_{s_{\star}}}(Y) \max _{k \geq 0} \mathbb{P}\left(\left\|\delta^{(k)}\right\|_{0}>s_{1}\right) \leq \frac{1}{p}, \quad \text { and } \quad \mathbb{E}_{\star}\left[\mathbf{1}_{\mathcal{E}_{s_{\star}}}(Y) \Pi\left(\mathcal{C}_{s_{2}}^{c} \mid \mathcal{D}\right)\right] \leq \frac{1}{p}
$$

Taking the expectation over the data Y in (21), and using the last display and (12), we deduce that

$$
\begin{align*}
\mathbb{E}_{\star}\left[\mathbf{1}_{\mathcal{E}_{s \star}}(Y) \max _{j: \delta_{\star j}=1} \mid \mathbb{P}\left(\delta_{j}^{(k)}\right.\right. & \left.=1)-\Pi\left(\delta_{j}=1 \mid \mathcal{D}\right) \mid\right] \leq\left(1-\frac{3}{10} \frac{J}{p}\right)^{k} \\
& +\frac{10}{3}\left(e^{-C \sqrt{n} \underline{\theta}_{\star}}+\frac{1}{p}+\frac{2}{p}\right) \\
& \leq\left(1-\frac{3}{10} \frac{J}{p}\right)^{k}+10\left(e^{-C \sqrt{n} \underline{\theta}_{\star}}+\frac{1}{p}\right) \tag{22}
\end{align*}
$$

It remains only to establish the claim (19).
Proof of Claim (19). We consider two cases.

Case 1: $\delta_{j}^{(k)} \neq \check{\delta}_{j}^{(k)} . \quad$ Since $\check{\delta}^{(k)} \in \mathcal{C}_{s_{1}}$ (which implies that $\check{\delta}_{j}^{(k)}=1$), we must then

$\mathbb{S} \stackrel{\text { def }}{=}\left\{(\theta, \check{\theta}) \in \mathbb{R}^{p} \times \mathbb{R}^{p}: \theta \in \mathrm{B}_{\delta^{(k)}}, \check{\theta} \in \mathrm{B}_{\check{\delta}(k)}, \quad\right.$ and $\left.\quad \sqrt{\frac{1}{100 \rho_{0}}} \leq \operatorname{sign}\left(\theta_{\star j}\right) \theta_{j} \leq \sqrt{\frac{4}{\rho_{0}}}\right\}$. It follows from 17 , and the fact that $\theta_{j}^{(k)} \mid\left\{\delta_{j}^{(k)}=0\right\} \sim \mathbf{N}\left(0, \rho_{0}^{-1}\right)$ that for $\left(\delta^{(k)}, \check{\delta}^{(k)}\right) \in$ \mathbb{T},

$$
\begin{equation*}
\mathbb{P}\left(\left(\theta^{(k)}, \check{\theta}^{(k)}\right) \notin \mathbb{S} \mid \delta^{(k)}, \check{\delta}^{(k)}\right) \leq \frac{4}{p^{M / 2}}+\frac{3}{5} \leq \frac{7}{10} \tag{23}
\end{equation*}
$$

First we note that for $(\theta, \check{\theta}) \in \mathbb{S},\left|\theta_{j}\right| \leq 2 / \sqrt{\rho_{0}} \leq C n^{-1 / 2}$. Whereas for $i \neq j$ and $\delta_{i}^{(k)}=0$, we have $\left|\theta_{i}\right| \leq \sqrt{M \log (p) / n}$, and if $\delta_{i}^{(k)}=1$, using $\mid 17$, and Lemma 2 (1),

$$
\left|\theta_{i}\right|=\left|\theta_{i}-\hat{\theta}_{i}\right|+\left|\hat{\theta}_{i}-\theta_{\star i}\right|+\left|\theta_{\star i}\right| \leq C \sqrt{\frac{\log (p)}{n}}+C \sqrt{\frac{\log (p)}{n}}+\left\|\theta_{\star}\right\|_{\infty} \leq C
$$

under the sample size condition (19). Using the expression \tilde{q}_{j} in (6), and since $\rho_{0} \geq \rho_{1}$, and ignoring the nonpositive quadratic term, we have

$$
1-\tilde{q}_{j}(\vartheta, \theta) \leq \exp \left(\mathrm{a}-\frac{\theta_{j}}{\sigma^{2}}\left\langle X_{j}, y-X \theta_{\vartheta}\right\rangle\right)
$$

We write

$$
\left\langle X_{j}, y-X \theta_{\vartheta}\right\rangle=\left[\left\langle X_{j}, X \theta_{\delta^{(k)}}\right\rangle-\left\langle X_{j}, X \theta_{\vartheta}\right\rangle\right]+\left\langle X_{j}, y-X \theta_{\delta^{(k)}}\right\rangle
$$

Since $\left|\theta_{i}\right| \leq C$, for $\delta_{i}^{(k)}=1$, we have

$$
\begin{aligned}
\left|\left\langle X_{j}, X \theta_{\vartheta}\right\rangle-\left\langle X_{j}, X \theta_{\delta^{(k)}}\right\rangle\right|=\left|\sum_{r \in J^{(k)}: r \neq j, \delta_{r}^{(k)}=1}\left\langle X_{j}, X_{r}\right\rangle \theta_{r}\right| & \mid \\
& \leq C \min \left(J, s_{1}\right) \sqrt{n \log (p)}
\end{aligned}
$$

We can rewrite the last display as

$$
\left|\left\langle X_{j}, y-X \theta_{\vartheta}\right\rangle-\left\langle X_{j}, y-X \theta_{\delta^{(k)}}\right\rangle\right| \leq C \min \left(J, s_{1}\right) \sqrt{n \log (p)}
$$

We further expand the term $\left\langle X_{j}, y-X \theta_{\delta^{(k)}}\right\rangle$ as

$$
\begin{aligned}
&\left\langle X_{j}, y-X \theta_{\delta^{(k)}}\right\rangle=\left\langle X_{j}, y-X \theta_{\star}\right\rangle+\left\langle X_{j}, X \theta_{\star}-X_{\delta^{(k)}}\left[\theta_{\star}\right]_{\delta^{(k)}}\right\rangle \\
&+\left\langle X_{j}, X_{\delta^{(k)}}\left(\left[\theta_{\star}\right]_{\delta^{(k)}}-[\theta]_{\delta^{(k)}}\right)\right\rangle .
\end{aligned}
$$

Note that

$$
\left\langle X_{j}, X \theta_{\star}-X_{\delta}\left[\theta_{\star}\right]_{\delta^{(k)}}\right\rangle=n \theta_{\star j}+\sum_{r: \delta_{\star r}=1, \delta_{r}^{(k)}=0} \theta_{\star r}\left\langle X_{j}, X_{r}\right\rangle
$$

For $\theta \in \mathrm{B}_{\delta^{(k)}}$,

$$
\begin{aligned}
&\left|\left\langle X_{j}, X_{\delta^{(k)}}\left(\left[\theta_{\star}\right]_{\delta^{(k)}}-[\theta]_{\delta^{(k)}}\right)\right\rangle\right| \leq s_{1} \sqrt{c_{0} n \log (p)}\left\|\left[\theta_{\star}\right]_{\delta^{(k)}}-[\theta]_{\delta^{(k)}}\right\|_{\infty} \\
& \leq C s_{1} \sqrt{n \log (p)}\left(\left\|\left[\theta_{\star}\right]_{\delta^{(k)}}-\hat{\theta}_{\delta^{(k)}}\right\|_{\infty}\right.\left.+\sqrt{\frac{\log (p)}{n}}\right) \\
& \leq C\left(1+m\left(\delta^{(k)}\right)\right) s_{1} \log (p)
\end{aligned}
$$

where the last inequality uses Lemma 2. Using this, and since $\delta_{\star j}=1$, for $\theta \in \mathrm{B}_{\delta^{(k)}}$ we have

$$
\begin{align*}
\left|\left\langle X_{j}, y-X \theta_{\vartheta}\right\rangle-n \theta_{\star j}\right| \leq C \min \left(s_{1}, J\right) \sqrt{n \log (p)} & +\left|\left\langle X_{j}, y-X \theta_{\star}\right\rangle\right| \\
+\sum_{r: \delta_{\star r}=1, \delta_{r}^{(k)}=0}\left|\theta_{\star r}\left\langle X_{j}, X_{r}\right\rangle\right|+ & C\left(1+m\left(\delta^{(k)}\right)\right) s_{1} \log (p) \\
& \leq C\left(s_{\star}+\min \left(J, s_{1}\right)\right) \sqrt{n \log (p)} \tag{24}
\end{align*}
$$

using the sample size condition $n \geq s_{1}^{2} \log (p)$. Since $\left|\theta_{j}\right| \leq C n^{-1 / 2}$, we conclude that

$$
\left|\theta_{j}\right|\left|\left\langle X_{j}, y-X \theta_{\vartheta}\right\rangle-n \theta_{\star j}\right| \leq C\left(s_{\star}+\min \left(J, s_{1}\right)\right) \sqrt{\log (p)}
$$

