
Chapter 1

Unbiased Markov Chain Monte Carlo:

what, why and how

Yves F. Atchadé, Pierre E. Jacob

1.1 Introduction

This chapter presents techniques to remove the initialization or burn-in bias from MCMC es-

timates, with consequences on parallel computing, convergence diagnostics and performance

assessment. First we define the bias under consideration, then we present the benefits of

removing that bias with unbiased MCMC methods, and how to do it.

1.1.1 Initialization bias in MCMC

The object of interest is a probability measure π on a space (X,X ). An MCMC algorithm

generates a chain (Xt)t≥0 via a π-invariant Markov transition kernel P , starting from an

initial distribution π0 which is not equal to π. The marginal distribution of Xt at time t is

1
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denoted by πt. MCMC algorithms are often provably ergodic in the sense

|πt − π| ≤ b(t)→ 0 as t→∞, (1.1.1)

for some decreasing function b, e.g. in total variation (TV) distance. Results of the form

(1.1.1) abound in the literature, but the function b(t) typically features unspecified quantities,

and thus cannot actually be evaluated for a given iteration t. There are exceptions, e.g.

Theorem 11 of Example 2 in Rosenthal (1995), or the references in Section 3.5 in Roberts and

Rosenthal (2004), where bounds are made fully explicit for non-trivial MCMC algorithms,

using both analytical and numerical computation. Efforts have been long made to design

numerical recipes that would provide explicit upper bounds as automatically as possible (e.g.

Cowles and Rosenthal, 1998; Johnson, 1996, 1998) and unbiased MCMC methods contribute

to that effort (more on this in Section 1.3.1).

The initialization bias comes from the marginal distribution πt, at any time t, being

different from π. We introduce a test function h in Lp(π) = {f : π(|f |p) < ∞} where

π(f) :=
∫
f(x)π(dx). The MCMC estimator of π(h) is the ergodic average t−1

∑t−1
s=0 h(Xs),

possibly after discarding an initial portion of the trajectory. The initialization bias is defined

as E[t−1
∑t−1

s=0 h(Xs)] − π(h). It is only zero if π0 is precisely π; most often it is considered

unknown. The bias vanishes as t → ∞ and becomes a negligible part of the mean squared

error, which is dominated by the variance v(P, h) in the Central Limit Theorem (CLT):

√
t

(
1

t

t−1∑
s=0

h(Xs)− π(h)

)
d→ Normal(0, v(P, h)), as t→∞. (1.1.2)

There may be other sources of bias in MCMC, such as the use of pseudo-random rather than

random numbers, limited floating point precision, as well as various deliberate approxima-

tions that can accelerate computation. This chapter focuses on initialization bias.

Despite its asymptotic disappearance, the initialization bias poses practical issues. The

bias is an obstacle to the parallelization of MCMC computation (Rosenthal, 2000). Indeed,

users can generate short MCMC runs independently in parallel, but the bias prevents the

consistent estimation of π(h) by averages over the independent runs. The bias can be reduced
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Figure 1.1: Convergence of the marginal distribution πt to π (left) and a realized trajectory
(right), here generated by a Metropolis–Rosenbluth–Teller–Hastings (MRTH) algorithm with
Normal random walk proposals. The target distribution is described in Example 3.1 of
Robert (1995). This setting is used for all illustrations of this chapter.

by discarding a larger initial portion of each parallel run, but the choice of the length to

discard is both difficult and critical. This is in part because a sufficient length for the bias to

be small is vastly different from one application to the next; numbers of iterations reported

in the literature span many orders of magnitude, e.g. Metropolis et al. (1953) perform a

few dozen sweeps whereas McCartan and Imai (2020) mention a run of a trillion (1012. . . !)

MCMC iterations for the task of sampling redistricting plans.

1.1.2 The promise of unbiased MCMC

The term unbiased MCMC (Jacob et al., 2020b) refers to the removal of the initialization

bias. The key requirement of these methods is that the user can generate certain successful

couplings of Markov chains (see Section 1.1.3). This requirement is weaker than that of

Coupling From The Past (Propp and Wilson, 1996), and thus unbiased MCMC is more

widely applicable; but it does not provide perfect samples from π. Instead, these methods

generate unbiased approximations of π in the form of signed empirical measures:

π̂ =
N∑
n=1

ωnδZn , (1.1.3)
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where N is a random integer, (Zn)Nn=1 are atoms on the state space X, and (ωn)Nn=1 are real-

valued weights (see Section 1.2.4 for the precise construction). The lack-of-bias property of π̂

means that, for a class of functions h, π̂(h) :=
∑N

n=1 ωnh(Zn) has expectation exactly equal

to π(h). The significance of the lack of bias is that users can generate independent copies of

π̂(h) in parallel and average over the copies to obtain consistent estimators of π(h) as well as

confidence intervals, provided that the estimators have a finite variance. The lack of bias is

thus clearly appealing as a means toward a parallel-friendly consistent Monte Carlo scheme;

there are other appeals discussed in Section 1.3.

