
A STATISTICAL PERSPECTIVE ON ALGORITHM UNROLLING

MODELS FOR INVERSE PROBLEMS

YVES ATCHADÉ, XINRU LIU, AND QIUYUN ZHU

(April 2023)

Abstract. We consider inverse problems where the conditional distribution of

the observation y given the latent variable of interest x (also known as the forward

model) is known, and we have access to a data set in which multiple instances of

x and y are both observed. In this context, algorithm unrolling has become a very

popular approach for designing state-of-the-art deep neural network architectures

that effectively exploit the forward model. We analyze the statistical complexity

of the gradient descent network (GDN), an algorithm unrolling architecture driven

by proximal gradient descent. We show that the unrolling depth needed for the

optimal statistical performance of GDNs is of order log(n)/ log(ϱ−1
n), where n is the

sample size, and ϱn is the convergence rate of the corresponding gradient descent

algorithm. We also show that when the negative log-density of the latent variable

x has a simple proximal operator, then a GDN unrolled at depth D′ can solve the

inverse problem at the parametric rate O(D′/
√
n). Our results thus also suggest

that algorithm unrolling models are prone to overfitting as the unrolling depth D′

increases. We provide several examples to illustrate these results.

1. Introduction

Inverse problems are common problems in science and engineering where one seeks

information on a latent variable of interest, given some related observation. We

consider an inverse problem with a latent quantity of interest x ∈ Rdx that is related

to the observed variable y ∈ Rdy through the so-called forward statistical model

y | x ∼ e−f(y|x)dy, (1)

2010 Mathematics Subject Classification. 62F15, 62Jxx.

Key words and phrases. Inverse problems, algorithm unrolling models, nonparametric regression,

Bayesian deep learning, gradient descent networks, Posterior contraction.

Y. Atchadé: Boston University, 111 Cummington Mall, Boston 02215 MA, United States. E-mail

address: atchade@bu.edu.

X. Liu: Boston University, 111 Cummington Mall, Boston 02215 MA, United States. E-mail

address: xinruliu@bu.edu.

Q. Zhu: University of Minnesota, 224 Church St SE, Minneapolis 55455 MN, United States.

E-mail address: qzhu@umn.edu.

1

2 YVES ATCHADÉ, XINRU LIU, AND QIUYUN ZHU

for some function f(·|x) : Rdy → R. Throughout the paper, unless otherwise stated,

all model densities are defined with respect to the corresponding Lebesgue measure.

Although the function f is unknown in general, we focus in this work on inverse

problems for which the forward model is well-understood and f is known. This is

the case with many inverse problems in imaging. An important special case in the

applications is the Gaussian linear model corresponding (up to an additive constant

that we ignore) to

f(y|x) = 1

2v2
∥y −Ax∥22, (2)

with known parameters v > 0, and A ∈ Rdy×dx . When the inverse problem is ill-posed,

additional knowledge is fundamental for good recovery of x. For example in the linear

regression model (2), it is well-known that without any additional assumption, the

minimax optimal rate in the estimation of x is of order
√
dx/dy. However this rate

can be improved if x is known to possess some additional features such as smoothness

or sparsity. A Bayesian perspective is particularly simple. If µ0 denotes a prior

distribution that encodes the information available on x, then x is inferred using its

posterior distribution

πµ0 (dx|y) ∝ µ0(dx)e
−f(y|x). (3)

Inverse problems have a long history in statistics and applied mathematics, and the

posterior distribution in (3) as well as related penalized estimators are the backbone

of rigorous inference Bissantz et al. (2007); Stuart (2010); Knapik et al. (2011); Blan-

chard & Mücke (2018); Rastogi et al. (2020). When valid information are available

on x and appropriately encoded in µ0, the posterior distribution πµ0 can enjoy better

statistical properties than say, the minimizer of x 7→ f(y|x). However, finding such

good prior distributions is often very challenging in many applications.

1.1. Learning to solve inverse problems. In a growing number of settings, par-

ticularly in image restoration tasks, researchers have access to datasets in which

the latent variable x and the related observation y are both observed. Indeed such

datasets can often be simulated in settings where f is known. Hence, suppose that

we have a dataset D = {(xi,yi), 1 ≤ i ≤ n} of i.i.d. samples, such that for 1 ≤ i ≤ n,

xi ∼ µ, and yi | xi ∼ e−f(y|xi)dy, and where µ(dx) =
1

cµ
e−R(x)dx, (4)

for some function R : Rdx → R, and a normalizing constant cµ. Hence under (4), µ

is the marginal distribution of the latent variables. The conditional distribution of xi

given yi is then given by

π(dx|yi) ∝ exp (−R(x)− f(yi|x)) dx,

ALGORITHM UNROLLING MODELS FOR INVERSE PROBLEMS 3

and its modal value is given by the function g : Rdy → Rdx with

g(y)
def
= Argmin

x∈Rdx

[f(y|x) +R(x)] . (5)

We will assume below that g(y) is uniquely defined. We stress again that the distri-

bution µ in (4) is not a prior distribution of x as selected by the researcher, but the

actual marginal distribution of x unknown to the researcher. Hence g and π(·|y) are
typically unknown. In fact, one of the key challenges in inverse problems is building

a prior distribution µ0 that is as close as possible to µ so that the resulting pos-

terior distribution as given in (3) approximates well the corresponding conditional

distribution.

In keeping with the assumption that x possesses additional structures, in many

inverse problems the support of the marginal distribution µ lays in a much smaller

(but unknown) subspace of Rdx . As a result of such marginal distribution concentra-

tion, it is often the case that the conditional distribution of x given y is also tightly

concentrated around g(y), in the sense that

xi = g(yi) + ξi, where E(ξi | yi) ≈ 0, 1 ≤ i ≤ n. (6)

The representation (6) makes clear that in such settings where we have an informa-

tive (but unknown) marginal distribution, and given a dataset D, one can learn the

function g by regressing x on y. In other words, we can learn to solve directly the

inverse problem by regression using the dataset D. The approach has become pop-

ular in computational imaging (Burger et al. (2012); Xie et al. (2012); Lucas et al.

(2018); Yang et al. (2016); Ravishankar et al. (2017); Aggarwal et al. (2017); Chun &

Fessler (2018); Zhang et al. (2017); Liu et al. (2019); Li et al. (2020)). A remarkable

contribution of this literature is a number of specific deep neural network architec-

tures generally called algorithm unrolling networks that leverage the structure of the

forward model (Gregor & LeCun (2010); Sreter & Giryes (2018); Sulam et al. (2020);

Tolooshams et al. (2020)), see also the reviews (Ongie et al. (2020); Shlezinger et al.

(2021); Monga et al. (2021)).

However a fundamental question that has not been addressed in the literature so

far is how well one can estimate the function g using these unrolling-based deep neural

network architectures.

1.2. Main contributions. To address this problem, and assuming that the data

generating process (6) holds, we consider the nonparametric regression model

xi = gW (yi) + ϵi, i = 1, . . . , n, (7)

4 YVES ATCHADÉ, XINRU LIU, AND QIUYUN ZHU

with regression errors ϵi
i.i.d.∼ N(0, σ2Idx), for some positive variance parameter σ2

taken as known for simplicity, and for a function class {gW , W ∈ W}, where gW :

Rdy → Rdx is a gradient descent neural network (GDN) function obtained by unrolling

D′ times a parametrized proximal gradient descent algorithm for solving (5). We give

precise definition below. The architecture thus makes explicit use of the forward map

f . We develop a sparse Bayesian framework for estimating (7) using a spike-and-slab

prior distribution on the parameter W , and we analyze the statistical performance of

the resulting estimator of g. We focus on the setting where the function R is convex,

but not necessarily differentiable. Under some additional regularity conditions, and

ignoring logarithmic terms, we show that GDN for estimating g achieves the statistical

error rate

C1(D
′)× n− 1

2+dx ,

for some constant C1(D
′) that depends on the unrolling depth D′, but also on the in-

put dimensions dx, dy. Keeping dimensions and the number of unrolling D′ fixed, the

result implies for example that when dy ≥ dx, the GDN architecture, by making ex-

plicit use of the forward model, achieves a better rate than the minimax rate C2n
− 1

2+dy

for estimating g : Rdy → Rdx viewed as a Lipschitz function. We note however that

these constants C1(D
′), C2 can depend poorly1 on the dimensions dx, dy.

The convergence rate of the estimator can be faster than the aforementioned

rate. Indeed, we also show that when the proximal map of R is simple and can

be well-approximated by a simple neural network function, then the GDN architec-

ture achieves a faster statistical rate. For instance, if µ is as in (20) below, a common

assumption in image restoration tasks, then ignoring log terms, our result shows that

the GDN achieves the parametric rate C3 × D′/
√
n, for some dimension-dependent

constant C3. Importantly, our result thus suggests that the statistical performance of

a GDN unrolled at depth D′ deteriorates as D′ increases, implying an overfitting phe-

nomenon. Although we do not have a matching lower bound theory to confirm this

overfitting phenomenon, we have performed extensive numerical experiments that all

show an overfitting of the model as D′ increases.

One of the practical challenges in building a GDN is the lack of theoretical guide-

lines in the choice of the depth D′. An offshoot of our theoretical analysis is the

derivation that the best performance of a GDN is achieved by scaling the network

depth as D′ ∼ log(n)/ log(ϱ−1
n), where ϱn is the convergence rate of the proximal

gradient algorithm for solving (5).

1The poor dependence on the input dimensions is not specific to our work, and is rooted in the

current state of knowledge in deep learning approximation theory (see e.g. Yarotsky (2017))

ALGORITHM UNROLLING MODELS FOR INVERSE PROBLEMS 5

1.3. Related work. Most of the existing theoretical results on algorithm unrolling

have studied the approximation capability of the resulting function class in the linear

case. For instance Chen et al. (2018) studied the capability of the GDN function

class to recover directly the signal x in the linear model (2). Gilton et al. (2020)

proposed a novel unrolling architecture based on the Neumann series identity, and

studied its approximation capability in the noiseless version of the linear model (2).

To the best of our knowledge, our work is the first to analyze the statistical properties

of algorithm unrolling in a way that accounts for both its approximation capability

and its complexity.

Several prior works have also considered the statistical complexity of other deep

learning models using a similar nonparametric regression setting where regulariza-

tion is explicitly introduced to control model complexity Barron & Klusowski (2018);

Schmidt-Hieber (2020); Taheri et al. (2021); Ee et al. (2020). Our framework is closer

to Polson & Ročková (2018) and employs a Bayesian approach. However none of

these results can be directly applied to algorithm unrolling architectures. Another

unique feature of our framework that is worth emphasizing is that it produces pos-

terior distributions that are computationally tractable using the sparse asynchronous

SGLD of (AtchadÃ© & Wang (2021)).

Finally we contrast our nonparametric regression approach with the two-step ap-

proach proposed for instance by Chang et al. (2017), where the proximity operator of

R is first estimated from the dataset D, and g is then estimated by solving (5) using

the estimated proximal operator obtained from the first step. The strategy seems

statistically sub-optimal because the estimation of the proximal operator requires es-

timating the density of µ in general, which is a fundamentally more difficult statistical

problem (Samworth (2018)). However it is conceivable that an adaptive density esti-

mation method may exist that achieve better rates for densities with simple proximal

maps, thus matching the approach developed here. More research is needed on this

topic.

1.4. Outline of the paper. The remainder of the paper is organized as follows. We

close this introduction with some general notations. The main results are described in

Section 2. The results are obtained using a more general Bayesian posterior contrac-

tion result of independent interest that we described in Section 4. Some supporting

numerical illustrations are presented in Section 3. All the proofs are postponed to

Appendix A.

6 YVES ATCHADÉ, XINRU LIU, AND QIUYUN ZHU

1.5. Notations. We define the sub-Gaussian norm of a probability measure ν on Rd

with expected value m as the smallest constant c for which the following holds∫
Rd

e⟨u,z−m⟩ν(dz) ≤ e
c2∥u∥22

2 , for all u ∈ Rd.

If Z is a random variable with distribution ν, we write ∥Z∥ψ2 to denote the sub-

Gaussian norm of ν. We note that this definition applies also to conditional densities,

and we write ∥Z|X∥ψ2 to denote the sub-Gaussian norm of the conditional distribution

of Z given X.

Throughout the paper the notation a ≲ b means that a ≤ cb, for some constant c

that does not depend on the sample size n.

1.5.1. Vectorization. Let {hW , W ∈ W} denote a generic deep neural network class

of function where hW : Rp0 → RpD , with parameter W = (WD, . . . ,W1) ∈ W def
=

RpD×pD−1 × · · · × Rp1×p0 . By vectorization, we will view W as the Euclidean space

Rq (where q
def
=
∑D

ℓ=1 pℓpℓ−1), and we will use a generic notation ∥ · ∥2 to denote its

Euclidean norm. Similarly, we will write ∥W∥0 (resp. ∥W∥∞) to denote the number

of non-zeros components of W (resp. the largest absolute value of the components of

W). For any 1 ≤ ℓ ≤ D, we will similarly view Wℓ as a vector element of Rpℓpℓ−1 , and

define similarly ∥Wℓ∥2, ∥Wℓ∥0 and ∥Wℓ∥∞. Hence, in what follows, for a matrix M ,

∥M∥2 will always denote the Frobenius norm of M , not its spectral norm. We will

write the spectral norm as ∥ · ∥op.