It follows that for $(\theta, \check{\theta}) \in \mathbb{S}$,

$$
\begin{aligned}
& \frac{\theta_{j}}{\sigma^{2}}\left\langle X_{j}, y-X \theta_{\vartheta}\right\rangle \geq \frac{n \theta_{\star j} \theta_{j}}{\sigma^{2}}-C\left(s_{\star}+\min \left(J, s_{1}\right)\right) \sqrt{\log (p)} \\
& \quad \geq \frac{\left|\theta_{\star j}\right| \sqrt{n}}{10 \sigma^{2}}-C\left(s_{\star}+\min \left(J, s_{1}\right)\right) \sqrt{\log (p)} \geq \frac{\left|\theta_{\star j}\right| \sqrt{n}}{20 \sigma^{2}}-C J \sqrt{\log (p)}
\end{aligned}
$$

under the sample size condition 19). Hence, since $\mathrm{a}=\mathrm{u} \log (p)+\log \left(\rho_{0}\right) / 2$, for $(\theta, \check{\theta}) \in \mathbb{S}$
$1-\tilde{q}_{j}(\vartheta, \theta) \leq \exp \left(u \log (p)+\frac{1}{2} \log \left(\frac{n}{\sigma^{2}}\right)-\frac{\sqrt{n} \underline{\theta}_{\star}}{20 \sigma}\right) \leq \exp \left(-C_{1} \sqrt{n} \underline{\theta}_{\star}+C_{2} J \sqrt{\log (p)}\right)$.
We handle $1-q_{j}\left(\check{\vartheta}^{(r-1)}, \theta\right)$ similarly: since $\rho_{0} \geq \rho_{1}$,

$$
1-q_{j}\left(\check{\vartheta}^{(r-1)}, \check{\theta}\right) \leq \exp \left(\mathrm{a}+\frac{n \check{\theta}_{j}^{2}}{2 \sigma^{2}}-\frac{\check{\theta}_{j}}{\sigma^{2}}\left\langle X_{j}, y-X \check{\theta}_{\left(\check{\vartheta}^{(r-1)}\right)^{(j, 0)}}\right\rangle\right) .
$$

The inequality 24 remains valid when applied to $\check{\theta}$ and $\left(\check{\vartheta}^{(r-1)}\right)^{(j, 0)}$ (but with $\min \left(J, s_{1}\right)$ replaced by J), and yields

$$
\left|\left\langle X_{j}, y-X \check{\theta}_{\left(\check{\vartheta}^{(r-1)}\right)^{(j, 0)}}\right\rangle-n \theta_{\star j}\right| \leq C\left(s_{\star}+J\right) \sqrt{n \log (p)},
$$

leading to

$$
\begin{aligned}
& -\frac{\check{\theta}_{j}}{\sigma^{2}}\left\langle X_{j}, y-X \check{\theta}_{\left(\breve{\vartheta}^{(r-1)}\right)(j, 0)}\right\rangle \\
& \leq-\frac{n}{\sigma^{2}} \theta_{\star j}^{2}+\frac{n \theta_{\star j}}{\sigma^{2}}\left|\check{\theta}_{j}-\theta_{\star j}\right|+C\left(s_{\star}+J\right) \sqrt{n \log (p)} \\
&
\end{aligned}
$$

where we use Lemma 2 to derive the bound $\left|\check{\theta}_{j}-\theta_{\star j}\right| \leq\left(\left|\check{\theta}_{j}-\hat{\theta}_{j}\right|+\left|\hat{\theta}_{j}-\theta_{\star j}\right|\right) \leq$ $C \sqrt{n / \log (p)}$. The same bound implies that

$$
\frac{n \ddot{\theta}_{j}^{2}}{2 \sigma^{2}}=\frac{n \theta_{\star j}^{2}}{2 \sigma^{2}}+\frac{n\left(\check{\theta}_{j}^{2}-\theta_{\star j}^{2}\right)}{2 \sigma^{2}} \leq \frac{n \theta_{\star j}^{2}}{2 \sigma^{2}}+C \sqrt{n \log (p)} .
$$

We conclude that

$$
\begin{aligned}
& \frac{n \check{\theta}_{j}^{2}}{2 \sigma^{2}}-\frac{\check{\theta}_{j}}{\sigma^{2}}\left\langle X_{j}, y-X \check{\theta}_{\left(\check{\vartheta}^{(r-1)}\right)^{(j, 0)}}\right\rangle \\
& \quad \leq-\frac{n \theta_{\star j}^{2}}{2 \sigma^{2}}+C\left(s_{\star}+J\right) \sqrt{n \log (p)} \leq-\frac{n \theta_{\star}^{2}}{4 \sigma^{2}}+C J \sqrt{n \log (p),}
\end{aligned}
$$

under the sample size condition (19). Hence

$$
\begin{align*}
1-q_{j}\left(\check{\vartheta}^{(r-1)}, \check{\theta}\right) \leq \exp \left(\mathrm{a}-\frac{n \underline{\theta_{\star}^{2}}}{4 \sigma^{2}}\right) \leq \exp & \left(-\frac{n \underline{\theta_{\star}}}{8 \sigma^{2}}+C J \sqrt{n \log (p)}\right) \\
& \leq \exp \left(-C_{1} \sqrt{n} \underline{\theta_{\star}}+C_{2} J \sqrt{\log (p)}\right) \tag{26}
\end{align*}
$$

using again the sample size condition 19). Since the Bernoulli random variables $d_{r}^{(k)}$ and $\check{d}_{r}^{(k)}$ are maximally coupled, 25) and 26) imply that for $\left(\delta^{(k)}, \delta^{(k)}\right) \in \mathbb{T}$, and $\delta_{j}^{(k)} \neq \check{\delta}_{k}^{(k)}$,

$$
\begin{equation*}
\int \mathcal{I}_{r, j}^{(k)}(\theta, \check{\theta}) \Pi\left(\mathrm{d} \theta \mid \delta^{(k)}, \mathcal{D}\right) \Pi\left(\mathrm{d} \check{\theta} \mid \check{\delta}^{(k)}, \mathcal{D}\right) \leq \exp \left(-C_{1} \sqrt{n} \underline{\theta_{\star}}+C_{2} J \sqrt{\log (p)}\right)+\frac{7}{10} . \tag{27}
\end{equation*}
$$

Case 2: $\delta_{j}^{(k)}=\check{\delta}_{j}^{(k)} . \quad$ Since $\check{\delta}^{(k)} \in \mathcal{C}_{s_{1}}$, we must then have $\delta_{j}^{(k)}=\check{\delta}_{j}^{(k)}=1$. Here we define the set \mathbb{S} as

$$
\mathbb{S} \stackrel{\text { def }}{=}\left\{(\theta, \check{\theta}) \in \mathbb{R}^{p} \times \mathbb{R}^{p}: \theta \in \mathrm{B}_{\delta^{(k)}}, \check{\theta} \in \mathrm{B}_{\check{\delta}(k)}\right\} .
$$

It follows from 17) that for $\left(\delta^{(k)}, \check{\delta}^{(k)}\right) \in \mathbb{T}$,

$$
\begin{equation*}
\mathbb{P}\left(\left(\theta^{(k)}, \check{\theta}^{(k)}\right) \notin \mathbb{S} \mid \delta^{(k)}, \check{\delta}^{(k)}\right) \leq \frac{4}{p^{1-M / 2}} \tag{28}
\end{equation*}
$$

For $\left(\delta^{(k)}, \check{\delta}^{(k)}\right) \in \mathbb{T}$, and $(\theta, \check{\theta}) \in \mathbb{S}$, the calculations on $1-q_{j}\left(\check{\vartheta}^{(r-1)}, \check{\theta}\right)$ remain valid, and we have

$$
1-q_{j}\left(\check{\vartheta}^{(r-1)}, \check{\theta}\right) \leq e^{-C n \underline{\theta}_{*}^{2}+C J \sqrt{n \log (p)}} .
$$

For $\delta_{j}^{(k)}=1$, and $\theta \in \mathrm{B}_{\delta^{(k)}}$, it follows from 24, that

$$
\theta_{j}\left\langle X_{j}, y-X \theta_{\vartheta}\right\rangle \geq \frac{n \theta_{\star j}^{2}}{\sigma^{2}}-C\left(s_{\star}+\min \left(J, s_{1}\right)\right) \sqrt{n \log (p)} \geq \frac{n \underline{\theta}_{\star}^{2}}{2 \sigma^{2}}-C J \sqrt{n \log (p)},
$$

under the sample size condition (19). We deduce that

$$
\begin{aligned}
1-\tilde{q}_{j}(\vartheta, \theta) \leq \exp \left(\mathrm{a}-\frac{\theta_{j}}{\sigma^{2}}\left\langle X_{j}, y-X \theta_{\vartheta}\right\rangle\right) \leq & \exp \left(\mathrm{a}-\frac{n \underline{\theta}_{\star}^{2}}{2 \sigma^{2}}+C J \sqrt{n \log (p)}\right) \\
& \leq \exp \left(-C_{1} \sqrt{n} \underline{\theta_{\star}}+C_{2} J \sqrt{\log (p)}\right)
\end{aligned}
$$

The last two majorations on $1-q_{j}\left(\check{\vartheta}^{(r-1)}, \check{\theta}\right)$ and $1-\tilde{q}_{j}(\vartheta, \theta)$, and 28$)$ implies that for $\delta_{j}^{(k)}=\check{\delta}_{j}^{(k)}$,

$$
\begin{equation*}
\int \mathcal{I}_{r, j}^{(k)}(\theta, \check{\theta}) \Pi\left(\mathrm{d} \theta \mid \delta^{(k)}, \mathcal{D}\right) \Pi\left(\mathrm{d} \check{\theta} \mid \check{\delta}^{(k)}, \mathcal{D}\right) \leq e^{-C n \underline{\theta}_{\star}^{2}}+\frac{4}{p^{1-M / 2}} \tag{29}
\end{equation*}
$$

The claim (19) follows from (25) and (29) together.

D.1. Technical lemmas.

Lemma 1. Assume F国, and let \mathcal{E}_{0} as in (14). Let $\left\{\delta^{(k)}, k \geq 0\right\}$ be the δ-marginal chain generated by Algorithm 2 for the linear regression posterior. There exists a constant $C>0$ that depends only on c (in the definition of \mathcal{E}_{0}) and the constants in H0 such that for

$$
\begin{equation*}
\mathrm{u} \geq C\left(1+s_{\star}^{2}\right), \quad \text { and } \quad n \geq\left(\left\|\delta^{(0)}\right\|_{0}+s_{\star}+2 \log (p)\right)^{2} \log (p), \tag{30}
\end{equation*}
$$

it holds

$$
\mathbf{1}_{\mathcal{E}_{0}}(Y) \mathbb{P}\left(\left\|\delta^{(k)}\right\|_{0}>\left\|\delta^{(0)}\right\|_{0}+s_{\star}+2 \log (p)\right) \leq\left(\frac{p-s_{\star}}{2 p}\right)^{s-\left\|\delta^{(0)}\right\|_{0}-s_{\star}} \leq \frac{1}{p}
$$

Proof. Fix $Y \in \mathcal{E}_{0}$. Set $s_{1} \stackrel{\text { def }}{=}\left\|\delta^{(0)}\right\|_{0}+s_{\star}+2 \log (p)$. Referring to the coupling construction at the beginning of the proof, the event $\left\{\left\|\delta^{(k)}\right\|_{0}>s_{1}\right\}$ means that we can find at least $s_{1}-\left\|\delta^{(0)}\right\|_{0}-s_{\star}$ terms among $\left\{\left(\delta^{(t)}, \mathrm{J}_{r}^{(t)}, d_{r}^{(t)}\right), 1 \leq t \leq k-1,1 \leq r \leq J\right\}$ where $\left\|\delta^{(t)}\right\|_{0} \leq s_{1}, J_{r}^{(t)} \in\left\{j: \delta_{\star j}=0\right.$, and $\left.\delta_{j}^{(t)}=0\right\}$, and $d_{r}^{(t)}=1$.

$$
\mathbb{P}\left(J_{r}^{(t)} \in\left\{j: \delta_{\star j}=0, \text { and } \delta_{j}^{(t)}=0\right\} \mid \delta^{(t)}\right) \leq 1-\frac{s_{\star}}{p} .
$$

We show next that on the event $\left\|\delta^{(t)}\right\|_{0} \leq s_{1}$, and $J_{r}^{(t)} \in\left\{j: \delta_{\star j}=0\right.$, and $\left.\delta_{j}^{(t)}=0\right\}$,

$$
\begin{equation*}
\mathbb{P}\left(d_{r}^{(t)}=1 \mid \delta^{(t)}, J_{r}^{(t)}=j\right) \leq \frac{1}{2}, \tag{31}
\end{equation*}
$$

to conclude that

$$
\mathbb{P}\left(\left\|\delta^{(k)}\right\|_{0}>s_{1}\right) \leq\left(\frac{p-s_{\star}}{2 p}\right)^{s_{1}-\left\|\delta^{(0)}\right\|_{0}-s_{\star}} \leq \exp \left(-\left(s_{1}-\left\|\delta^{(0)}\right\|_{0}-s_{\star}\right) \log (2)\right) \leq \frac{1}{p}
$$

which would end the proof. In order to prove (31), for some absolute constant $m>0$, let

$$
\mathbb{S} \stackrel{\text { def }}{=}\left\{\theta \in \mathbb{R}^{p}: \theta \in \mathrm{B}_{\delta^{(t)}}, \quad \text { and } \quad\left|\theta_{j}\right| \leq \sqrt{\frac{m}{\rho_{0}}}\right\} .
$$

As seen in 17), we can choose m such that $\Pi\left(\theta \notin \mathbb{S} \mid \delta^{(t)}, \mathcal{D}\right) \leq \frac{1}{4}$. Fix j such that $\delta_{\star j}=0$ and $\delta_{j}^{(t)}=0$. Recalling the expression of \tilde{q}_{j} in (6), it follows then that

$$
\begin{aligned}
\mathbb{P}\left(d_{r}^{(t)}=1 \mid \mathrm{J}_{r}^{(t)}=j, \delta^{(t)}\right) \leq \frac{1}{4}+ \\
\int_{\mathbb{S}} \exp \left(-\mathrm{a}+\frac{\theta_{j}^{2}}{2}\left(\rho_{0}-\rho_{1}\right)+\frac{\theta_{j}}{\sigma^{2}}\left\langle X_{j}, y-X \theta_{\vartheta}\right\rangle+\frac{\theta_{j}^{2}}{2 \sigma^{4}}\left\langle X_{j}, y-X \theta_{\vartheta}\right\rangle^{2}\right) \Pi\left(\theta \mid \delta^{(t)}, \mathcal{D}\right) \mathrm{d} \theta
\end{aligned}
$$

Then we write

$$
\begin{aligned}
\left\langle X_{j}, y-X \theta_{\vartheta}\right\rangle=\left\langle X_{j}, y-X \theta_{\star}\right\rangle+\left\langle X_{j}\right. & \left., X \theta_{\star}-X \theta_{\vartheta}\right\rangle \\
& =\left\langle X_{j}, y-X \theta_{\star}\right\rangle+\sum_{r \neq j}\left\langle X_{j}, X_{r}\right\rangle\left(\theta_{\star r}-\theta_{r} \vartheta_{r}\right) .
\end{aligned}
$$