2. Learning to solve inverse problems

Summarizing the introductory discussion on the data generating process, we make

the following assumption.

H 1. We have a data set D = {(xi,yi), 1 ≤ i ≤ n} of i.i.d. samples generated

according to (4) such that for 1 ≤ i ≤ n,

xi = g(yi) + ξi, where E(ξi | yi) = 0,

for some independent error terms (ξ1, . . . , ξn). Furthermore we assume that each

ξi is a conditionally sub-Gaussian random vector given yi, with a non-random sub-

Gaussian norm σi < ∞.

Remark 1. Assumption H1 formalizes the discussion in the introduction on the con-

centration of the conditional distribution of xi given yi. As expanded upon in the

introduction, this assumption is conceptually justified in seetings where the latent

variable x has additional structures, and the marginal distribution of x is concen-

trated on a low-dimensional subset of Rdx . Checking H1 is similar to establishing a

ALGORITHM UNROLLING MODELS FOR INVERSE PROBLEMS 7

Bernstein-von Mises theorem for the conditional distribution of xi given yi, a chal-

lenging problem that is beyond the scope of this work (Vaart (1998); Bickel & Kleijn

(2012); Nickl (2017); Nickl & Sohl (2019)).

Let ςi denote the conditional sub-Gaussian norm of ∥ξi∥2 given yi. The conditional

sub-Gaussian assumption on ξi imposed in Assumption 1 implies that ςi < ∞ (see

e.g. Theorem 3.1.1 of Vershynin (2018)). Throughout we set

σ̄
def
= max

1≤i≤n
σi, and ς̄

def
= max

1≤i≤n
ςi.

2.1. Gradient descent networks. We consider the nonparametric regression (7),

where {gW , W ∈ W} is a gradient descent network (GDN) function class that we

now define. First we introduce a generic feed-forward deep neural network function

HW : Rdx → Rdx . Let D > 0 be the depth of the network. Let (pD, . . . , p0) be a

sequence of integers representing the sizes of the layers of the network, with p0 = dx,

and pD = dx. For 1 ≤ ℓ ≤ D, let aℓ : Rpℓ → Rpℓ be activation functions that we

assume Lipschitz: for all z1, z2 ∈ Rpℓ ,

aℓ(0) = 0, and ∥aℓ(z1)− aℓ(z2)∥2 ≤ ∥z1 − z2∥2. (8)

For B ∈ Rpℓ×pℓ−1 , we set

Ψ
(ℓ)
B (z)

def
= aℓ(Bz), z ∈ Rpℓ−1 . (9)

With parameter W = (WD, . . . ,W1), where Wℓ ∈ Rpℓ×pℓ−1 , we consider the function

HW : Rdx → Rdx defined as

HW (x) = Ψ
(D)
WD

◦ · · · ◦Ψ(1)
W1

(x), x ∈ Rdx , (10)

where f ◦ g is the composition of f with g.

Remark 2. Feed-forward deep neural network models are usually written with addi-

tional bias terms (that is, by defining Ψ
(ℓ)
B (z) as aℓ(Bz+b)). However our formulation

incurs no loss of generality, since these bias parameters can always be subsumed into

the matrix B, by appropriately enlarging B and adding an intercept to the input.

Given γ > 0, we use the function HW to approximate the proximal map of γR
(where R is as in (4)), defined as

ProxγR(x)
def
= Argmin

u∈Rdx

[
γR(u) +

1

2
∥u− x∥22

]
.

Given a step-size γ > 0, W ∈ W, and y ∈ Rdy we thus define the function Fy,W :

Rdx → Rdx by

Fy,W (x)
def
= HW (x− γ∇xf(y|x)) .

8 YVES ATCHADÉ, XINRU LIU, AND QIUYUN ZHU

Given D′ ≥ 1 (the depth of the network), we consider the function gW defined as

gW (y)
def
= Fy,W ◦ · · · ◦ Fy,W︸ ︷︷ ︸

D′ times

(x(0)), (11)

for some initial value x(0) ∈ Rdx . We note that in addition to W , the function gW

depends also on the step-size γ, the depth D′, and the initial value x(0). The network

architecture in (11) is the so-called (proximal) gradient descent network (GDN), and

belong to the class of so-called algorithm unrolling (or unfolding) deep learning mod-

els, where a statistical model is built by iterating an optimization algorithm. Many

variations have been proposed in the literature based on various other optimization

schemes (we refer the reader to the references in the introduction).

For x ∈ Rdx , and y ∈ Rdy , we set

Fy(x)
def
= ProxγR (x− γ∇xf(y|x)) .

Looking at the definition of (11), it is clear that under appropriate convexity as-

sumptions and for well-selected step size γ, the convergence of F j
y(x) toward g(y) is

guaranteed, where hj denotes the composition of h, j times. Therefore, if for some

W , HW ≈ ProxγR, then we can expect gW ≈ g for D′ sufficiently large, by standard

convex optimization theory. As a result, the function class {gW , W ∈ W} typically

has good skills in approximating g. We impose next the necessary assumptions for

the intuition above to hold.

H2. (1) The function R : Rdx → R is convex. There exists M such that for

all y ∈ Rdy , the function x 7→ f(y|x) is convex, differentiable, and with a

M -Lipschitz gradient. Furthermore, the step-size γ satisfies 0 < γ ≤ M−1,

and for all y ∈ Rdy , g(y) is uniquely defined.

(2) There exist R0 < ∞, ϱn ∈ [0, 1) such that for all k ≥ 1,

max
1≤i≤n

∥F k
yi
(x(0))− g(yi)∥2 ≤ R0ϱ

k
n.

Remark 3. Assumption H2-(1) is a standard set up for proximal gradient descent

(Parikh & Boyd (2013)). Assumption H2-(2) is stronger and imposes a linear con-

vergence rate. It is well-known to hold for strongly convex problems. For problems

where a local linear convergence holds, H2-(2) can also be shown to follow from H2-

(1) when x(0) is close enough to the solution. For instance it is known that such

local linear convergence of proximal gradient descent holds for the lasso problem (Tao

et al. (2016)). The main challenge to go beyond the linear rate is the fact that sub-

linear rates are typically expressed in terms of the function value, not in terms of the

parameter as needed here.

ALGORITHM UNROLLING MODELS FOR INVERSE PROBLEMS 9

We also impose the following assumption that models the approximation of the

proximal map ProxγR.

H3. There exist β1, β2 ≥ 0, such that for all ϵ ∈ (0, 1) we can construct a feed-forward

deep neural network HW , as in (10), with depth 1 ≤ D ≤ D0 log(
√
dx/ϵ), maximum

layer size no larger than N0

(√
dx/ϵ

)β1, maximum parameter absolute value ∥W∥∞ no

larger than 1, and maximum sparsity ∥W∥0 no larger than s0
(√

dx/ϵ
)β2, for constants

D0, N0, s0 that do not depend on ϵ such that for all R < ∞,

sup
x: ∥x∥2≤R

∥∥HW (x)− ProxγR(x)
∥∥
2
≤ ϵ. (12)

Furthermore, there exists R1 < ∞ such that with the constructed network HW ,

max
j≥1

max
1≤i≤n

∥F j
yi,W

(x(0))∥2 ≤ R1. (13)

Remark 4. Since x 7→ ProxγR(x) is a Lipschitz map, we can always invoke classical

deep learning approximation theory for smooth functions (see e.g. Schmidt-Hieber

(2020); DeVore et al. (2021)) to conclude that Assumption 3 holds with β1 = β2 = dx.

However better approximation is possible if ProxγR is a simple map.

The condition in (13) is a technical assumption that simplifies the mathematical

analysis. It can be automatically enforced by adding a layer-normalization layer in

HW (Ba et al. (2016)).

2.2. Bayesian inference using spike-and-slab priors. We consider the problem

of fitting model (7), where {gW , W ∈ W} is the GDN function class constructed in

(11). The parameter space is W def
= RpD×pD−1 ×· · ·×Rp1×p0 . As indicated at the end

of the introduction, at times we shall view W as the Euclidean space Rq, where

q
def
=

D∑
ℓ=1

(pℓ × pℓ−1).

Our initial motivation in this work comes from inverse problems in remote sens-

ing. It was therefore important for us to analyze a statistical procedure that can be

implemented in practice. An important shortcoming of the current statistical the-

ory of deep learning models under sparsity constraints (Barron & Klusowski (2018);

Schmidt-Hieber (2020); Taheri et al. (2021); Ee et al. (2020)) is the lack of compu-

tational tractability of the resulting estimators. To address this issue we propose to

fit the model {gW , W ∈ W} in a Bayesian framework using a spike and slab prior

(Atchade & Bhattacharyya (2018)). To that end, we introduce a sparsity structure

parameter Λ = (ΛD, . . . ,Λ1) ∈ S def
= {0, 1}pD×pD−1 × · · · × {0, 1}p1×p0 that encodes

10 YVES ATCHADÉ, XINRU LIU, AND QIUYUN ZHU

the support of W . We assume that Λ has a prior distribution given by

Π0(Λ) ∝
(
1

q

)(u+1)∥Λ∥0
, Λ ∈ S, (14)

for some parameter u ≥ 1. This prior corresponds to the assumption that the entries

of Λ are independent Bernoulli random variables Ber((1 + qu+1)−1). Given Λ we

assume that the entries of W are conditionally independent with joint density

Π0(W |Λ) =

D∏
ℓ=1

∏
(i,k): Λℓ,i,k=1

√
ρ1
2π

e−
ρ1
2
W 2

ℓ,ik

∏
(i,k): Λℓ,k=0

√
ρ0
2π

e−
ρ0
2
W 2

ℓ,i,k , (15)

for some parameters 0 < ρ1 < ρ0. Throughout the paper, and without further notice

we set

ρ1 = 1. (16)

The variance parameter ρ0 can be chosen fairly arbitrarily. However, in order to ease

MCMC sampling from the resulting posterior distribution it is crucial to choose ρ0

small, of order 1/n. We refer the reader to (Atchade & Bhattacharyya (2018)) for

further discussion. Using this prior distribution and the regression model (7), we

consider the posterior distribution on Θ
def
= S ×W with density given by

Π(Λ,W | D) ∝ Π0(Λ,W) exp

(
− 1

2σ2

n∑
i=1

∥xi − gW⊙Λ(yi)∥22

)
, (17)

where W ⊙Λ denotes the component-wise product of W and Λ. To use this posterior

distribution we draw sample (Λ,W) ∼ Π(·|D), and use gΛ⊙W as inversion map. Since

Λ is typically sparse under Π, gΛ⊙W is a sparse GDN. For h : Rdy → Rdx , we set

∥h∥n
def
=

√√√√ 1

n

n∑
i=1

∥h(yi)∥22.

Our goal is to derive a bound on ∥gΛ⊙W − g∥n, when (Λ,W) ∼ Π(·|D).

Theorem 5. Assume H1-H3. Consider the nonparametric regression (7) for estimat-

ing g, where the function class {gW , W ∈ W} is as defined in (11), and the regression

variance parameter σ satisfies σ ≥ σ̄. Then for all q large enough, and n ≥ σ2 log(p),

we can construct a function class {HW , W ∈ W}, such that at unrolling depth D′

that satisfies

D′ ≳
log(n)

− log(ϱn)
,

ALGORITHM UNROLLING MODELS FOR INVERSE PROBLEMS 11

the posterior distribution Π(·|D) in (17) satisfies

Π

∥gΛ⊙W − g∥n > Mσ̄
(D′)1+

β2
2

n
1

2+β2

| D

 ≤ 12

q
, (18)

with probability at least 1− e−c1n − c1
q , for some absolute constant c1, and a constant

M ≲ (log(q))1/(2+β2) log(n)3/2.

Proof. See Section A.2. □

We make several remarks here. (a) In contrast to common practice where D′ is

often chosen on an ad-hoc manner, Theorem 5 recommends carefully scaling the depth

parameter D′ as

D′ ∼ − log(n)/ log(ϱn),

for optimal performance. (b) The expression of the rate in (18) suggests that the

statistical performance of GDN unrolled at depth D′ deteriorates as D′ increases,

implying an overfitting phenomenon. Although we do not have a matching lower

bound theory to confirm this overfitting phenomenon, we have performed several

numerical experiments that all show an overfitting of the model as D′ increases. (c)

Algorithm unrolling allows researchers to build deep neural network architectures that

exploit the structure of the problem. Are those architecture provably better than off-

the-shelves architectures that do not make use of the forward problem? Our results

shed some light on this question. In the setting of H2, the function g of interest is at

best Lipschitz2. Therefore the minimax rate in the estimation of g in a nonparametric

regression setting without further knowledge on the structure of the problem is

C2n
− 1

2+dy .

We can invoke classical deep learning approximation theory (see e.g. Yarotsky (2017);

Schmidt-Hieber (2020); DeVore et al. (2021)) to conclude that H3 holds with β1 =

β2 = dx. In that case, up to log-terms, we deduce from Theorem 5 that GDN achieves

the convergence rate

C1n
− 1

2+dx .