The last summation does not include j because $\theta_{\star j}=0$, and $\mathbf{J}_{r}^{(t)}=j$, which implies that $\vartheta_{j}=0$. Since $\theta \in \mathbb{S}$, we see that $\left|\theta_{\star r}-\theta_{r} \vartheta_{r}\right| \leq C$ for all r, for some constant C. If $\delta_{* r}=0$, then $\left|\theta_{r}\right| \leq C \sqrt{\log (p) / n}$. It follows that for $Y \in \mathcal{E} 0$,

$$
\begin{gathered}
\left|\theta_{j}\left\langle X_{j}, y-X \theta_{\vartheta}\right\rangle\right| \leq\left|\theta_{j}\right|\left(\sqrt{c n \log (p)}+C s_{\star} \sqrt{c_{0} n \log (p)}+C s_{1} \sqrt{\frac{\log (p)}{n}} \sqrt{c_{0} n \log (p)}\right) \\
\leq C\left|\theta_{j}\right|\left(s_{\star} \sqrt{n \log (p)}+s_{1} \log (p)\right) \leq C s_{\star} \sqrt{\log (p)},
\end{gathered}
$$

under the sample size condition $n \geq s_{1}^{2} \log (p)$. Hence taking $\mathbf{u}>C\left(1+s_{\star}\right)^{2}$ large enough, it follows that

$$
\begin{aligned}
& \mathbb{P}\left(d_{r}^{(t)}=1 \mid \mathrm{J}_{r}^{(t)}=j, \delta^{(t)}\right) \leq \frac{1}{4}+ \\
& \int_{\mathbb{S}} \exp \left(-\mathrm{u} \log (p)-\frac{1}{2} \log \left(\frac{n}{\sigma^{2}}\right)+C\left(1+s_{\star}\right)^{2} \log (p)\right) \Pi\left(\theta \mid \delta^{(t)}, \mathcal{D}\right) \mathrm{d} \theta+\frac{1}{4} \leq \frac{1}{4}+\frac{1}{4} \leq \frac{1}{2}
\end{aligned}
$$

Lemma 2. Assume F2, and let \mathcal{E}_{0} as in (14). Fix $0<s_{1} \leq p$. Then we can find constants C, C^{\prime} that depends only on $\sigma^{2},\left\|\theta_{\star}\right\|_{\infty}, c_{0}$, and c (in the definition of \mathcal{E}_{0}) such that for $n \geq C s_{1}^{2} \log (p)$, the following holds. For all $\delta \in \Delta$ such that $\|\delta\|_{0} \leq s_{1}$,

$$
\begin{equation*}
\left\|\hat{\theta}_{\delta}-\left[\theta_{\star}\right]_{\delta}\right\|_{\infty} \leq C^{\prime}(1+m(\delta)) \sqrt{\frac{\log (p)}{n}} \tag{32}
\end{equation*}
$$

where $m(\delta) \stackrel{\text { def }}{=}\left|\left\{k: \delta_{\star k}=1, \delta_{k}=0\right\}\right|$, and $\hat{\theta}_{\delta}$ as in (16).
Proof. The proof follows (Lounici (2008) Theorem 1). Fix $Y \in \mathcal{E}_{0}$. The first order optimality condition of $\hat{\theta}_{\delta}$ is given by $-\rho_{1} \hat{\theta}_{\delta}+X_{\delta}^{\prime}\left(Y-X_{\delta} \hat{\theta}_{\delta}\right) / \sigma^{2}=0$, which can be rewritten as
$\left(\rho_{1} I_{\|\delta\|_{0}}+\frac{1}{\sigma^{2}} X_{\delta}^{\prime} X_{\delta}\right)\left(\left[\theta_{\star}\right]_{\delta}-\hat{\theta}_{\delta}\right)-\rho_{1}\left[\theta_{\star}\right]_{\delta}+\frac{1}{\sigma^{2}} X_{\delta}^{\prime}\left(X \theta_{\star}-X_{\delta}\left[\theta_{\star}\right]_{\delta}\right)+\frac{1}{\sigma^{2}} X_{\delta}^{\prime}\left(Y-X \theta_{\star}\right)=0$.
We deduce that

$$
\begin{aligned}
& \left\|\left(\rho_{1} I_{\|\delta\|_{0}}+\frac{1}{\sigma^{2}} X_{\delta}^{\prime} X_{\delta}\right)\left(\left[\theta_{\star}\right]_{\delta}-\hat{\theta}_{\delta}\right)\right\|_{\infty} \leq \rho_{1}\left\|\theta_{\star}\right\|_{\infty} \\
& +\frac{1}{\sigma^{2}} \max _{k: \delta_{k}=1} \sum_{j: \delta_{\star j}=1, \delta_{j}=0}\left|\theta_{\star j} \|\left\langle X_{j}, X_{k}\right\rangle\right|+\frac{1}{\sigma} \sqrt{c n \log (p)} \\
&
\end{aligned}
$$

Using this conclusion and the restricted strong convexity in 13 , for $n \geq C s_{1}^{2} \log (p)$, we have

$$
\begin{aligned}
\frac{n}{2}\left\|\hat{\theta}_{\delta}-\left[\theta_{\star}\right]_{\delta}\right\|_{2}^{2} \leq\left(\hat{\theta}_{\delta}-\left[\theta_{\star}\right]_{\delta}\right)^{\prime}\left(\rho_{1} I_{\|\delta\|_{0}}\right. & \left.+\frac{1}{\sigma^{2}} X_{\delta}^{\prime} X_{\delta}\right)\left(\hat{\theta}_{\delta}-\left[\theta_{\star}\right]_{\delta}\right) \\
\leq C(1+m(\delta)) & \sqrt{n \log (p)}\left\|\hat{\theta}_{\delta}-\left[\theta_{\star}\right]_{\delta}\right\|_{1} \\
& \leq C s_{1}^{1 / 2}(1+m(\delta)) \sqrt{n \log (p)}\left\|\hat{\theta}_{\delta}-\left[\theta_{\star}\right]_{\delta}\right\|_{2}
\end{aligned}
$$

which implies that

$$
\left\|\hat{\theta}_{\delta}-\left[\theta_{\star}\right]_{\delta}\right\|_{2} \leq C(1+m(\delta)) \sqrt{\frac{s_{1} \log (p)}{n}}
$$

On the other hand for j such that $\delta_{j}=1$,

$$
\begin{aligned}
\left(\left(\rho_{1} I_{\|\delta\|_{0}}+\frac{1}{\sigma^{2}} X_{\delta}^{\prime} X_{\delta}\right)\left(\left[\theta_{\star}\right]_{\delta}-\hat{\theta}_{\delta}\right)\right)_{j}=\left(\rho_{1}\right. & \left.+\frac{n}{\sigma^{2}}\right)\left(\hat{\theta}_{\delta}-\left[\theta_{\star}\right]_{\delta}\right)_{j} \\
& +\frac{1}{\sigma^{2}} \sum_{k \neq j: \delta_{k}=1}\left\langle X_{k}, X_{j}\right\rangle\left(\hat{\theta}_{\delta}-\left[\theta_{\star}\right]_{\delta}\right)_{k}
\end{aligned}
$$

which we use to deduce that

$$
\begin{aligned}
\left\|\hat{\theta}_{\delta}-\left[\theta_{\star}\right]_{\delta}\right\|_{\infty} & \leq \frac{\sigma^{2}}{n}\left\|\left(\rho_{1} I_{\|\delta\|_{0}}+\frac{1}{\sigma^{2}} X_{\delta}^{\prime} X_{\delta}\right)\left(\left[\theta_{\star}\right]_{\delta}-\hat{\theta}_{\delta}\right)\right\|_{\infty}+\frac{1}{n} \sqrt{c_{0} n \log (p)}\left\|\hat{\theta}_{\delta}-\left[\theta_{\star}\right]_{\delta}\right\|_{1} \\
& \leq C(1+m(\delta)) \sqrt{\frac{\log (p)}{n}}+s_{1}^{1 / 2} \sqrt{\frac{c_{0} \log (p)}{n}}\left\|\hat{\theta}_{\delta}-\left[\theta_{\star}\right]_{\delta}\right\|_{2} \\
\leq & C(1+m(\delta)) \sqrt{\frac{\log (p)}{n}}+C(1+m(\delta)) \sqrt{\frac{\log (p)}{n}} \sqrt{\frac{s_{1}^{2} \log (p)}{n}} \\
& \leq C(1+m(\delta)) \sqrt{\frac{\log (p)}{n}}
\end{aligned}
$$

under the stated sample size condition.
We show in the next result that the posterior distribution puts most of its probability mass on models that contain the true model δ_{\star}.

Lemma 3. Assume F园, and let $\mathcal{E}_{s_{\star}}$ be as in (14). Then we can find constants C_{1}, C_{2} that depends only on $\sigma^{2},\left\|\theta_{\star}\right\|_{\infty}, c_{0}, c_{1} c_{2}$ and c (in the definition of $\mathcal{E}_{s_{\star}}$) such that for $n \geq C_{1} \underline{\theta}_{\star}^{-2}\left(1+s_{\star}^{3}\right) \log (p)$, it holds

$$
\mathbb{E}_{\star}\left[\boldsymbol{1}_{\mathcal{E}_{s_{\star}}}(Y) \Pi(\mathcal{C} \mid \mathcal{D})\right] \geq 1-\frac{3}{p},
$$

where

$$
\mathcal{C} \stackrel{\text { def }}{=}\left\{\delta \in \Delta: \delta \supseteq \delta_{\star}, \quad \text { and }\|\delta\|_{0} \leq C_{2}\left(1+s_{\star}\right)\right\} .
$$

Proof. By Lemma 5, there exist positive constant C_{1}, C_{2} that depends only on c_{0}, c_{2}, and c such that for $n \geq C_{1} s_{\star}^{2} \log (p)$,

$$
\mathbb{E}_{\star}\left[\mathbf{1}_{\mathcal{E}_{0}}(Y) \Pi\left(\|\delta\|_{0}>C_{2}\left(1+s_{\star}\right) \mid \mathcal{D}\right)\right] \leq \frac{2}{p}
$$

We set

$$
s \stackrel{\text { def }}{=} C_{2}\left(1+s_{\star}\right),
$$

and $\mathcal{A} \stackrel{\text { def }}{=}\left\{\delta: \delta \nsupseteq \delta_{\star},\|\delta\|_{0} \leq s\right\}$, so that

$$
\Delta=\mathcal{C}_{s} \cup \mathcal{A} \cup\left\{\delta \in \Delta:\|\delta\|_{0}>s\right\}
$$

Therefore,

$$
\mathbb{E}_{\star}\left[\mathbf{1}_{\mathcal{E}_{s_{\star}}}(Y) \Pi\left(\mathcal{C}_{s} \mid \mathcal{D}\right)\right] \geq 1-\frac{2}{p}-\mathbb{E}_{\star}\left[\mathbf{1}_{\mathcal{E}_{s_{\star}}}(Y) \Pi(\mathcal{A} \mid \mathcal{D})\right] .
$$

To finish the proof we will establish that for $Y \in \mathcal{E}_{s_{\star}}, \Pi(\mathcal{A} \mid \mathcal{D}) \leq \frac{1}{p}$. To that end, let $\mathcal{P} \stackrel{\text { def }}{=}\left\{\delta^{(0)} \in \Delta: \delta^{(0)} \subseteq \delta_{\star}, \delta^{(0)} \neq \delta_{\star}\right\}$, and for each $\delta^{(0)} \in \mathcal{P}$, we set
$\mathcal{A}\left(\delta^{(0)}\right) \stackrel{\text { def }}{=}\left\{\delta \in \Delta: \delta \supseteq \delta^{(0)},\|\delta\|_{0} \leq s\right.$, and $\delta_{\star j}=0$ whenever $\left(\delta_{j}=1\right.$, and $\left.\left.\delta_{j}^{(0)}=0\right)\right\}$.

We then write

$$
\begin{equation*}
\Pi(\mathcal{A} \mid \mathcal{D})=\Pi\left(\delta_{\star} \mid \mathcal{D}\right) \sum_{\delta^{(0)} \in \mathcal{P}} \frac{\Pi\left(\delta^{(0)} \mid \mathcal{D}\right)}{\Pi\left(\delta_{\star} \mid \mathcal{D}\right)} \sum_{\delta \in \mathcal{A}\left(\delta^{(0)}\right)} \frac{\Pi(\delta \mid \mathcal{D})}{\Pi\left(\delta^{(0)} \mid \mathcal{D}\right)} . \tag{33}
\end{equation*}
$$

For any subset $\delta, \vartheta \in \Delta$, we have

$$
\frac{\Pi(\delta \mid \mathcal{D})}{\Pi(\vartheta \mid \mathcal{D})}=\left(\frac{1}{p^{4}} \sqrt{\frac{\rho_{1}}{2 \pi}}\right)^{\|\delta\|_{0}-\|\vartheta\|_{0}} \frac{\int_{\mathbb{R}^{\| \delta} \|_{0}} \exp \left(-\frac{\rho_{1}}{2}\|u\|_{2}^{2}-\frac{1}{2 \sigma^{2}}\left\|Y-X_{\delta} u\right\|_{2}^{2}\right) \mathrm{d} u}{\int_{\mathbb{R}^{\|}\| \|_{0}} \exp \left(-\frac{\rho_{1}}{2}\|u\|_{2}^{2}-\frac{1}{2 \sigma^{2}}\left\|Y-X_{\vartheta} u\right\|_{2}^{2}\right) \mathrm{d} u} .
$$

We calculate that for any $\delta \in \Delta$,

$$
\int_{\mathbb{R}^{\| \delta} \|_{0}} \exp \left(-\frac{\rho_{1}}{2}\|u\|_{2}^{2}-\frac{1}{2 \sigma^{2}}\left\|Y-X_{\delta} u\right\|_{2}^{2}\right) \mathrm{d} u=\left(\frac{2 \pi}{\rho_{1}}\right)^{\|\delta\|_{0} / 2} \frac{e^{-\frac{1}{2 \sigma^{2}} Y^{\prime}\left(I_{n}+\frac{1}{\rho_{1} \sigma^{2}} X_{\delta} X_{\delta}^{\prime}\right)^{-1} Y}}{\sqrt{\operatorname{det}\left(I_{n}+\frac{1}{\rho_{1} \sigma^{2}} X_{\delta} X_{\delta}^{\prime}\right)}} .
$$

And we deduce, using $\rho_{1}=1$, that

$$
\begin{equation*}
\frac{\Pi(\delta \mid \mathcal{D})}{\Pi(\vartheta \mid \mathcal{D})}=\left(\frac{1}{p^{\mathrm{u}}}\right)^{\|\delta\|_{0}-\|\vartheta\|_{0}} e^{\frac{1}{2 \sigma^{2}}\left(Y^{\prime} L_{\vartheta}^{-1} Y-Y^{\prime} L_{\delta}^{-1} Y\right)} \sqrt{\frac{\operatorname{det}\left(L_{\vartheta}\right)}{\operatorname{det}\left(L_{\delta}\right)}}, \tag{34}
\end{equation*}
$$

where

$$
L_{\delta} \stackrel{\text { def }}{=} I_{n}+\frac{1}{\sigma^{2}} X_{\delta} X_{\delta}^{\prime} .
$$

Suppose that $\vartheta \supseteq \delta$, and $\|\vartheta\|_{0} \leq s_{1}$. In that case

$$
L_{\vartheta}=L_{\delta}+\frac{1}{\sigma^{2}} X_{\vartheta-\delta} X_{\vartheta-\delta}^{\prime} .
$$

and by the determinant lemma $\left(\operatorname{det}\left(A+U V^{\prime}\right)=\operatorname{det}(A) \operatorname{det}\left(I_{m}+V^{\prime} A^{-1} U\right)\right.$ valid for any invertible matrix $A \in \mathbb{R}^{n \times n}$, and $U, V \in \mathbb{R}^{n \times m}$), and using the lower bound on the smallest eigenvalue of L_{δ} resulting from (13), we have

$$
1 \leq \frac{\operatorname{det}\left(L_{\vartheta}\right)}{\operatorname{det}\left(L_{\delta}\right)}=\operatorname{det}\left(I_{\vartheta-\delta}+\frac{1}{\sigma^{2}} X_{\vartheta-\delta}^{\prime} L_{\delta}^{-1} X_{\vartheta-\delta}\right) \leq\left(1+2\|\vartheta-\delta\|_{0}\right)^{\|\vartheta-\delta\|_{0}} .
$$