Hence, Theorem 5 implies that in inverse problems where dy is larger than dx,

the unrolling framework has a better convergence rate than the minimax rate of

estimating g from the data D in a nonparametric regression. However Theorem 5

has some limitations. Firstly, the constants C1, C2 in the rates posted above depend

2Indeed, it can be easily shown that if for all y ∈ Y, x 7→ f(y|x) is strongly convex with strong

convexity parameter κ, and x 7→ ∇xf(y|x) is κ̄ Lipschitz then y 7→ g(y) is Lg-Lipschitz with

Lg ≤ 2κ̄/κ

12 YVES ATCHADÉ, XINRU LIU, AND QIUYUN ZHU

on dx and dy in ways that are poorly understood. This comes from the scalings

of constants in current deep neural network approximation theory Yarotsky (2017);

Schmidt-Hieber (2020). Another limitation of current minimax rates is the fact that

deep learning models can often adapt to additional properties of the function of

interest and converge much faster than the theoretical minimax rate. For instance

Schmidt-Hieber (2020) shows that FNN models achieves faster rate in the estimation

of compositional functions. We give a similar example below.

(d) The use of the empirical norm ∥u∥n =
√∑n

i=1 u(yi)
2 instead of the L2 popu-

lation norm of y in (18) is another limitation of our result, although this is a fairly

common practice in nonparametric estimation, and does not fundamentally change

the resulting contraction rate. More technically, working in the L2 norm amounts to

the additional control of the term

sup
W∈W̃ (j)

∣∣∣∣∣n−1
n∑
i=1

(gW (yi)− g(yi))
2 − ∥gW − g∥22

∣∣∣∣∣ , (19)

in Lemma D.5. Because the sup in (19) is taken over well behaved sets W̃ (j), this uni-

form deviation can be controlled using standard tools as in Wainwright (2019) Chapter

14, but would require additional assumptions on the marginal distribution of y that

we wish to avoid making.

2.2.1. Application to sparse marginal distributions. We give another application of

Theorem 5 where the posterior predictive function obtained from the GDN achieves

the parametric rate. When dealing with images, several authors such as Beck &

Teboulle (2010); Dong et al. (2011) have argued that natural image data are often

sparse after linear transformation (such as a difference operators, or wavelet trans-

forms), and suggested modeling the marginal distribution µ as

µ(dx) =
1

cµ
e−R0(Bx)dx, (20)

for some simple sparsity inducing function R0, and a non-singular matrix B ∈ Rdx×dx .
In other words, R(x) = R0(Bx). A common choice is R0(x) = λ∥x∥1 or R0(x) =

λ∥x∥1 + λ2∥x∥2/2, for parameters λ, λ1, λ2 ≥ 0. If B is an orthogonal matrix, and

ProxγR0 denotes the proximal operator of R0, then by proximal calculus (see e.g.

Lemma 2.8 of Combettes & Wajs (2005)), we have

ProxγR(x) = B−1 ProxγR0 (Bx) . (21)

For example, given λ1 > 0, λ2 ≥ 0, suppose that R0 is the elastic-net regularization

prior of Zou & Hastie (2005) given by

R0(x) = λ1∥x∥1 +
λ2

2
∥x∥22. (22)

ALGORITHM UNROLLING MODELS FOR INVERSE PROBLEMS 13

Then the proximal of γR0 is ProxγR0(x) = (sγ(x1), · · · sγ(xdx))T, where

sγ(x) = ReLu

(
x− γλ1

1 + γλ2

)
− ReLu

(
−x− γλ1

1 + γλ2

)
,

and where ReLu(t)
def
= max(t, 0). Therefore, ProxγR0(x) can be represented exactly

using a 2-layer ReLu neural network with layer sizes (dx, 2dx, dx), and ProxγR(x)

can be represented exactly using a 4-layer ReLu neural network with layer sizes

(dx, dx, 2dx, dx, dx). Hence, H3 holds with depth D = 4, β1 = β2 = 0. Further-

more, since R is strongly convex, if we focus on the linear regression model and take

the forward model as in (2), then H2 holds. Hence Theorem 5 yields the following.

Corollary 6. Suppose that H1 holds with f as in (2), and suppose that µ is as in

(20) with some orthogonal matrix B, and R0 as in (22). Suppose also that σ ≥ σ̄.

Then we can construct a deep learning function class {HW , W ∈ W}, with depth

D = 4, such that at unrolling depth D′ ≳ − log(n)/ log(ϱn) the posterior distribution

Π(·|D) in (17) satisfies

Π

(
∥gΛ⊙W − g∥n ≥ Mσ̄D′

√
n

| D
)

≤ 12

q
,

with probability at least 1− c1
q −e−c1n, for some absolute constant c1, where M depends

on some log terms that we ignore.

3. Numerical illustration

We illustrate our theoretical results with a toy example, a simulation and a real

data deblurring problem. For all examples we draw samples from the posterior distri-

bution (17) using the Sparse Asynchronous Stochastic Gradient Langevin Dynamics

(SA-SGLD) sampler of Atchade & Wang (202X), an approximate MCMC sampler

designed for posterior distributions of the form (17), that employs asynchronicity for

fast sampling. For more details on the approximate correctness of the sampler we

refer the reader to Atchade & Wang (202X). Computationally the SA-SGLD sam-

pler is implemented at the cost of 2 back-propagation through the GDN per MCMC

iteration.

3.1. Learning the Elastic Net regression map. In this section, we illustrate our

theoretical results with the example of learning the elastic-net regularization to solve

a linear regression model.

Data generation: Data generation: We generate a dataset D = {(xi,yi), 1 ≤
i ≤ n} where xi

i.i.d.∼ µ, and yi|xi ∼ N(Axi, v
2Idy). The entries of the matrix

A are generated independently from the standard normal distribution, and we set

14 YVES ATCHADÉ, XINRU LIU, AND QIUYUN ZHU

v2 = 0.001. We choose µ(dx) ∝ e−R0(Bx)dx as in (20), where R0 is the elastic net

density as in (22), and B = Idx . We set n = 200, dx = dy = 100, and λ1 = 1, λ2 = 1.

Model architecture. We specify HW as a FNN with depth D = 2, and layer

(p0, p1, p2) = (dx, 2dx, dx). To prevent overfitting, we specify the models to only learn

the parameters that connect the nodes between layers in each dimension of xi, which

reduces the number of model parameters to q = 7 ∗ dx = 700. We consider several

values of the unrolling depth D′: D′ = 1 (GDN1), D′ = 5 (GDN2), D′ = 10 (GDN3),

and D′ = 20 (GDN4) for comparison3.

Training details: For the Bayesian prior we choose ρ0 = n, ρ1 = 1, and u = 1.

We choose σ = 0.001 in (17), and run the SA-SGLD with a constant step-size 2∗10−6

for GDN. The mini-batch size is set to 100. The initial value x(0) of GDN is set to

0. The MCMC sampler is implemented in Pytorch on a high-performance computer

with a Nvidia Tesla V100 GPU. We run the sampler for 104 iterations.

Evaluation procedure: For the comparison, we generate 1000 test samples and

evaluate the prediction errors of the resulting estimator gΛ⊙W , where (Λ,W) ∼
Π(·|D). The performance of GDN are compared to the performance of g, which in

this problem is easily calculated by proximal gradient descent. We do this comparison

by computing the error

e(Λ,W) =
1

1000

1000∑
i=1

∥gΛ⊙W (yi)− g(yi)∥2,

where the average is taking over the test sample. The boxplots in Figure 1 show

the distributions of the errors obtained by taking 500 samples of (Λ,W) along the

MCMC sampler. In this toy example, D′ = 10 (GDN3) yields the best results and as

predicted by our theory, GDN deteriorates as the unrolling depth increases.

3.2. Illustration with a simulated data deblurring problem. Image deblurring

is a common inverse problem in computational imaging. Here for illustration, we start

with a simulated dataset D for experimental purposes.

Data generation. We generate n = 500 images of size 16 × 16, that we then

blurred using a Gaussian blurring convolution kernel with variance 3 without restric-

tion on the kernel range4.

3The step-size γ of GDN is taken as γ1 = 2v2

λmax(A′A)
a, where λmax(A

′A) is the largest eigenvalue

of A′A.
4Each image is 16× 16 matrix partitioned into 4 blocks where the upper left and lower right are

8×8 diagonal matrices with diagonal elements sampled from N(20, 0.5) and N(−10, 0.1) respectively,

where the upper right is a 8 × 8 matrix with entries sampled from N(10, 0.1), and the lower left a

8× 8 matrix with entries sampled from N(−10, 5).

ALGORITHM UNROLLING MODELS FOR INVERSE PROBLEMS 15

Figure 1. Distributions of prediction errors on test samples: GDN1

(D’=1), GDN2 (D’=5) and GDN3 (D’=10), GDN4 (D’=20).

Model architecture. We construct HW in (10) as a 3-layer relu-convolutional

neural network5. The total number of parameters is q = 18, 881. We evaluate the

GDN model at unrolling depth D′ = 2 (GDN1), D′ = 4 (GDN2), D′ = 12 (GDN3)

and D′ = 24 (GDN4), and we do a comparison with two feedforward convolutional

neural network (FNN) that do not make use of the forward problem. The first FNN

has the same architecture as HW (FNN1), while the second is a 6-layer FNN with

total number of parameter q = 136, 641 (FNN2)6. All the layers are padded to keep

the image size constant.

Training details: For the Bayesian prior, we use ρ0 = n, ρ1 = 1, and u = 8000.

We choose σ2 = 0.01 in (17), and run the SA-SAGLD with a constant step-size

2× 10−8 for both FNN and GDN. The mini-batch size is set to 50 in both cases. The

MCMC sampler are implemented on a Nvidia Tesla V100 GPU system with 384 GB

GPU memory running Pytorch. We run both samplers for 104 iterations.

5consisting of 3 convolutional layers with respective sizes 3, 3, 1, respective number of filters

32, 64, 1. Each layer except the last layer is followed by a LayerNorm layer and a ReLu layer
6The 6-layer network consists of 2 convolutional layers, 1 channel-wise fully connected layer, 3 de-

convolutional layers with respective sizes 5, 3, 2, 4, 5, 3, respective number of filters 32, 64, 64, 64, 32, 1.

Each layer except the last layer is followed by a LayerNorm layer and a ReLu layer.

16 YVES ATCHADÉ, XINRU LIU, AND QIUYUN ZHU

Evaluation procedure. We generate 500 test samples to evaluate the prediction

errors of the six models. The boxplots in Figure 2 show the distribution of the mean

square error (same as 3.1) of the last 2000 samples of (Λ,W) along the MCMC

sampler of each model. Figure 3 shows an example of reconstruction from FNN1,

FNN2, GDN1, and GDN3. We observe that GDN outperforms FNN1, and can achieve

similar performance as FNN2 when the unrolling depth is appropriately selected (not

too small, nor too large). The experiment again confirms the importance of scaling

appropriately the unrolling depth as highlighted in our theoretical results.

Figure 2. Test loss comparison between FNN1 (3 conv), FNN2 (3

conv + 1 cfc + 3 deconv), GDN1 (D′ = 2), GDN2 (D′ = 4), GDN3

(D′ = 12) and GDN4 (D′ = 24)

3.3. Illustration with CelebA dataset. We extend the last example to the de-

blurring of CelebA images Liu et al. (2015).

Data generation. We randomly select 20, 000 images from the celebA dataset

that we resize to 64× 64. We generate the corresponding observed measurements yi

through the linear forward model (1), where A is a Gaussian blurring convolution

matrix with variance 6.25, and where v2 = 0.01 leading to a highly ill-conditioned

inverse problem.

Model architecture. We take HW in (10) as a 3-layer relu-convolutional neural

network7. The depth of the GDN is either D′ = 4 (GDN1), D′ = 12 (GDN2), or

D′ = 24 (GDN3). The total number of parameters in the same in all three cases and

equal to q = 267, 777. We compare this model with a feedforward architecture that

7with kernel sizes 4, 4, 2, and the number of filters that we take here as 256, 256, 1. All padded to

keep image size constant

ALGORITHM UNROLLING MODELS FOR INVERSE PROBLEMS 17

Figure 3. Reconstruction result from FNN1 (upper right), FNN2

(lower left), GDN1 D′ = 2 (lower middle) and GDN3 D′ = 12 (lower

right)

doe not make use of the forward model8. The total number of parameter of the FNN

is q = 2, 271, 297.

Training details: In the MCMC, the mini-batch size taken as B = 164, and the

step-size is taken as γ = 10−9 for FNN, GDN2, and GDN3, and γ = 10−8 for GDN1.

We run the algorithms for 80, 0000 iterations using a high-performance computier

with a Nvidia Tesla V100 GPU running Matlab 2022a.

Evaluation procedure. Figure 4 shows the distributions of the test error from

500 drawn from the MCMC sampler after burn-in. We see again that at appropriate

depth GDN matches FNN. However we see a decrease in performance at deeper

depth D′ = 24, which again suggests overfitting. Figure 5 shows three examples of

reconstructed images.

4. A general Bayesian posterior contraction result

Theorem 5 is derived as special cases of a more general result of independent interest

that we establish in this section. We consider again the regression model (7), where

{gW , W ∈ W} is some arbitrary deep neural network function class. We assume that

the parameter space is W def
= RpD×pD−1 × · · · × Rp1×p0 , for some depth D ≥ 1, and

layer dimensions p0, p1, . . . , pD ≥ 1. As indicated at the end of the introduction, at

8With 3 convolutional layers (with size 4, 4, 2, filter number 256, 256, 32, and strides 1, 2, 1) followed

by 4 corresponding deconvolutional layers (with kernel size 2, 4, 4, 2, filter number 32, 256, 256, 1, and

strides 1, 2, 1, 1).

18 YVES ATCHADÉ, XINRU LIU, AND QIUYUN ZHU

FNN GDN1 GDN2 GDN3

8

10

12

14

16

18

20

22

T
e

s
t

E
rr

o
r

Figure 4. Test loss comparison between FNN (3 conv + 4 deconv),

GDN1 (D’=4), GDN2 (D’=12) and GDN3 (D’=24)

Figure 5. Some random examples of reconstructions. From left to

right: CelebA image, blurred image, GDN1, GDN2, GDN3, and FNN

times we shall view W as the Euclidean space Rq, with Euclidean norm denoted ∥·∥2,
where

q
def
=

D∑
ℓ=1

(pℓ × pℓ−1).

We make the following local Lipschitz assumption on the function class.

H4. For all 0 < η < ∞, there exists L(η) ≥ 1 such that for all W,W ′ ∈ W that

satisfy max(∥W∥2, ∥W ′∥2) ≤ η, and for all y ∈ Y, we have

∥gW (y)− gW ′(y)∥2 ≤ L(η)∥W −W ′∥2. (23)

The constant L(η) is a local Lipschitz constant of the function W 7→ gW (y). Con-

trolling appropriately these local Lipschitz constants is a major theoretical challenges

in dealing with deep neural networks.

ALGORITHM UNROLLING MODELS FOR INVERSE PROBLEMS 19

Theorem 7. Suppose that the dataset D is generated as in H1, and consider the

nonparametric regression (7) for some function class {gW , W ∈ W} that satisfies

H4, and the corresponding posterior distribution (17). Suppose that the regression

variance parameter σ satisfies σ ≥ σ̄. Let ϖ⋆ ≥ 0, s⋆ ≥ 1, be such that

min {∥gW − g∥∞, W ∈ W s.t. ∥W∥0 ≤ s⋆, ∥W∥∞ ≤ 1} ≤ ϖ⋆,

and set L⋆
def
= L(2s

1/2
⋆), where the function L is as in H4. Define

s
def
=

(
1 +

log(L⋆
√
n)

u log(q)

)
s⋆ +

4nϖ2
⋆

σ2u log(q)
, and r

def
= σ̄

√
s log(q) + s log(Ls)

n
,

where

Ls
def
= L(s1/2bs), with bs

def
=
√
2(1 + u)(1 + s) log(q).

Then for all q large enough, and n ≥ σ2 log(q), we can find a constant M2 ≥
umax((σ/σ̄)2, 1), and absolute constant c1 such that

Π(∥gΛ⊙W − g∥n > M r |D) ≤ 12

q
, (24)

with probability at least 1− e−c1n − c1
q .

Proof. See Section A.1. □

Remark 8. Theorem 7 applies well beyond the GDN of interest in this work. For any

function class {gW , W ∈ W} trained under the proposed sparse spike-and-slab prior,

one can read off the posterior contraction rate of Π(·|D) from Theorem 7. The rate is

driven by the local Lipschitz constant L(η) of the function class, and the relationship

between (s⋆, β⋆) and ϖ⋆, which captures the approximation capability of the function

class.

4.1. Sketch of the proof of Theorem 7. To improve readability we give here

a high-level description of the proof of Theorem 7. Several approaches have been

developed in the literature to study the contraction of posterior distributions. Here

we follow an approach due to Shen & Wasserman (2001). The merit of their approach

is that it makes a direct connection between the contraction properties of the posterior

distribution and the properties of the corresponding log-likelihood empirical process.

Let f, {fθ, θ ∈ Θ} be a family of densities on a measurable space Z equipped

with a reference sigma-finite measure that we write as dz. All densities considered on

the sample space Z are defined with respect to dz. The parameter space Θ is some

arbitrary measurable space. Let π be a prior probability measure on Θ. We consider

the posterior distribution of θ given by

Π(A|z) =
∫
A fθ(z)π(dθ)∫
Θ fθ(z)π(dθ)

, A meas., z ∈ Z.

20 YVES ATCHADÉ, XINRU LIU, AND QIUYUN ZHU

The next lemma is a generalization of Shen & Wasserman (2001), and summarizes

the main arguments used in the proof of Theorem 7.

Lemma 9. Let S,B and {Ξk, k ≥ 1} be measurable subsets of Θ, such that S ∩Bc ⊆
∪k≥1Ξk. Let β > 0, ρ ≥ 0 and {rj , j ≥ 1} a sequence of positive numbers. Let E be

any subset of Z such that

E ⊆
{
z ∈ Z :

∫
Θ

fθ(z)

f(z)
π(dθ) ≥ e−β,

∫
Sc

fθ(z)

f(z)
π(dθ) ≤ ρ

and sup
θ∈Ξj

[log fθ(z)− log f(z)] ≤ −rj for all j ≥ 1

}
. (25)

Then for all z ∈ E, we have

Π(Bc|z) ≤ eβ

ρ+
∑
j≥1

e−rj

 . (26)

Proof. Using the lower bound on the normalizing constant provided by the event (25),

for z ∈ E , we have

Π(Bc|z) =

∫
Bc

fθ(z)
f(z) π(dθ)∫

Θ
fθ(z)
f(z) π(dθ)

≤ eβ
(∫

Sc

fθ(z)

f(z)
π(dθ) +

∫
S∩Bc

fθ(z)

f(z)
π(dθ)

)

≤ eβ
(
ρ+

∫
S∩Bc

fθ(z)

f(z)
π(dθ)

)
.

Furthermore, for z ∈ E , the last integral in the last display satisfies∫
S∩Bc

fθ(z)

f(z)
π(dθ) ≤

∑
j≥1

∫
Ξj

exp (log fθ(z)− log f(z))π(dθ) ≤
∑
j≥1

e−rjπ(Ξj).

Equation (26) follows by collecting the terms. □

Remark 10. From the lemma we are left with the problem of finding ρ, β, {rj , j ≥ 1}
such that the right hand size of Equation (26) is small and P(Z /∈ E) is small.

5. Concluding remarks

There is a need for a deeper theoretical understanding of deep learning models.

We have focused here on a class of algorithm unrolling models for inverse problems.

And we have shown that for convex inverse problems and under a concentration of

measure assumption, GDN can recover the inverse map at optimal rate, provided

that the unrolling depth is appropriately tuned. These findings are confirmed in our

numerical example. Our results also suggest that algorithm unrolling models are

ALGORITHM UNROLLING MODELS FOR INVERSE PROBLEMS 21

prone to overfitting as the unrolling depth D′ increases. The theoretical results are

obtained as special cases of a more general posterior contraction result for Bayesian

deep learning.

One natural question is whether our analysis extends beyond the concentration of

measure assumption in Assumption 1. Without the content of H1, a more sensible

approach would be to estimate the entire conditional distribution, not just its mean.

Several recent works have proposed to extend algorithm unrolling architectures for

conditional density estimation in inverse problems (Ardizzone et al. (2019)). Extend-

ing our analysis to these conditional density models is an important direction for

future research.

Another outstanding challenge not addressed in this work is the computational and

memory cost of implementing algorithm unrolling models. Our results suggest that

fairly deep (but not too deep) networks are typically needed for optimal performance

of GDNs. In practice, the gradient of the loss with respect to W in (17) is typically

computed by back-propagation through the entire network of depth D × D′, at a

memory cost of order O(D×D′). This often puts severe limitations on the unrolling

depth that can be considered (Putzky & Welling (2019)). Mitigating this memory

cost and easing the implementation of algorithm unrolling architectures (for instance

by developing specialized back-propagation algorithms) is another important problem

for future research.

References

Aggarwal, H., Mani, M., and Jacob, M. Modl: Model based deep learning architecture

for inverse problems. IEEE Transactions on Medical Imaging, PP, 12 2017. doi:

10.1109/TMI.2018.2865356.

Ardizzone, L., Kruse, J., Rother, C., and Kothe, U. Analyzing inverse problems with

invertible neural networks. In International Conference on Learning Representa-

tions, 2019. URL https://openreview.net/forum?id=rJed6j0cKX.

Atchade, Y. and Bhattacharyya, A. An approach to large-scale quasi-bayesian infer-

ence with spike-and-slab priors, 2018. URL https://arxiv.org/abs/1803.10282.

Atchade, Y. and Wang, L. A fast asynchronous mcmc sampler for sparse bayesian

inference. JRSS-B (to appear), 202X.

AtchadÃ©, Y. and Wang, L. A fast asynchronous mcmc sampler for sparse bayesian

inference, 2021.

Ba, J., Kiros, J. R., and Hinton, G. E. Layer normalization. ArXiv, abs/1607.06450,

2016.

https://openreview.net/forum?id=rJed6j0cKX
https://arxiv.org/abs/1803.10282

22 YVES ATCHADÉ, XINRU LIU, AND QIUYUN ZHU

Barron, A. R. and Klusowski, J. M. Approximation and estimation for high-

dimensional deep learning networks, 2018.

Beck, A. and Teboulle, M. Gradient-based algorithms with applications to signal-

recovery problems. In Convex optimization in signal processing and communica-

tions, pp. 42–88. Cambridge Univ. Press, Cambridge, 2010.

Bickel, P. J. and Kleijn, B. J. K. The semiparametric Bernstein-von Mises theorem.

The Annals of Statistics, 40(1):206–237, 2012.

Bissantz, N., Hohage, T., Munk, A., and Ruymgaart, F. Convergence rates of general

regularization methods for statistical inverse problems and applications. SIAM

Journal on Numerical Analysis, 45(6):2610–2636, 2007.

Blanchard, G. and Mücke, N. Optimal rates for regularization of statistical inverse

learning problems. Found. Comput. Math., 18(4):971–1013, 2018.

Burger, H. C., Schuler, C. J., and Harmeling, S. Image denoising: Can plain neural

networks compete with bm3d? In 2012 IEEE Conference on Computer Vision and

Pattern Recognition, pp. 2392–2399, 2012. doi: 10.1109/CVPR.2012.6247952.

Chang, J. R., Li, C.-L., Poczos, B., Vijaya Kumar, B., and Sankaranarayanan, A. C.

One network to solve them all – solving linear inverse problems using deep projec-

tion models. In 2017 IEEE International Conference on Computer Vision (ICCV),

pp. 5889–5898, 2017.

Chen, X., Liu, J., Wang, Z., and Yin, W. Theoretical linear convergence of unfolded

ista and its practical weights and thresholds. In Bengio, S., Wallach, H., Larochelle,

H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.), Advances in Neural

Information Processing Systems, volume 31, 2018.

Chun, Y. and Fessler, J. A. Deep bcd-net using identical encoding-decoding cnn

structures for iterative image recovery. In 2018 IEEE 13th Image, Video, and

Multidimensional Signal Processing Workshop (IVMSP), pp. 1–5, 2018. doi: 10.

1109/IVMSPW.2018.8448694.

Combettes, P. and Wajs, V. Signal recovery by proximal forward-backward splitting.

Multiscale Modeling and Simulation, 4(4):1168–1200, 2005.

DeVore, R., Hanin, B., and Petrova, G. Neural network approximation. Acta Numer-

ica, 30:327–444, 2021.

Dong, W., Zhang, L., Shi, G., and Wu, X. Image deblurring and super-resolution by

adaptive sparse domain selection and adaptive regularization. IEEE Transactions

on Image Processing, 20(7):1838–1857, 2011.

Ee, W., Ma, C., and Wang, Q. Rademacher complexity and the generalization error

of residual networks. Communications in Mathematical Sciences, 18:1755–1774, 01

2020.

ALGORITHM UNROLLING MODELS FOR INVERSE PROBLEMS 23

Geer, S., van de Geer, S., Gill, R., Ripley, B., Ross, S., Silverman, B., Williams,

D., and Stein, M. Empirical Processes in M-Estimation. Cambridge Series in

Statistical and Probabilistic Mathematics. Cambridge University Press, 2000. ISBN

9780521650021. URL https://books.google.com/books?id=2DYoMRz_0YEC.

Gilton, D., Ongie, G., and Willett, R. M. Neumann networks for linear inverse

problems in imaging. IEEE Transactions on Computational Imaging, 6:328–343,

2020.

Gregor, K. and LeCun, Y. Learning fast approximations of sparse coding. In Proceed-

ings of the 27th international conference on international conference on machine

learning, pp. 399–406, 2010.

Knapik, B., Vaart, A., and Zanten, J. Bayesian inverse problems with gaussian priors.

The Annals of Statistics, 39, 03 2011.

Li, Y., Tofighi, M., Geng, J., Monga, V., and Eldar, Y. C. Efficient and interpretable

deep blind image deblurring via algorithm unrolling. IEEE Transactions on Com-

putational Imaging, 6:666–681, 2020. doi: 10.1109/TCI.2020.2964202.

Liu, R., Cheng, S., Ma, L., Fan, X., and Luo, Z. Deep proximal unrolling: Algorithmic

framework, convergence analysis and applications. IEEE Transactions on Image

Processing, 28(10):5013–5026, 2019. doi: 10.1109/TIP.2019.2913536.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face attributes in the wild. In

Proceedings of International Conference on Computer Vision (ICCV), December

2015.