We use this to deduce from (34) that when $\vartheta \supseteq \delta$, and $\|\vartheta\|_{0} \leq s$, it holds

$$
\begin{align*}
p^{\mathrm{u}\|\vartheta-\delta\|_{0}} e^{\frac{1}{2 \sigma^{2}}}\left(Y^{\prime} L_{\vartheta}^{-1} Y-Y^{\prime} L_{\delta}^{-1} Y\right) & \leq \frac{\Pi(\delta \mid \mathcal{D})}{\Pi(\vartheta \mid \mathcal{D})} \\
& \leq p^{\mathrm{u}\|\vartheta-\delta\|_{0}}(1+2 s)^{\|\vartheta-\delta\|_{0}} e^{\frac{1}{2 \sigma^{2}}\left(Y^{\prime} L_{\vartheta}^{-1} Y-Y^{\prime} L_{\delta}^{-1} Y\right)} . \tag{35}
\end{align*}
$$

By the Woodbury formula which states that any set of matrices U, V, A, C with matching dimensions, $(A+U C V)^{-1}=A^{-1}-A^{-1} U\left(C^{-1}+V A^{-1} U\right)^{-1} V A^{-1}$, we have

$$
Y^{\prime} L_{\vartheta}^{-1} Y-Y^{\prime} L_{\delta}^{-1} Y=-\frac{1}{\sigma^{2}} y^{\prime} L_{\delta}^{-1} X_{\vartheta-\delta}\left(I_{\|\vartheta-\delta\|_{0}}+\frac{1}{\sigma^{2}} X_{\vartheta-\delta}^{\prime} L_{\delta}^{-1} X_{\vartheta-\delta}\right)^{-1} X_{\vartheta-\delta} L_{\delta}^{-1} y .
$$

It follows from Equation (37) of Lemma 4 that for any non-zero vector $u \in \mathbb{R}^{\|\vartheta-\delta\|_{0}}$,

$$
u^{\prime} X_{\vartheta-\delta}^{\prime} L_{\delta}^{-1} X_{\vartheta-\delta} u \geq \frac{n}{2}\|u\|_{2}^{2}-C_{0} \sqrt{n \log (p)}\|u\|_{1}^{2} \geq \frac{n}{4}\|u\|_{2}^{2}
$$

for some absolute constant C_{0}, provided that $n \geq 4 C_{0}^{2} s^{2} \log (p)$. We deduce that for $\delta \subseteq \vartheta,\|\vartheta\|_{0} \leq s$, it holds

$$
\begin{equation*}
\frac{\left\|Y^{\prime} L_{\delta}^{-1} X_{\vartheta-\delta}\right\|_{2}^{2}}{\sigma^{2}\left(1+\|\vartheta-\delta\|_{0} n\right)} \leq Y^{\prime} L_{\delta}^{-1} Y-Y^{\prime} L_{\vartheta}^{-1} Y \leq \frac{4\left\|Y^{\prime} L_{\delta}^{-1} X_{\vartheta-\delta}\right\|_{2}^{2}}{\sigma^{2} n} . \tag{36}
\end{equation*}
$$

We put (36) and (35) to write the second summation of (33) as

$$
\begin{aligned}
\sum_{\delta \in \mathcal{A}\left(\delta^{(0)}\right)} & \frac{\Pi(\delta \mid \mathcal{D})}{\Pi\left(\delta^{(0)} \mid \mathcal{D}\right)}=\sum_{k=0}^{s-\left\|\delta^{(0)}\right\|_{0}} \sum_{\delta \in \mathcal{A}\left(\delta^{(0)}\right):\|\delta\|_{0}=\left\|\delta^{(0)}\right\|_{0}+k} \frac{\Pi(\delta \mid \mathcal{D})}{\Pi\left(\delta^{(0)} \mid \mathcal{D}\right)} \\
& \leq \sum_{k=0}^{s-\left\|\delta^{(0)}\right\|_{0}} \sum_{\delta \in \mathcal{A}\left(\delta^{(0)}\right):\|\delta\|_{0}=\left\|\delta^{(0)}\right\|_{0}+k}\left(\frac{1}{p^{u}}\right)^{k} \exp \left(\frac{2\left\|Y^{\prime} L_{\delta^{(0)}}^{-1} X_{\delta-\delta(0)}\right\|_{2}^{2}}{\sigma^{4} n}\right) .
\end{aligned}
$$

We can write $Y=\sigma V+\sum_{k: \delta_{\star k}=1} \theta_{\star k} X_{k}$, where $V=\left(Y-X \theta_{\star}\right) / \sigma$. Fix a component i such that $\left(\delta-\delta^{(0)}\right)_{i}=1$. Note that we have $\delta_{i}^{(0)}=0$, and $\delta_{\star i}=0$. We can then write

$$
Y^{\prime} L_{\delta(0)}^{-1} X_{i}=\sigma V^{\prime} L_{\delta(0)}^{-1} X_{i}+\sum_{k: \delta_{\star k}=1} \theta_{\star k} X_{k}^{\prime} L_{\delta(0)}^{-1} X_{i} .
$$

Therefore, by (37) from Lemma 4, we have

$$
\left|Y^{\prime} L_{\delta(0)}^{-1} X_{i}\right| \leq C_{1} \sqrt{\left(1+s_{\star}\right) n \log (p)}+C_{1}\left(s_{\star}-\left\|\delta^{(0)}\right\|_{0}\right) \sqrt{n \log (p)} .
$$

It follows that

$$
\frac{\left\|Y^{\prime} L_{\delta(0)}^{-1} X_{\delta-\delta(0)}\right\|_{2}^{2}}{\sigma^{4} n} \leq C_{1} k\left(1+s_{\star}^{2}\right) \log (p),
$$

for some constant C_{1}. Therefore,

$$
\sum_{\delta \in \mathcal{A}\left(\delta^{(0)}\right)} \frac{\Pi(\delta \mid \mathcal{D})}{\Pi\left(\delta^{(0)} \mid \mathcal{D}\right)} \leq p^{C_{1} s\left(1+s_{\star}^{2}\right)} \sum_{k=0}^{s-\left\|\delta^{(0)}\right\|_{0}}\binom{p-\left\|\delta^{(0)}\right\|_{0}}{k}\left(\frac{1}{p^{4}}\right)^{k} \leq 2 p^{C_{1} s\left(1+s_{*}^{2}\right)}
$$

by choosing $\mathrm{u}>2$, assuming $p \geq 2$. The last display, with (33) and (35) yield

$$
\begin{aligned}
& \Pi(\mathcal{A} \mid \mathcal{D}) \leq 2 p^{C_{1} s\left(1+s_{\star}^{2}\right)} \sum_{\delta^{(0)} \in \mathcal{P}} \frac{\Pi\left(\delta^{(0)} \mid \mathcal{D}\right)}{\Pi\left(\delta_{\star} \mid \mathcal{D}\right)} \\
& \leq 2 p^{C_{1} s\left(1+s_{\star}^{2}\right)} \sum_{k=0}^{s_{\star}-1} \sum_{\delta^{(0)} \in \mathcal{P}:\left\|\delta^{(0)}\right\|_{0}=s_{\star}-k} p^{k \mathrm{u}}(1+2 s)^{k} \exp \left(-\frac{\left\|Y^{\prime} L_{\delta^{(0)}}^{-1} X_{\delta_{\star}-\delta^{(0)}}\right\|_{2}^{2}}{2 \sigma^{4}(1+k n)}\right) .
\end{aligned}
$$