Lucas, A., Iliadis, M., Molina, R., and Katsaggelos, A. K. Using deep neural net-

works for inverse problems in imaging: Beyond analytical methods. IEEE Signal

Processing Magazine, 35(1):20–36, 2018.

Monga, V., Li, Y., and Eldar, Y. C. Algorithm unrolling: Interpretable, efficient deep

learning for signal and image processing. IEEE Signal Processing Magazine, 38(2):

18–44, 2021.

Nickl, R. Bernstein - von mises theorems for statistical inverse problems i: Schrödinger

equation. Journal of the European Mathematical Society, 22, 07 2017. doi: 10.4171/

JEMS/975.

Nickl, R. and Sohl, J. Bernstein - von mises theorems for statistical inverse problems

ii: Compound poisson processes. Electronic Journal of Statistics, 13:3513 – 3571,

2019.

Ongie, G., Jalal, A., Baraniuk, C., Dimakis, A., and Willett, R. Deep learning

techniques for inverse problems in imaging. IEEE Journal on Selected Areas in

Information Theory, PP:1–1, 05 2020. doi: 10.1109/JSAIT.2020.2991563.

https://books.google.com/books?id=2DYoMRz_0YEC

24 YVES ATCHADÉ, XINRU LIU, AND QIUYUN ZHU

Parikh, N. and Boyd, S. Proximal algorithms. Foundations and Trends in Optimiza-

tion, 1(3):123–231, 2013.

Polson, N. G. and Ročková, V. Posterior concentration for sparse deep learning.

In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and

Garnett, R. (eds.), Advances in Neural Information Processing Systems 31, pp.

930–941. Curran Associates, Inc., 2018.

Putzky, P. and Welling, M. Invert to Learn to Invert. Curran Associates Inc., Red

Hook, NY, USA, 2019.

Rastogi, A., Blanchard, G., and Mathé, P. Convergence analysis of Tikhonov regular-

ization for non-linear statistical inverse problems. Electronic Journal of Statistics,

14(2):2798 – 2841, 2020.

Ravishankar, S., Chun, I. Y., and Fessler, J. A. Physics-driven deep training of

dictionary-based algorithms for mr image reconstruction. In 2017 51st Asilomar

Conference on Signals, Systems, and Computers, pp. 1859–1863, 2017. doi: 10.

1109/ACSSC.2017.8335685.

Samworth, R. J. Recent Progress in Log-Concave Density Estimation. Statistical

Science, 33(4):493 – 509, 2018.

Schmidt-Hieber, J. Nonparametric regression using deep neural networks with relu

activation function. Annals of Statistics, 48, 08 2020. doi: 10.1214/19-AOS1875.

Shen, X. and Wasserman, L. Rates of convergence of posterior distributions. The

Annals of Statistics, 29(3):687 – 714, 2001.

Shlezinger, N., Whang, J., Eldar, Y. C., and Dimakis, A. G. Model-based deep learn-

ing: Key approaches and design guidelines. In 2021 IEEE Data Science and Learn-

ing Workshop (DSLW), pp. 1–6, 2021. doi: 10.1109/DSLW51110.2021.9523403.

Sreter, H. and Giryes, R. Learned convolutional sparse coding. In 2018 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.

2191–2195. IEEE, 2018.

Stuart, A. M. Inverse problems: A bayesian perspective. Acta Numerica, 19:451–559,

2010.

Sulam, J., Aberdam, A., Beck, A., and Elad, M. On multi-layer basis pursuit, effi-

cient algorithms and convolutional neural networks. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 42(8):1968–1980, 2020.

Taheri, M., Xie, F., and Lederer, J. Statistical guarantees for regularized neural

networks. Neural Networks, 142:148–161, 2021.

Tao, S., Boley, D., and Zhang, S. Local linear convergence of ista and fista on the

lasso problem. SIAM Journal on Optimization, 26(1):313–336, 2016.

ALGORITHM UNROLLING MODELS FOR INVERSE PROBLEMS 25

Tolooshams, B., Song, A., Temereanca, S., and Ba, D. Convolutional dictionary

learning based auto-encoders for natural exponential-family distributions. In In-

ternational Conference on Machine Learning, pp. 9493–9503. PMLR, 2020.

Vaart, A. W. v. d. Asymptotic Statistics. Cambridge Series in Statistical and Proba-

bilistic Mathematics. Cambridge University Press, 1998.

Vershynin, R. High-Dimensional Probability: An Introduction with Applications in

Data Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cam-

bridge University Press, 2018.

Wainwright, M. J. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cam-

bridge Series in Statistical and Probabilistic Mathematics. Cambridge University

Press, 2019.

Xie, J., Xu, L., and Chen, E. Image denoising and inpainting with deep neural

networks. In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q.

(eds.), Advances in Neural Information Processing Systems, volume 25. Curran

Associates, Inc., 2012.

Yang, y., Sun, J., Li, H., and Xu, Z. Deep admm-net for compressive sensing mri. In

Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and Garnett, R. (eds.), Advances in

Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

Yarotsky, D. Error bounds for approximations with deep relu networks. Neural

Networks, 94:103–114, 2017.

Zhang, K., Zuo, W., Gu, S., and Zhang, L. Learning deep cnn denoiser prior for image

restoration. In IEEE Conference on Computer Vision and Pattern Recognition, pp.

3929–3938, 2017.

Zou, H. and Hastie, T. Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society. Series B (Statistical Methodology), 67(2):

301–320, 2005.

Appendix A. Proofs

A.1. Proof of Theorem 7.

Proof. We follow the same general steps outlined above in Lemma 9. We recall that

the dataset is D def
= (x1,y1), . . . , (xn,yn). For W ∈ W, we define

fW (D)
def
= exp

(
− 1

2σ2

n∑
i=1

∥xi − gW (yi)∥22

)
,

and f⋆(D)
def
= exp

(
− 1

2σ2

n∑
i=1

∥xi − g(yi)∥22

)
. (27)

26 YVES ATCHADÉ, XINRU LIU, AND QIUYUN ZHU

We recall that Θ = W×S. For any measurable set A ⊂ Θ, we can write the posterior

probability Π(A|D) as

Π(A|D) =

∫
A
fΛ⊙W (D)
f⋆(D) Π0(dΛ, dW)∫

Θ
fΛ⊙W (D)
f⋆(D) Π0(dΛ,dW)

. (28)

We will repeatedly use the following observation. For W ∈ W, we have

log

(
fW (D)

f⋆(D)

)
=

1

2σ2

n∑
i=1

(
∥xi − g(yi)∥22 − ∥xi − gW (yi)∥22

)
= − n

2σ2
∥gW − g∥2n −

1

σ2

n∑
i=1

⟨xi − g(yi), g(yi)− gW (yi)⟩ . (29)

Given s0 ≥ 1, β0 ≥ 0, we set

Θ(s0, β0)
def
= {(Λ,W) ∈ Θ : ∥Λ∥0 ≤ s0, and ∥Λ⊙W∥∞ ≤ β0} ,

and

W(s0, β0)
def
= {W ∈ W : ∥W∥0 ≤ s0, ∥W∥∞ ≤ β0} .

We set

s
def
=

1

u
+

(
1 +

5

u
+

log(L⋆
√
n)

u log(q)

)
s⋆ +

4nϖ2
⋆

σ2u log(q)
, and r

def
= σ̄

√
s log(qLs)

n
,

and

ᾱ
def
= us− 1,

where L⋆
def
= L(2s

1/2
⋆), Ls

def
= L(2s1/2bs), and bs

def
=
√

2ρ−1
1 (1 + u)(s+ 1) log(q), and

where L is as in Assumption 4. Fix M ≥ 2. For j ≥ 1 we also set

Wj(s0, β0)
def
= {W ∈ W(s0, β0) : j(M r) < ∥gW − g∥n ≤ (j + 1)M r}.

We shall apply the same idea as in Lemma 9. Specifically, let

B
def
= {(Λ,W) ∈ Θ : ∥gΛ⊙W − g∥n ≤ M r} ,

and consider the E

E =

{
D :

∫
Θ

fΛ⊙W (D)

f⋆(D)
Π0(dΛ, dW) >

1

4qᾱ
,

∫
A(s)

fΛ⊙W (D)

f⋆(D)
Π0(dΛ, dW) ≤ 1

qus

and sup
W∈Wj(s,bs)

[log fW (D)− log f⋆(D)] ≤ −n(jM r)2

8σ2
, for all j ≥ 1

}
,

where A(s) denotes the complement of Θ(s, bs). We note if (Λ,W) ∈ Bc ∩ Θ(s, bs),

then Λ⊙W ∈ ∪j≥1Wj(s, bs). Let Π̌0 be the distribution of Λ⊙W , when (Λ,W) ∼ Π0.

ALGORITHM UNROLLING MODELS FOR INVERSE PROBLEMS 27

Starting from (28), and following the same argument leading to (26), for D ∈ E , we
have

Π(Bc|D) ≤ 4qᾱ
∫
Bc

fΛ⊙W (D)

f⋆(D)
Π0(dΛ, dW)

≤ 4qᾱ

(∫
A(s)

fΛ⊙W (D)

f⋆(D)
Π0(dΛ,dW) +

∫
Bc∩Θ(s,bs)

fΛ⊙W (D)

f⋆(D)
Π0(dΛ,dW)

)

≤ 4eᾱ log(q)

(
1

qus
+

∫
Bc∩Θ(s,bs)

fΛ⊙W (D)

f⋆(D)
Π0(dΛ,dW)

)

≤ 4eᾱ log(q)

 1

qus
+
∑
j≥1

∫
Wj(s,bs)

fW (D)

f⋆(D)
Π̌0(dW)

≤ 4eᾱ log(q)

e−us log(q) +
∑
j≥1

e−
n(jMr)2

8σ2

≤ 4eᾱ log(q)

(
e−us log(q) + 2e−

n(Mr)2

8σ2

)
.

By the definition of s and r above, we have us = ᾱ+ 1, and

n(M r)2 ≥ M2σ̄2s log(q) = M2σ̄2

(
1 + ᾱ

u

)
log(q) ≥ 8σ2(1 + ᾱ) log(q),

by taking M2 ≥ 8u(σ2/σ̄2). Hence for D ∈ E ,

Π(Bc|D) ≤ 12

q
.

This implies that with probability at least P(D ∈ E), we have

Π(Bc|D) ≤ 12

q
.

We show in Lemma 12 below that

P
[∫

Θ

fΛ⊙W (D)

f⋆(D)
Π0(dΛ,dW) ≤ 1

4qᾱ
| y1:n

]
≤ 4

qs⋆
,

and we show in Lemma 11 below that

P
[∫

A

fΛ⊙W (D)

f⋆(D)
Π0(dΛ, dW) >

1

qus
| y1:n

]
≤ 3

qu
.

28 YVES ATCHADÉ, XINRU LIU, AND QIUYUN ZHU

It follows that

P(D /∈ E | y1:n) ≤
4

qs⋆
+

3

qu

+ P

⋃
j≥1

{
sup

W∈Wj(s,bs)
[log fW (D)− log f⋆(D)] > −n(jM r)2

8σ2

}
| y1:n

 .

By Lemma 13 applied with W0 = W(s, bs), the rightmost term in the last display

is bounded from above by e−c0n + 4e−n(Mr)2/(c0σ̄2), for some absolute constant c0

provided that the term r defined above satisfies

288√
n

∫ x

x2

32ς̄

√
logN

(
ϵ,W(x)(s, bs), ∥ · ∥n

)
dϵ ≤ x2

σ̄
, for all x ≥ r, (30)

where for s0 ≥ 1, x ≥ 0, β0 ≥ 0 we define

W(x)(s0, β0)
def
= {W ∈ W(s0, β0), ∥gW − g∥n ≤ x},

and given ϵ > 0, and A ⊂ W, N (ϵ, A, ∥ · ∥n) denotes the cardinality of a smallest

ϵ-cover of A in the pseudo-metric ∥ · ∥n defined as ∥W −W ′∥n
def
= ∥gW − gW ′∥n. We

therefore reach the conclusion that with probability at least 1− e−c0n − c1/q,

Π(Bc|D) ≤ 12

q
.

for some absolute constants c0, c1. It remains to check (30). First we use the majo-

ration ∫ x

x2

32ς̄

√
logN

(
ϵ,W(x)(s, bs), ∥ · ∥n

)
dϵ ≤ x

√
logN

(
x2

32ς̄
,W(s, bs), ∥ · ∥n

)
.

We recall that our notation ∥W∥2 denotes the Euclidean norm of the vectorized

parameter W . For W ∈ W(s, bs), ∥W∥2 ≤ s1/2bs. Hence, assumption H3, and the

definition of Ls = L(s1/2bs) implies that for all W,W ′ ∈ W(s, bs), we have

∥W −W ′∥n = ∥gW − gW ′∥n ≤ Ls∥W −W ′∥2.

Therefore, we can use the metric entropy of the s-sparse ball of Rq with radius

s1/2bs/Ls with respect to the Euclidean norm to get

N (ϵ,W(s, bs), ∥ · ∥n) ≤ qs

(
1 +

2s1/2bsLs
ϵ

)s
.

Hence

288√
n

∫ x

x2

32ς̄

√
logN (ϵ,W(x)(s, bs), ∥ · ∥n)dϵ ≤ 288x

√√√√s log(q)

n
+

s log
(
1 + 64ς̄s1/2bsLs

x2

)
n

.