As above, given i such that $\delta_{\star i}=1$, we write

$$
Y^{\prime} L_{\delta(0)}^{-1} X_{i}=\sigma V^{\prime} L_{\delta(0)}^{-1} X_{i}+\theta_{\star i} X_{i}^{\prime} L_{\delta(0)}^{-1} X_{i}+\sum_{k \neq i: \delta_{\star k}=1} \theta_{\star k} X_{k}^{\prime} L_{\delta(0)}^{-1} X_{i},
$$

and using Lemma 4, we deduce that

$$
\left|Y^{\prime} L_{\delta(0)}^{-1} X_{i}\right| \geq \frac{n\left|\theta_{\star i}\right|}{2}-C_{1} \sqrt{\left(1+s_{\star}\right) n \log (p)} \geq \frac{n\left|\underline{\theta}_{\star}\right|}{4}
$$

under the sample size condition $n \geq C_{2}\left(1+s_{\star}\right) \log (p) / \underline{\theta}_{\star}^{2}$. Hence

$$
\frac{\left\|Y^{\prime} L_{\delta^{(0)}}^{-1} X_{\delta_{\star}-\delta^{(0)}}\right\|_{2}^{2}}{2 \sigma^{4}(1+k n)} \geq \frac{n \underline{\theta}_{\star}^{2}}{64 \sigma^{4}},
$$

so that

$$
\begin{aligned}
\left.\Pi(\mathcal{A} \mid \mathcal{D}) \leq 2 p^{C_{1} s\left(1+s_{\star}^{2}\right.}\right) & e^{-\frac{n \theta_{\star}^{2}}{64 \sigma^{4}}} \sum_{k=0}^{s_{\star}-1}\binom{s_{\star}}{k}(1+2 s)^{k} \\
& \leq 2 p^{C_{1} s\left(1+s_{\star}^{2}\right)} e^{-\frac{n \theta_{\star}^{2}}{64 \sigma^{4}}} \sum_{k=0}^{s_{\star}-1}\left(C_{1}\left(1+s_{\star}\right)\right)^{k} \\
& \leq 2 p^{C_{1} s\left(1+s_{\star}^{2}\right)} e^{-\frac{n \theta_{\star}^{2}}{64 \sigma^{4}}}\left(C_{1}\left(1+s_{\star}\right)\right)^{s_{\star}} \\
& \leq 2 \exp \left(-\frac{n \underline{\theta}_{\star}^{2}}{64 \sigma^{4}}+C_{1}\left(1+s_{\star}^{3}\right) \log (p)\right) \\
& \leq \exp \left(-\frac{n \underline{\theta}_{\star}^{2}}{128 \sigma^{4}}\right) \leq \frac{1}{p},
\end{aligned}
$$

for $n \geq C_{2} \underline{\theta}_{\star}^{-2}\left(1+s_{\star}^{3}\right) \log (p)$, for some constant C_{2}. This ends the proof.

Lemma 4. Assume H 2, and fix $s>0$. There exist constants C_{1}, C_{2} that depends only on $\sigma, \underline{\kappa}, c_{0}$ and $\left\|\theta_{\star}\right\|_{\infty}$ such that for $n \geq C_{1} s^{2} \log (p)$, the following holds. For all $\delta \in \Delta_{s}$, and for all pair $j \neq k$, such that $\delta_{j}=0$, it holds

$$
\begin{equation*}
\left|X_{j}^{\prime} L_{\delta}^{-1} X_{k}\right| \leq C_{2}\left(1+\frac{\|\delta\|_{0}^{1 / 2}}{n} 1_{\left\{\delta_{k}=1\right\}}\right) \sqrt{n \log (p)}, \quad \text { and } \quad X_{j}^{\prime} L_{\delta}^{-1} X_{j} \geq \frac{n}{2} \tag{37}
\end{equation*}
$$

Proof. Applying the Woodbury identity to L_{δ}, we have

$$
\begin{equation*}
L_{\delta}^{-1}=I_{n}-\frac{1}{\sigma^{2}} X_{\delta}\left(I_{\|\delta\|_{0}}+\frac{1}{\sigma^{2}} X_{\delta}^{\prime} X_{\delta}\right)^{-1} X_{\delta}^{\prime} \tag{38}
\end{equation*}
$$

It follows that

$$
X_{j}^{\prime} L_{\delta}^{-1} X_{k}=\left\langle X_{j}, X_{k}\right\rangle-\frac{1}{\sigma^{2}} X_{j}^{\prime} X_{\delta}\left(I_{\|\delta\|_{0}}+\frac{1}{\sigma^{2}} X_{\delta}^{\prime} X_{\delta}\right)^{-1} X_{\delta}^{\prime} X_{k} .
$$

Under the sample size condition, by (13), we have

$$
\left|\frac{1}{\sigma^{2}} X_{j}^{\prime} X_{\delta}\left(I_{\|\delta\|_{0}}+\frac{1}{\sigma^{2}} X_{\delta}^{\prime} X_{\delta}\right)^{-1} X_{\delta}^{\prime} X_{k}\right| \leq \frac{2\left\|X_{\delta}^{\prime} X_{j}\right\|_{2}\left\|X_{\delta}^{\prime} X_{k}\right\|_{2}}{\sigma^{2} n} .
$$

By assumption $\delta_{j}=0$. If $\delta_{k}=0$, then

$$
\left\|X_{\delta}^{\prime} X_{j}\right\|_{2}\left\|X_{\delta}^{\prime} X_{k}\right\|_{2} \leq \sqrt{c_{0}\|\delta\|_{0} n \log (p)} \sqrt{c_{0}\|\delta\|_{0} n \log (p)},
$$

and we deduce that

$$
\left|X_{j}^{\prime} L_{\delta}^{-1} X_{k}\right| \leq \sqrt{c_{0} n \log (p)}+\frac{2 c_{0}\|\delta\|_{0} \log (p)}{\sigma^{2}} \leq C \sqrt{n \log (p)}
$$

provided that $n \geq s^{2} \log (p)$. Suppose now that $\delta_{k}=1$. Note that starting from (38) we can also write

$$
X_{\delta}^{\prime} L_{\delta}^{-1} X_{j}=\left(I_{\|\delta\|_{0}}+\frac{1}{\sigma^{2}} X_{\delta}^{\prime} X_{\delta}\right)^{-1} X_{\delta}^{\prime} X_{j}
$$

This implies that if $\delta_{k}=1$, then

$$
\left|X_{j}^{\prime} L_{\delta}^{-1} X_{k}\right| \leq \frac{2\left\|X_{\delta}^{\prime} X_{j}\right\|_{2}}{n} \leq \frac{2 \sqrt{c_{0}\|\delta\|_{0} n \log (p)}}{n} \leq C_{2} \sqrt{\frac{\|\delta\|_{0} \log (p)}{n}}
$$

which establishes the first part of (37). When $j=k$, we get

$$
X_{j}^{\prime} L_{\delta}^{-1} X_{j} \geq n-\frac{2 c_{0}\|\delta\|_{0} \log (p)}{\sigma^{2}} \geq \frac{n}{2}
$$

under the sample size condition $n \geq 2 c_{0} s \log (p) / \sigma^{2}$.

Lemma 5. Assume H2, and let \mathcal{E}_{0} as in (14). There exist positive constant C_{1}, C_{2} that depends only on c_{0}, c_{2}, and c (in the definition of \mathcal{E}_{0}) such that for $n \geq C_{1} s_{\star}^{2} \log (p)$,

$$
\mathbb{E}_{\star}\left[1_{\mathcal{E}_{0}}(Y) \Pi\left(\|\delta\|_{0}>\left(1+C_{2}\right) s_{\star} \mid \mathcal{D}\right)\right] \leq \frac{2}{p}
$$

Proof. The lemma follows from Theorem 2.2 of Atchade and Bhattacharyya (2019), applied with $\bar{\rho}=2 \sqrt{c n \log (p)} / \sigma$, and $\bar{\kappa}=s_{\star} n$. The sub-Gaussian assumption in H2(1) implies that Equation (2.1) of Atchade and Bhattacharyya (2019) holds with $r_{0}=n /\left(2 \sigma^{2} \bar{\rho}\right)$ under the sample size condition. Then using the assumption in H 2 that n / p and $\left\|\theta_{\star}\right\|_{\infty} / \log (p)$ remain bounded from above by c_{2}, we checked that Equation 2.2 of Atchade and Bhattacharyya (2019) is satisfies for some absolute constant c_{0}.

Appendix E. Description of THE COUPLED CHAINS FOR MIXING TIME ESTIMATION

We describe here the specific coupled Markov chain employed to estimate the mixing time plots presented in Section 4.1. We describe the method for Algorithm 1. Algorithm 2 proceeds similarly.