ALGORITHM UNROLLING MODELS FOR INVERSE PROBLEMS 29

We can insist to search for x ≥
√
128ς̄/n, and conclude that the right hand side of

the last display is always upper bounded by

288x

√√√√s log(q)

n
+

s log
(
1 + ns1/2bsLs

2

)
n

≤ c0x

√
s log(qLs)

n
,

for some absolute constant c0. The right hand side of the last display is upper bounded

by x2

σ̄ for all

x ≥ c0σ̄

√
s log(qLs)

n
,

hence the theorem, after moving the constant c0 into M . □

Lemma 11. Assume H1, and suppose that σ2 ≥ maxi σ
2
i . For all integers s ≥ 1,

with bs
def
=
√

2(1 + u)(1 + s) log(q)/ρ1, we have

P

[∫
A(s)

fΛ⊙W (D)

f⋆(D)
Π0(dΛ, dW) >

1

qus
| y1:n

]
≤ 4

qu
,

where A(s) denotes the complement of the set Θ(s, bs) where

Θ(s, b)
def
= {(Λ,W) ∈ Θ : ∥Λ∥0 ≤ s, and ∥Λ⊙W∥∞ ≤ b} .

Proof. Since A(s) is the complement of the set Θ(s, bs), we can write

Π0(A(s)) = Π0(∥Λ∥0 > s) +
∑

Λ: ∥Λ∥0≤s

Π0(Λ)×Π0(∥Λ⊙W∥∞ > bs|Λ).

If (Λ,W) ∼ Π0, then Λ is an ensemble of iid random variables drawn from the

Bernoulli distribution with success probability (1 + qu+1)−1. Hence

Π0(∥Λ∥0 > s) ≤
∑
k>s

(
q

k

)(
1

1 + qu+1

)k (qu+1

1 + qu+1

)q−k

≤
∑
k>s

(
q

k

)(
1

qu+1

)k
≤ 2

(
1

qu

)s+1

,

where we use
(
q
k

)
≤ qk, and qu ≥ 2. Given Λk = 1, Wk ∼ N(0, ρ−1

1). Therefore,

P(|Wk| > t) ≤ 2e−ρ1t
2/2 for all t ≥ 0. Hence by union bound, for ∥Λ∥0 ≤ s, we obtain

Π0 (∥Λ⊙W∥∞ > bs | Λ) ≤ 2e−ρ1b
2
s/2+log(s) ≤ 2

qu(1+s)
.

We conclude that

Π0(A(s)) ≤ 4

qu(1+s)
. (31)

30 YVES ATCHADÉ, XINRU LIU, AND QIUYUN ZHU

Now, by Markov’s inequality, and Fubini’s theorem, we have

P

[∫
A(s)

fΛ⊙W (D)

f⋆(D)
Π0(dΛ, dW) >

1

qus
| y1:n

]

≤ qus
∫
A(s)

E
[
fΛ⊙W (D)

f⋆(D)
| y1:n

]
Π0(dΛ, dW),

and from (29) we have

E
[
fΛ⊙W (D)

f⋆(D)
| y1:n

]
= e−

n
2σ2 ∥gΛ⊙W−g∥2nE

[
e−

1
σ2

∑n
i=1⟨ξi,g(yi)−gΛ⊙W (yi)⟩ | y1:n

]
.

We have assumed in H1 that E(ξi|yi) = 0, and ∥ξi|yi∥ψ2 ≤ σi. Therefore,

E
[
e−

1
σ2

∑n
i=1⟨ξi,g(yi)−gΛ⊙W (yi)⟩ | y1:n

]
≤ e

1
σ2

∑n
i=1

σ2
i d

2
i

2σ2 ,

where di is a short for ∥g(yi)− gΛ⊙W (yi)∥2. We conclude that

E
[
fΛ⊙W (D)

f⋆(D)
| y1:n

]
≤ exp

(
− 1

2σ2

n∑
i=1

[(
1− σ2

i

σ2

)
d2i

])
.

And we easily check that for σ2 ≥ σ̄2, the right hand size of the last display is bounded

from above by 1. We conclude that

P

[∫
A(s)

fΛ⊙W (D)

f⋆(D)
Π0(dΛ,dW) >

1

qus
| y1:n

]
≤ qusΠ0(A(s)) ≤ 4

qu
.

□

The next result lower bounds the normalizing constant of Π(·|D).

Lemma 12. Under the assumption of Theorem 7 it holds,

P
[∫

Θ

fΛ⊙W (D)

f⋆(D)
Π0(dΛ,dW) ≤ 1

4qᾱ
| y1:n

]
≤ 4

qs⋆
,

where

ᾱ
def
=

(
u+ 5 +

log(L⋆
√
n)

log(q)

)
s⋆ +

4nϖ2
⋆

σ2 log(q)
.

Proof. By the assumption of Theorem 7, we can find W⋆ with ∥W⋆∥0 ≤ s⋆, ∥W⋆∥∞ ≤
1, such that ∥gW⋆ − g∥n ≤ ϖ⋆. Let Λ⋆ denote the sparsity support of W⋆. With

L⋆ = L(2s
1/2
⋆), we set

η
def
= 1 ∧ σ

L⋆

√
log(q)

n
, and N (η)

def
= {W ∈ W : ∥W ⊙ Λ⋆ −W⋆∥∞ ≤ η} .

We see that ∥W⋆∥2 ≤ s
1/2
⋆ , and for W ∈ N (η),

∥W ⊙ Λ⋆∥2 ≤ ∥W⋆∥2 + ∥W⋆ −W ⊙ Λ⋆∥2 ≤ s
1/2
⋆ + s

1/2
⋆ η ≤ 2s

1/2
⋆ .

ALGORITHM UNROLLING MODELS FOR INVERSE PROBLEMS 31

Therefore, by H4 applied with η = 2s
1/2
⋆ , for all W ∈ N (η), we have

max
1≤i≤n

∥gΛ⋆⊙W (yi)− gW⋆(yi)∥2 ≤ L⋆∥Λ⋆ ⊙W −W⋆∥2 ≤ L⋆
√
s⋆η ≤ σ

√
s⋆ log(q)

n
.

Hence

max
1≤i≤n

sup
W∈N (η)

∥gΛ⋆⊙W (yi)− gW⋆(yi)∥2 ≤ σ

√
s⋆ log(q)

n
. (32)

Switching the sign and taking the conditional expectation in (29) using E(xi|yi) =

g(yi), yields

E
[
log

(
f⋆(D)

fΛ⋆⊙W (D)

)
| y1:n

]
=

1

2σ2

n∑
i=1

∥gΛ⋆⊙W (yi)− g(yi)∥22,

and we conclude using (32) and the definition of ϖ⋆ and W⋆ in Theorem 7 that

sup
W∈N (η)

E
[
log

(
f⋆(D)

fΛ⋆⊙W (D)

)
| y1:n

]

≤ nϖ2
⋆

σ2
+

1

σ2

n∑
i=1

sup
W∈N (η)

∥gΛ⋆⊙W (yi)− gW⋆(yi)∥22

≤ nϖ2
⋆

σ2
+ s⋆ log(q).

Going back to (29), we have

log

(
f⋆(D)

fΛ⋆⊙W (D)

)
− E

[
log

(
f⋆(D)

fΛ⋆⊙W (D)

)
| y1:n

]
=

1

σ2

n∑
i=1

⟨ξi, g(yi)− gΛ⋆⊙W (yi)⟩ .

(33)

We use the notation ∥Z∥ψ2 to denote the sub-Gaussian norm of the conditional law

of the random variable Z given y1:n. By conditional independence of the error terms

ξi, for all W ∈ N (η), we have∥∥∥∥log(f⋆(D)

fΛ⋆⊙W (D)

)
− E

[
log

(
f⋆(D)

fΛ⋆⊙W (D)

)
| y1:n

]∥∥∥∥2
ψ2

≤ 1

σ4

n∑
i=1

∥⟨ξi, g(yi)− gΛ⋆⊙W (yi)⟩∥2ψ2

=
1

σ4

n∑
i=1

σ2
i ∥g(yi)− gΛ⋆⊙W (yi)∥22 ≤

2nϖ2
⋆

σ2
+ 2s⋆ log(q).

In the sequel, we set

a
def
= 2

(
nϖ2

⋆

σ2
+ s⋆ log(q)

)
.

32 YVES ATCHADÉ, XINRU LIU, AND QIUYUN ZHU

Then by Hoeffding’s inequality, for all W ∈ N (η), we have

P
[∣∣∣∣log(f⋆(D)

fΛ⋆⊙W (D)

)
− E

[
log

(
f⋆(D)

fΛ⋆⊙W (D)

)
| y1:n

]∣∣∣∣ > a | y1:n

]
≤ 2e−a/2 ≤ 2

qs⋆
.

We can rewrite this statement in the following equivalent form. For W ∈ W, define

EW
def
=

{
D :

∣∣∣∣log(f⋆(D)

fW (D)

)
− E

[
log

(
f⋆(D)

fW (D)

)
| y1:n

]∣∣∣∣ ≤ a

}
.

We have

sup
W∈N (η)

P (D /∈ EΛ⋆⊙W | y1:n) ≤
2

qs⋆
. (34)

Using these observations, we have

∫
Θ

fΛ⊙W (D)

f⋆(D)
Π0(dΛ,dW) ≥

∫
Λ⋆×N (η)

e
−E

[
log

(
f⋆(D)

fΛ⊙W (D)

)
| y1:n

]

× exp

(
−
[
log

(
f⋆(D)

fΛ⊙W (D)

)
− E

[
log

(
f⋆(D)

fΛ⊙W (D)

)
| y1:n

]])
1EΛ⊙W

(D)Π0(dΛ,dW)

≥ e−2a

∫
Λ⋆×N (η)

1EΛ⊙W
(D)Π0(dΛ, dW)

= e−2a

(
Π0(Λ⋆ ×N (η))−

∫
Λ⋆×N (η)

1Ec
Λ⊙W

(D)Π0(dΛ,dW)

)
.

Therefore, by Chebyshev’s inequality,

P
[∫

Θ

fΛ⊙W (D)

f⋆(D)
Π0(dΛ,dW) ≤ e−2aΠ0(Λ⋆ ×N (η))/2 | y1:n

]
≤ P

[∫
Λ⋆×N (η)

1Ec
Λ⊙W

(D)Π0(dΛ,dW) ≥ 1

2
Π0(Λ⋆ ×N (η)) | y1:n

]

≤ 2

Π0(Λ⋆ ×N (η))

∫
Λ⋆×N (η)

P (D /∈ EΛ⋆⊙W | y1:n)Π0(dΛ, dW)

≤ 2 sup
W∈N (η)

P⋆ (D /∈ EΛ⋆⊙W | y1:n) ≤
4

qs⋆
,

ALGORITHM UNROLLING MODELS FOR INVERSE PROBLEMS 33

using (34). To conclude the proof it remains only to lower bound Π0(Λ⋆ × N (η)).

Since log(1− x) ≥ −2x for all 0 ≤ x ≤ 1/2, for qu ≥ 2/ log(2), we have

Π0(Λ⋆) =

(
1

1 + qu+1

)∥Λ⋆∥0 (
1− 1

1 + qu+1

)q−∥Λ⋆∥0

=

(
1

qu+1

)∥Λ⋆∥0
exp

(
q log

(
1− 1

1 + qu+1

))
≥
(

1

qu+1

)∥Λ⋆∥0
exp

(
− 2q

1 + qu+1

)
≥ 1

2

(
1

qu+1

)∥Λ⋆∥0
≥ 1

2

(
1

qu+1

)s⋆
.

If U ∼ N(0, ρ1), then P (|U − a| ≤ t) ≥ P (|a| ≤ U ≤ |a|+ t) for all t ≥ 0. We use this

inequality to deduce that

Π0(N (η) | Λ⋆) ≥ (Φ(
√
ρ1(1 + η))− Φ(

√
ρ1))

∥Λ⋆∥0 ≥ (c0
√
ρ1η)

s⋆

≥

(
c0σ

L⋆

√
ρ1 log(q)

n

)s⋆
≥
(

1

L⋆
√
n

)s⋆
,

for some absolute constant c0 (c0 can be taken as e−2/
√
2π, since ρ1 = 1), where Φ

is the cdf of the standard normal distribution. The last inequality in the last display

uses the assumption that n ≥ σ2 log(p), and c20σ
2 log(q) ≥ 1. We conclude that

e−2aΠ0(Λ⋆ ×N (η))

≥ 1

2
exp

(
−4nϖ2

⋆

σ2
− 4s⋆ log(q)− (u+ 1)s⋆ log(q)− s⋆ log

(
L⋆
√
n
))

,

≥ 1

2
exp

(
−4nϖ2

⋆

σ2
− (u+ 5)s⋆ log(q)− s⋆ log(L⋆

√
n)

)
.