We start with a brief description of the method. Let $\left\{X^{(t)}, t \geq 0\right\}$ be the Markov chain generated by Algorithm 1, where $X^{(t)}=\left(\delta^{(t)}, \theta^{(t)}\right) \in \mathrm{X}$. Let K denote the transition kernel of the Markov chain $\left\{X^{(t)}, t \geq 0\right\}$. The basic idea of the method is to construct a coupling \check{K} of K with itself: that is, a transition kernel on $\mathrm{X} \times \mathrm{X}$ such that $\check{K}((x, y), A \times \mathbf{X})=K(x, A), \check{K}((x, y), \mathrm{X} \times B)=K(y, B)$, for all $x, y \in \mathrm{X}$, and all measurable sets A, B. The coupling \check{K} is constructed in such a way that $\check{K}((x, x), \mathcal{D})=1$, where $\mathcal{D} \stackrel{\text { def }}{=}\{(x, x): x \in \mathrm{X}\}$. The method then proceeds as follows. Fix a $\operatorname{lag} L \geq 1$. Draw $X^{(0)} \sim \Pi^{(0)}, Y^{(0)} \sim \Pi^{(0)}$ (where $\Pi^{(0)}$ is the initial distribution as given in the initialization step in Algorithm 11). Draw $X^{(L)} \mid\left(X^{(0)}, Y^{(0)}\right) \sim K^{L}\left(X^{(0)}, \cdot\right)$. Then for any $k \geq 1$, draw,

$$
\left(X^{(L+k)}, Y^{(k)}\right) \mid\left\{\left(X^{(L+k-1)}, Y^{(k-1)}\right), \ldots,\left(X^{(L)}, Y^{(0)}\right)\right\} \sim \check{K}\left(\left(X^{(L+k-1)}, Y^{(k-1)}\right), \cdot\right) .
$$

Setting

$$
\tau^{(L)} \stackrel{\text { def }}{=} \inf \left\{k>L: X^{(k)}=Y^{(k-L)}\right\},
$$

it then holds under some ergodicity assumptions on P (see Biswas et al. (2019)) that

$$
\begin{equation*}
\left\|\Pi^{(t)}-\Pi\right\|_{\mathrm{tv}} \leq \mathbb{E}\left[\max \left(0,\left\lceil\frac{\tau^{(L)}-L-t}{L}\right\rceil\right)\right] \tag{39}
\end{equation*}
$$

where $\lceil x\rceil$ denote the smallest integer above x. The implication of (39) is that we can empirically upper bound the left hand side of (39) by simulating multiple copies of the joint chain as described above and then approximating the expectation on the right hand side of (39) by Monte Carlo. We refer the reader to Biswas et al. (2019) for more details on the construction of such coupled kernels.

We modify Algorithm 1 to construct the coupled kernel \check{P}. Let $\left(\delta^{(1, t)}, \theta^{(1, t)}\right)$ and let $\left(\delta^{(2, t)}, \theta^{(2, t)}\right)$ denote the states of the two chains at time t. At some iteration $t \geq 1$, given $\left(\delta^{(1, L+t)}, \theta^{(1, L+t)}\right)=\left(\delta^{(1)}, \theta^{(1)}\right)$ and $\left(\delta^{(2, t)}, \theta^{(2, t)}\right)=\left(\delta^{(2)}, \theta^{(2)}\right)$, we now describe how to generate the next state of the coupled chain.

In step 1 , to update $\delta^{(1)}$ and $\delta^{(2)}$, we first make use of the same randomly drawn subset J. For $i=1,2$, drawing $\bar{\delta}^{(i)} \sim Q_{\theta}^{(J)}\left(\delta^{(i)}, \cdot\right)$ is equivalent to let $\bar{\delta}_{-\mathrm{J}}^{(i)}=\delta_{-\mathrm{J}}^{(i)}$, and for any $j \in \mathrm{~J}$, draw $\bar{\delta}_{j}^{(i)} \sim \operatorname{Ber}\left(q_{j}^{(i)}\right)$ which we implement in the following way. We first draw a common uniform number $u_{j} \sim \operatorname{Uniform}(0,1)$, then we obtain $\bar{\delta}_{j}^{(i)}=$ $\mathbf{1}\left\{q_{j}^{(i)} \leq u_{j}\right\}$ for $i=1,2$.

In step 2 , to update $\theta^{(1)}$ and $\theta^{(2)}$, for simplicity, we partition the indices $\{1, \ldots, p\}$ into four groups: $G_{a b}=\left\{j: \bar{\delta}_{j}^{(1)}=a, \bar{\delta}_{j}^{(2)}=b\right\}$ for $a, b=0,1$.

To update the components of $\theta_{G_{00}}^{(1)}$ and $\theta_{G_{00}}^{(2)}$, for any $j \in G_{00}$ we first draw a common standard normal random variables Z_{j}, and then obtain $\bar{\theta}_{j}^{(i)}=\rho_{0}^{-\frac{1}{2}} Z_{j}$ for $i=1,2$.

To update the components of $\theta_{G_{01}}^{(1)}$ and $\theta_{G_{01}}^{(2)}$, Since in linear regression, $[\theta]_{\delta} \mid \delta \sim$ $\mathbf{N}\left(\hat{\theta}_{\delta}, \Sigma\right)$, where $\hat{\theta}_{\delta}$ is describled in 16 and $\Sigma=\sigma^{2}\left(\sigma^{2} \rho_{1} I_{\|\delta\|_{0}}\right)^{-1}$, we then have $\theta^{(1)} \mid \delta^{(1)} \sim \mathbf{N}\left(\hat{\theta}^{(1)}, \Sigma^{(1)}\right)$ and $\theta^{(2)} \mid \delta^{(2)} \sim \mathbf{N}\left(\hat{\theta}^{(2)}, \Sigma^{(2)}\right)$, respectively. Then with the property of gaussian random variables, we have $\theta_{G_{01}}^{(2)} \sim \mathbf{N}\left(\hat{\theta}_{G_{01}}^{(2)}, \Sigma_{G_{01}}^{(2)}\right)$, where $\hat{\theta}_{G_{01}}^{(2)}$ are the G_{01} components of $\hat{\theta}^{(2)}$ and $\Sigma_{G_{01}}^{(2)}$ is the submatrix of $\Sigma^{(2)}$ with G_{01} rows and columns. With $\theta_{G_{01}}^{(1)} \sim \mathbf{N}\left(\mathbf{0}, \rho_{0}^{-1} I_{\left\|\delta_{G_{01}}\right\|_{0}}\right)$, we draw the maximal coupling of these two gaussian distributions to update $\bar{\theta}_{G_{01}}^{(1)}$ and $\bar{\theta}_{G_{01}}^{(2)}$. A similar updating procedure is used for the components of $\bar{\theta}_{G_{10}}^{(1)}$ and $\bar{\theta}_{G_{10}}^{(2)}$.

For components of $\theta_{G_{11}}^{(1)}$ and $\theta_{G_{11}}^{(2)}$, since we have $\theta_{G_{11}}^{(1)} \sim \mathbf{N}\left(\hat{\theta}_{G_{11}}^{(1)}, \Sigma_{G_{11}}^{(1)}\right)$, where $\hat{\theta}_{G_{11}}^{(1)}$ are the G_{11} components of $\hat{\theta}^{(1)}$ and $\Sigma_{G_{11}}^{(1)}$ is the submatrix of $\Sigma^{(1)}$ with G_{11} rows and columns, and similarly $\theta_{G_{11}}^{(2)} \sim \mathbf{N}\left(\hat{\theta}_{G_{11}}^{(2)}, \Sigma_{G_{11}}^{(2)}\right)$, we could construct another maximal coupling to update $\bar{\theta}_{G_{11}}^{(1)}$ and $\bar{\theta}_{G_{11}}^{(2)}$.

References

Atchade, Y. and Bhattacharyya, A. (2019). An approach to large-scale quasibayesian inference with spike-and-slab priors.
Biswas, N., Jacob, P. E. and Vanetti, P. (2019). Estimating convergence of markov chains with l-lag couplings.
De Sa, C., Olukotun, K. and Ré, C. (2016). Ensuring rapid mixing and low bias for asynchronous gibbs sampling. In Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48. ICML'16.
Lounici, K. (2008). Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators. Electronic Journal of Statistics 290 - 102.
Meyn, S. and Tweedie, R. L. (2009). Markov chains and stochastic stability. 2nd ed. Cambridge University Press, Cambridge.