Hence the result. □

Lemma 13. Suppose that the dataset D is generated as in H1, and consider the

nonparametric regression (7) for some function class {gW , W ∈ W ⊆ Rq}. Let W0

be some subset of W. Suppose that we can find r > 0 such that for all x ≥ r, it holds

288√
n

∫ x

x2

16ς̄

√
logN (ϵ,W(x), ∥ · ∥n)dϵ ≤

x2

σ̄
, (35)

where W(x) def
= {W ∈ W0, ∥gW−g∥n ≤ x}. Let fW and f⋆ be as defined in (27). Then

there exists an absolute constant c0 such that for all M ≥ 1, such that n(M r)2 ≥ c0σ̄
2,

it holds

P

⋃
j≥1

{
sup

W∈W̃(j)

log

(
fW (D)

f⋆(D)

)
> −n(jM r)2

8σ2

}
| y1:n

 ≤ e−c0n + 4e
−nM2r2

c0σ̄
2 ,

34 YVES ATCHADÉ, XINRU LIU, AND QIUYUN ZHU

where W̃(j) def
= {W ∈ W0 : jM r < ∥gW − g∥n ≤ (j + 1)M r}.

Proof. We proceed as in Lemma 3.2 of Geer et al. (2000). Throughout the proof, all

expectations and probability are conditional given y1:n. However to ease notation we

omit the conditioning. With M and r as in the statement, and for each integer j, we

set rj = M rj. We recall the definition of the error terms ξi
def
= xi − g(yi), and we

define

Zn(gW)
def
=

1

nσ2

n∑
i=1

⟨ξi, g(yi)− gW (yi)⟩ , W ∈ W.

Using (29) we can re-express the log-likelihood ratio as

log

(
fW (D)

f⋆(D)

)
= − n

2σ2
∥gW − g∥2n − nZn(gW). (36)

Let ςi denote the sub-Gaussian norm of ∥ξi∥2,

ς̄
def
= max

1≤i≤n
ςi.

The sub-Gaussian assumption on ξi implies that ςi < ∞ (see e.g. Theorem 6.3.2

of Vershynin (2018)), and that ∥ξi∥22 is sub-exponential, with sub-exponential norm

ς2i . We note also that E(∥ξi∥22) ≤ 2ς2i . Therefore, by Bernstein inequality (see e.g.

Theorem 2.8.1 of Vershynin (2018)),

P

(
1

n

n∑
i=1

∥ξi∥22 > 3ς̄2

)
≤ P

(
n∑
i=1

∥ξi∥22 − E(∥ξi∥22) > nς̄2

)
≤ e−c0n,

for some absolute constant c0. To make use of this bound, we define

F0
def
=

{
D :

n∑
i=1

∥ξi∥22 ≤ 3nς̄2

}
.

Therefore,

P

⋃
j≥1

{
sup

W∈W̃(j)

log

(
fW (D)

f⋆(D)

)
> −

nr2j
8σ2

} ≤ e−c0n +
∑
j≥1

P [Fj] ,

where

Fj
def
= F0

⋂{
sup

W∈W̃(j)

log

(
fW (D)

f⋆(D)

)
> −

nr2j
8σ2

}
.

For each j ≥ 1, we set

W(j) def
= {W ∈ W0 : ∥gW − g∥n ≤ rj+1},

and each ι = 1, . . ., let C(ι)
j

def
= {g(ι)j,1, . . . , g

(ι)
j,Nj,ι

} be a (rj+12
−ι)-covering of W(j). For

ι = 0, we set C(0)
j = {g}. The definition implies that for any W ∈ W(j), we can find

ALGORITHM UNROLLING MODELS FOR INVERSE PROBLEMS 35

g
(ι)
j,W ∈ C(ι)

j such that ∥gW − g
(ι)
j,W ∥n ≤ rj+12

−ι. Let ℓj ≥ 0, be the smallest integer

such that
rj+1

2ℓj
≤

r2j
16ς̄

.

We consider separately the cases ℓj = 0 and ℓj > 0.

Suppose ℓj = 0. In that case for any W ∈ W(j), ∥gW − g∥n ≤ rj+1 ≤ r2j/(16ς̄).

Therefore, on the event F0, we have

sup
W∈Wj

|Zn(gW)| ≤ 1

nσ2

n∑
i=1

∥ξi∥2∥gW (yi)− g(yi)∥2 ≤
√
3ς̄2

σ2
∥gW − g∥n

≤
√
3ς̄2

σ2

r2j
16ς̄

≤
r2j
8σ2

.

Taking this conclusion to (36) implies that on F0,

sup
W∈W̃(j)

log

(
fW (D)

f⋆(D)

)
≤ −

nr2j
2σ2

+ n sup
W∈Wj

|Zn(gW)| ≤ −
nr2j
4σ2

.

Hence, when ℓj = 0, P(Fj) = 0.

Suppose ℓj > 0. Similarly, on the event F0, we have∣∣∣Zn(gW)− Zn(g
(ℓj)
j,W)

∣∣∣ ≤ 1

nσ2

n∑
i=1

∥ξi∥2∥g
(ℓj)
j,W (yi)− gW (yi)∥2

≤
√
3ς̄2

σ2
∥g(ℓj)j,W − gW ∥n ≤

√
3ς̄2

σ2

rj+1

2ℓj
≤

√
3ς̄2

σ2

r2j
16ς̄

≤
r2j
8σ2

.

This implies that on F0,

sup
W∈W̃(j)

log

(
fW (D)

f⋆(D)

)
≤ −

nr2j
2σ2

+n sup
W∈W(j)

∣∣∣Zn(gW)− Zn(g
(ℓj)
j,W)

∣∣∣+n sup
W∈W(j)

∣∣∣Zn(g(ℓj)j,W)
∣∣∣

≤ −
3nr2j
8σ2

+ n sup
W∈W(j)

∣∣∣Zn(g(ℓj)j,W)
∣∣∣ .

Hence

P(Fj) ≤ P

[
sup

W∈W(j)

∣∣∣Zn(g(ℓj)j,W)
∣∣∣ > r2j

4σ2

]
.

To bound this latter term we introduce

δj
def
=

∫ rj+1

r2
j+1
64ς̄

√
logN

(
ϵ,W(j), ∥ · ∥n

)
dϵ,

and ηj,ι
def
= max

(
1

6

ι1/2

2ι
,

√
logNj,ι

4δj

rj+1

2ι

)
, ι = 1, . . . , ℓj .

36 YVES ATCHADÉ, XINRU LIU, AND QIUYUN ZHU

and we write g
(ℓj)
j,W as a telescoping sum

g
(ℓj)
j,W − g =

ℓj∑
ι=1

g
(ι)
j,W − g

(ι−1)
j,W ,

so that

sup
W∈W(j)

∣∣∣Zn(g(ℓj)j,W)
∣∣∣ ≤ ℓj∑

ι=1

sup
W∈W(j)

∣∣∣∣∣ 1

nσ2

n∑
i=1

〈
ξi, g

(ι−1)
j,W (yi)− g

(ι)
j,W (yi)

〉∣∣∣∣∣ .
We show below that the sequence {ηj,ι, ι = 1, . . . , ℓj} introduced above satisfies

ℓj∑
ι=1

ηj,ι ≤ 1. (37)

Due to (37), we can use the sequence {ηj,ι, ι = 1, . . . , ℓj} to say that

P

[
sup

W∈W(j)

∣∣∣Zn(g(ℓj)j,W)
∣∣∣ > r2j

4σ2

]

≤
ℓj∑
ι=1

P

[
sup

W∈W(j)

∣∣∣∣∣ 1

nσ2

n∑
i=1

〈
ξi, g

(ι−1)
j,W (yi)− g

(ι)
j,W (yi)

〉∣∣∣∣∣ > ηj,ιr
2
j

4σ2

]
.

The supremum on the right-hand side of the last display is in fact a max over a finite

set of cardinality at most Nj,ι−1 ×Nj,ι ≤ N2
j,ι, and for W ∈ W(j),

1

n2σ4

n∑
i=1

σ2
i ∥g

(ι−1)
j,W (yi)− g

(ι)
j,W (yi)∥22

≤ 2maxi σ
2
i

n2σ4

(
n∥gW − g

(ι)
j,W ∥2n + n∥gW − g

(ι−1)
j,W ∥2n

)
≤ 10

n
max
i

(
σ2
i

σ4

)
r2j+1

22ι
.

Therefore by Hoefdding’s inequality,

P

[
sup

W∈W(j)

∣∣∣Zn(g(ℓj)j,W)
∣∣∣ > r2j

4σ2

]
≤

ℓj∑
ι=1

exp

(
2 logNj,ι −

n22ιη2j,ιr
4
j

(20× 16)σ̄2r2j+1

)
.

By construction,

22ιη2j,ι
r2j+1

≥ logNjι

16δ2j
,

which gives

n22ιη2j,ιr
4
j

(20× 16)σ̄2r2j+1

≥
nr4j

(20× 322)σ̄2δ2j
× (4 logNjι) ≥ 4 logNjι,

ALGORITHM UNROLLING MODELS FOR INVERSE PROBLEMS 37

using (35). Therefore

2 logNj,ι −
n22ιη2j,ιr

4
j

(20× 16)σ̄2r2j+1

≤ −
n22ιη2j,ιr

4
j

(20× 32)σ̄2r2j+1

≤ −
nr2j ι

(80× 36× 32)σ̄2
,

where the last inequality uses the fact that 22ιη2j,ι ≥ ι/36. It follows that

P

[
sup

W∈W(j)

∣∣∣Zn(g(ℓj)j,W)
∣∣∣ > r2j

4σ2

]
≤

ℓj∑
ι=1

exp

(
−
nr2j ι

c0σ̄2

)
≤ 2 exp

(
−

nr2j
c0σ̄2

)
,

since nr2j ≥ c0σ̄
2 log(2), for some constant c0 that can be taken as c0 = 80× 36× 32.

In conclusion,

P

⋃
j≥1

{
sup

W∈W̃(j)

log

(
fW (D)

f⋆(D)

)
> −

nr2j
8σ2

}
≤ e−c0n + 2

∑
j≥1

exp

(
−

nr2j
c0σ̄2

)
≤ e−c0n + 4 exp

(
−nM r2

c0σ̄2

)
.

To check (37), we note

ℓj∑
ι=1

ηj,ι ≤
1

6

ℓj∑
ι=1

ι1/2

2ι
+

1

4δj

ℓj∑
ι=1

rj+1

2ι

√
logNj,ι.

The function h(x) = x1/22−x = xα−1e−βx, with α = 3/2, β = log(2) is decreasing for

x ≥ 1. Hence∑
ι≥1

ι1/2

2ι
=

1

2
+
∑
ι≥2

h(ι) ≤ 1

2
+
∑
k≥2

∫ k

k−1
h(x)dx ≤ 1

2
+

∫ ∞

1
xα−1eβxdx ≤ 3.

Whereas,

ℓj∑
ι=1

rj+1

2ι

√
logNj,ι =

ℓj∑
ι=1

2

∫ rj+1
2ι

rj+1

2ι+1

√
logN

(rj+1

2ι
,W(j), ∥ · ∥n

)
dϵ

≤ 2

∫ rj+1
2

rj+1

2
ℓj+1

√
logN

(
ϵ,W(j), ∥ · ∥n

)
dϵ

≤ 2

∫ rj+1

r2
j+1
64ς̄

√
logN

(
ϵ,W(j), ∥ · ∥n

)
dϵ = 2δj .

□

38 YVES ATCHADÉ, XINRU LIU, AND QIUYUN ZHU

A.2. Proof of Theorem 5. We apply Theorem 7. The argument has two main

steps. First, we show that the function g can be well approximated by elements of

the function class {gW , W ∈ W} constructed in (11), and secondly we show that

the functions gW are locally Lipschitz and we estimate the local Lipschitz constant.

Both steps rely on a well-known telescoping argument that we outline first (see e.g.

Proposition 6 of Taheri et al. (2021)). Given two functions f = fK ◦ · · · ◦ f1, and

g = gK ◦ · · · ◦ g1, we write f − g as a telescoping sum

f(x)−g(x) =
K∑
j=1

fK ◦· · ·◦fj (gj−1 ◦ · · · ◦ g1(x))−fK ◦· · ·◦fj+1◦gj (gj−1 ◦ · · · ◦ g1(x)) ,

(38)

with the convention that for j = 1, gj−1 ◦ · · · ◦ g1 is the identity map, and for j = K,

fK ◦ · · · ◦ fj+1 is the identity map. A bound on ∥f(x) − g(x)∥ can then be derived

using the Lipschitz and boundedness properties of the functions fj , gj .

Specifically, defineH
(0)
W (x)

def
= x, and for 1 ≤ ℓ ≤ D, defineH

(ℓ)
W (x)

def
= Ψ

(ℓ)
Wℓ

(H
(ℓ−1)
W (x)),

so that HW (x) = H
(D)
W (x). We recall that

Ψ
(ℓ)
M (x) = aℓ(Mx),

where the activation functions aℓ : Rpℓ → Rpℓ are Lipschitz with constant 1. Then

for 1 ≤ ℓ ≤ D, and all W,W ′ ∈ W, x1,x2 ∈ Rdx , by the Lipschitz property of the

activation functions aℓ, we have

∥H(ℓ)
W (x1)−H

(ℓ)
W (x2)∥2 ≤ ∥WℓH

(ℓ−1)
W (x1)−WℓH

(ℓ−1)
W (x2)∥2

≤ ∥Wℓ∥op∥H
(ℓ−1)
W (x1)−H

(ℓ−1)
W (x2)∥2,

where ∥ · ∥op denotes the operator norm. Iterating this yields,

∥H(ℓ)
W (x1)−H

(ℓ)
W (x2)∥2 ≤

ℓ∏
j=1

∥Wj∥op∥x1 − x2∥2. (39)

Similarly, for any 1 ≤ ℓ ≤ D, (38) gives

H
(ℓ)
W (x)−H

(ℓ)
W ′(x) =

ℓ∑
j=1

Ψ
(ℓ)
Wℓ

◦ · · · ◦Ψ(j+1)
Wj+1

◦Ψ(j)
Wj

◦
(
Ψ

(j−1)
W ′

j−1
◦ · · · ◦Ψ(1)

W ′
1
(x)
)

−Ψ
(ℓ)
Wℓ

◦ · · · ◦Ψ(j+1)
Wj+1

◦Ψ(j)
W ′

j

(
Ψ

(j−1)
W ′

j−1
◦ · · · ◦Ψ(1)

W ′
1
(x)
)
.

ALGORITHM UNROLLING MODELS FOR INVERSE PROBLEMS 39

Therefore,∥∥∥H(ℓ)
W (x)−H

(ℓ)
W ′(x)

∥∥∥
2

≤
ℓ∑

j=1

ℓ∏
k=j+1

∥Wk∥op
∥∥∥Ψ(j)

Wj

(
Ψ

(j−1)
W ′

j−1
◦ · · · ◦Ψ(1)

W ′
1
(x)
)
−Ψ

(j)
W ′

j

(
Ψ

(j−1)
W ′

j−1
◦ · · · ◦Ψ(1)

W ′
1
(x)
)∥∥∥

2

≤
ℓ∑

j=1

ℓ∏
k=j+1

∥Wk∥op∥Wj −W ′
j∥op

∥∥∥Ψ(j−1)
W ′

j−1
◦ · · · ◦Ψ(1)

W ′
1
(x)
∥∥∥
2
.

Since Ψ
(j)
M (0) = 0, we have the bound

∥∥∥Ψ(j−1)
W ′

j−1
◦ · · · ◦Ψ(1)

W ′
1
(x)
∥∥∥
2
≤ ∥x∥2

j−1∏
k=1

∥W ′
j∥op.

In conclusion, for all 1 ≤ ℓ ≤ D, W,W ′ ∈ W, and for all x ∈ Rdx , we have

∥H(ℓ)
W (x)−H

(ℓ)
W ′(x)∥2 ≤ ∥x∥2

ℓ∑
j=1

∥Wj −W ′
j∥op

j−1∏
k=1

∥W ′
k∥op

ℓ∏
k=j+1

∥Wk∥op. (40)

For x ∈ Rdx , y ∈ Y, we define

Fy(x)
def
= ProxγR (x− γ∇xf(y|x)) , and Fy,W (x)

def
= HW (x− γ∇xf(y|x)) .

We use the notation hk to denote the function h composed k times with the convention

that h0 is the identity map. Hence gW (y) = FD′
y,W (x(0)). H2 implies that Fy is non-

expansive.

Lemma 14. Assume H2. Given ϵ > 0, we can find W ∈ W as described in H2 such

that

max
1≤i≤n

∥gW (yi)− g(yi)∥2 ≤ R0ϱ
D′
n +D′ϵ.

Proof. For any y ∈ Rdy , we can write

g(y)− gW (y) = g(y)− FD′
y,W (x(0)) = g(y)− FD′

y (x(0)) + FD′
y (x(0))− FD′

y,W (x(0)).

By Assumption 2, we have

max
1≤i≤n

∥∥∥g(yi)− FD′
yi

(x(0))
∥∥∥
2
≤ R0ϱ

D′
n .

For y ∈ Rdy , let Gγ,y(x)
def
= x− γ∇xf(y|x), and

R′
1
def
= max

1≤i≤n
max

x∈Rdx : ∥x∥2≤R
∥Gγ,yi(x)∥2 .

40 YVES ATCHADÉ, XINRU LIU, AND QIUYUN ZHU

Since Fy is non-expansive, by the telescoping argument (38), we have

∥∥∥FD′
yi

(x(0))− FD′
yi,W (x(0))

∥∥∥
2
≤

D′∑
j=1

∥Fyi,W

(
F j−1
yi,W

(x(0))
)
− Fyi

(
F j−1
yi,W

(x(0))
)
∥2,

≤ D′ sup
x∈Rdx , ∥x∥2≤R′

1

∥HW (x)− ProxγR(x)∥2 ≤ D′ϵ.

The result follows by taking the max over i. □

Lemma 15. Assume H2, H3, and let {gW , W ∈ W} be as in (11). For any η > 0,

and any W,W ′ ∈ W, such that max(∥W∥2, ∥W ′∥2) ≤ η, we have

max
1≤i≤n

∥gW (yi)− gW ′(yi)∥2 ≤ L(η)∥W −W ′∥2,

with

L(η)
def
= Cn

(
e4 +

η2

D

)DD′

,

and

Cn
def
= ∥x(0)∥2 + max

1≤i≤n
∥x(0) − γ∇f(yi|x(0))∥2.

Proof. We recall that the convexity of x 7→ f(y|x) and the choice of the step-size

assumed in H2 imply that the function x 7→ x− γ∇xf(y|x) is non-expansive on Rdx .
First, we apply (39) to obtain that for all x1,x2 ∈ Rdx ,

∥HW (x1)−HW (x2)∥2 ≤ λW ∥x1 − x2∥2, where λW
def
=

D∏
ℓ=1

∥Wℓ∥op ∨ 1.

It follows that for all y ∈ Y, x1,x2 ∈ Rdx ,

∥Fy,W (x1)− Fy,W (x2)∥2
≤ λW ∥x1 − x2 − γ (∇xf(y|x1))−∇xf(y|x2)) ∥2 ≤ λW ∥x1 − x2∥2. (41)

Using (41), and the telescoping identity (38), we obtain

∥gW (y)− gW ′(y)∥2 ≤
D′∑
j=1

λD
′−j

W

∥∥∥Fy,W

(
F j−1
y,W ′(x

(0))
)
− Fy,W ′

(
F j−1
y,W ′(x

(0)
)∥∥∥

2
. (42)

We set Gγ,y(x)
def
= x − γ∇f(y|x). We apply (39) with x2 = 0 and the non-

expansiveness of Gγ,y to write that for all x ∈ Rdx

∥Fy,W (x)∥2 = ∥HW (Gγ,y(x))∥2 ≤ λW ∥Gγ,y(x)−Gγ,y(x
(0)) +Gγ,y(x

(0))∥2

≤ λW

(
∥x∥2 + ∥x(0)∥2 + ∥Gγ,y(x

(0))∥2
)
.

ALGORITHM UNROLLING MODELS FOR INVERSE PROBLEMS 41

By iterating this inequality we obtain that for all for all x ∈ Rdx

∥F j
y,W (x(0))∥2 ≤

(
j∑
ℓ=1

λℓW

)(
∥x(0)∥2 + ∥Gγ,y(x

(0))∥2
)
≤ Cn

j∑
ℓ=1

λℓW , (43)

where

Cn
def
= ∥x(0)∥2 + max

1≤i≤n
∥x(0) − γ∇f(yi|x(0))∥2.

Setting

λW,W ′
def
=

D∑
j=1

∥Wj −W ′
j∥op

j−1∏
k=1

∥W ′
k∥op

D∏
k=j+1

∥Wk∥op,

we then apply (40) to write that for all x ∈ Rdx∥∥∥Fy,W

(
F j−1
y,W ′(x

(0))
)
− Fy,W ′

(
F j−1
y,W ′(x

(0)
)∥∥∥

2

=
∥∥∥HW ◦Gγ,y

(
F j−1
y,W ′(x

(0))
)
−HW ′ ◦Gγ,y

(
F j−1
y,W ′(x

(0))
)∥∥∥

2

≤ λW,W ′

∥∥∥Gγ,y

(
F j−1
y,W ′(x

(0))
)
−Gγ,y(x

(0)) +Gγ,y(x
(0))
∥∥∥
2

≤ λW,W ′

(
∥F j−1

y,W ′(x
(0))∥2 + ∥x(0)∥2 + ∥Gγ,y(x

(0)∥2
)

≤ CnλW,W ′

j−1∑
ℓ=0

λℓW ′ .

The last display together with (42) yields,

max
1≤i≤n

∥gW (yi)− gW ′(yi)∥2 ≤ CnλW,W ′

D′∑
j=1

j−1∑
ℓ=0

λD
′−j

W λℓW ′ . (44)

Since the geometric mean is never larger than the arithmetic mean, we have

λW
def
=

D∏
j=1

1 ∨ ∥Wj∥op ≤

 1

D

D∑
j=1

1 ∨ ∥Wj∥2op

D/2

≤
(
1 +

∥W∥22
D

)D/2
.

Therefore, for max(∥W∥2, ∥W ′∥2) ≤ η,

D′∑
j=1

j−1∑
ℓ=0

λD
′−j

W λℓW ′ ≤
D′∑
j=1

jλD
′−j

W λj−1
W ′ ≤ (D′)2

(
1 +

η2

D

)D(D′−1)/2

,

and similarly,

λW,W ′ ≤
√
D

(
1 +

2η2

D

)D/2
∥W −W ′∥2.

42 YVES ATCHADÉ, XINRU LIU, AND QIUYUN ZHU

Hence, we conclude that

max
1≤i≤n

∥gW (yi)− gW ′(yi)∥2 ≤ Cn
√
D(D′)2

(
1 +

2η2

D

)DD′/2

∥W −W ′∥2. (45)

The statement in the lemma follows by noting that

√
D(D′)2

(
1 +

2η2

D

)DD′/2

≤
√
D(D′)2

(
e4 +

2η2

D

)DD′/2

≤
(
e4 +

2η2

D

)DD′

,

using the fact that Ax/2 ≥ x for all x ≥ 1, and A ≥ e, and Ax/2 ≥ x2 for all x ≥ 1,

and A ≥ e4. □

A.2.1. Proof of Theorem 5.

Proof. We recall the notation a ≲ b means that a ≤ cb, for some constant c that does

not depend on the sample size n. Fix

ϖ⋆ = log(n)
√

dx

(
log(q)

n

) 1
2+β2

, and
log
(
2R0
ϖ⋆

)
− log(ρ)

≤ D′ ≤ n.

By Assumption 3, and Lemma 14, by taking a deep neural network function HW , with

depth D = D0 log(2D
′√dx/ϖ⋆), layer size (p0, . . . , pD) all at most N0(2D

′√dx/ϖ⋆)
β1 ,

and W ∈ W with sparsity at most s⋆ = s0(2D
′√dx/ϖ⋆)

β2 , and we achieve

max
1≤i≤n

∥gW (yi)− g(yi)∥2 ≤ R0ρ
D′

+D′ sup
x: ∥x∥2≤R′

0

∥HW (x)− ProxγR(x)∥2

≤ R0
ϖ⋆

2R0
+D′ ϖ⋆

2D′ = ϖ⋆.

Then by Lemma 15, the term L⋆ in Theorem 7 scales like

L⋆ ≃
(
e4 +

s⋆
D

)DD′

s
1/2
⋆

≲
(
e4 +

s⋆
D

)DD′ (
1 +

s⋆
D

)D/2
≃
(
e4 +

s⋆
D

)D(D′+1/2)

≲
(
e4 + q

)D(D′+1/2)

It follows that

log L⋆
log(q)

≲ DD′ ≲ D′ log(n), and s⋆ = s0

(
2D′√dx

ϖ⋆

)β2
≲

(
D′

log(n)

)β2 (n

log(q)

) β2
2+β2

,

ALGORITHM UNROLLING MODELS FOR INVERSE PROBLEMS 43

and the term s in Theorem 7 is of order

s ≲s⋆

(
log(n)

log(q)
+

log(L⋆)

log(q)

)
+

nϖ2
⋆

log(q)

≲

[(
1 +D′ log(n)

)(D′

log(n)

)β2
+ (log(n))2

](
n

log(q)

) β2
2+β2

≲
(
D′)1+β2 (log(n))2(n

log(q)

) β2
2+β2

.

Therefore the term Ls in Theorem 7 scales like

Ls = L(s1/2bs) ≲

(
e4 +

sb2s
D

)D(D′+1/2)

,

which gives,

log(Ls) ≲ DD′ log(q) ≲ D′ log(n) log(q).

Noting that

s

n
≲
(
D′)1+β2 (log(q)

n

) 2
2+β2 (log(n))2

log(q)
,

we deduce that the conclusion of Theorem 7 holds with a rate

r = σ̄

√
s log(q) + s log(Ls)

n
≲ σ̄

(
D′)1+β2/2 (log(n))3/2(log(q)

n

) 1
2+β2

.

□

	1. Introduction
	1.1. Learning to solve inverse problems
	1.2. Main contributions
	1.3. Related work
	1.4. Outline of the paper
	1.5. Notations

	2. Learning to solve inverse problems
	2.1. Gradient descent networks
	2.2. Bayesian inference using spike-and-slab priors

	3. Numerical illustration
	3.1. Learning the Elastic Net regression map
	3.2. Illustration with a simulated data deblurring problem
	3.3. Illustration with CelebA dataset

	4. A general Bayesian posterior contraction result
	4.1. Sketch of the proof of Theorem 7

	5. Concluding remarks
	References
	Appendix A. Proofs
	A.1. Proof of Theorem 7
	A.2. Proof of Theorem 5