With unbiased signed measures, the question of initialization bias seems to be resolved.

This convenience comes at a price: both the computing time and the variance can be pro-

hibitively high. To quantify this price, we can compute the inefficiency, a key descriptor of

asymptotic performance for unbiased estimators (Glynn and Whitt, 1992), defined as the

expected computing time multiplied by the variance. Both terms can be estimated from

independent runs, and the inefficiency can be compared with the asymptotic variance in

the CLT for standard MCMC averages (1.1.2). The first unbiased estimators constructed

from coupled chains, proposed in Glynn and Rhee (2014) and applied to MCMC settings in

Agapiou et al. (2018), were found to be either competitive or not relative to regular MCMC,

depending on the chain and on the coupling. The simple enhancements proposed in Jacob

et al. (2020a,b); Vanetti and Doucet (2020) (see Section 1.2.3) led to unbiased MCMC esti-

mators that are both provably and practically competitive with regular MCMC estimators,

whenever they are applicable.

1.1.3 Successful couplings of Markov chains

Unbiased MCMC belongs to a family of algorithms that require couplings of Markov chains,

as in Coupling From The Past (CFTP, Propp and Wilson, 1996), circularly-coupled MCMC

(Neal, 1999), and certain convergence diagnostics (Johnson, 1996, 1998). A coupling of two

distributions p and q on X refers to a joint distribution on X×X, with prescribed marginals

p and q. For Markov chains, a coupling refers to a joint process (Xt, Yt) such that (Xt)

and (Yt) are individually identical to prescribed Markov chains. For simplicity, we focus on
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Figure 1.2: Successful coupling of Markov chains, meeting at time τ with a lag L so that
Xt = Yt−L for all t ≥ τ . Left: trajectory of (Xt, Yt). Middle: trajectory of (Xt, Yt−L). Right:
histogram of 104 independent copies of τ − L.

Markovian couplings, where (Xt, Yt) is itself a Markov chain, with initial distribution π̄0 on

X× X and Markov transition P̄ .

Unbiased MCMC requires draws of (Xt, Yt) such that both chains (Xt) and (Yt) are copies

of the same Markov process, with initial distribution π0 and transition P . Thus, π̄0 should

be a coupling of π0 with itself, and P̄ a coupling of P with itself. Furthermore, for each

trajectory of (Xt, Yt) we require the existence of a finite meeting time τ such that Xt = Yt−L

for all t ≥ τ , where L is a user-chosen lag parameter. Coupling resulting in finite meeting

times can be called successful, following Pitman (1976). The construction, summarized in

Algorithm 1, does not assume anything about the initialization π0, does not require any

form of monotonicity in the coupling, and does not require the existence and identification

of a pair of extremal states, as in most practical instances of CFTP. An illustration of a

successful coupling is shown in Figure 1.2, where L = 50 and ` = 500.

Algorithm 1 Successful coupling of Markov chains with lag L and length `. Initial dis-
tribution: π0, transition kernel: P , coupled transition kernel: P̄ . The meeting time is
τ = inf{t ≥ L : Xt = Yt−L}.

1. Sample (X0, Y0) from π̄0, .

2. If L ≥ 1, for t = 1, . . . , L, sample Xt from P (Xt−1, ·).

3. For t ≥ L, sample (Xt+1, Yt−L+1) from P̄ ((Xt, Yt−L), ·) until Xt+1 = Yt−L+1 and t+1 ≥ `.
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The key assumption required for unbiased MCMC is about the tails of the meeting times.

We formulate the following assumption as in Douc et al. (2023), and it is equivalent to the

tails P(τ > t) decaying at the polynomial rate t−κ as t → ∞. We emphasize that unbiased

MCMC methods do not require the user to specify a value for κ.

Assumption 1. There exists κ ≥ 1 such that, if the two chains (Xt) and (Yt) started

independently from π and evolved according to the coupled transition P̄ , the meeting time

τ = inf{t ≥ 1 : Xt = Yt} would have κ finite moments: E[τκ] <∞.

Assumption 1 can be verified for example if the transition P satisfies a Lyapunov drift

condition with function V , combined with a non-zero probability of meeting over one step

when the chains are simultaneously in a level set of V (Section 3.2 in Jacob et al., 2020b).

Explicit Lyapunov functions have been elicited for many MCMC algorithms, such as random

walk Metropolis–Rosenbluth–Teller–Hastings, abbreviated MRTH (see Roberts and Tweedie,

1996), Langevin Monte Carlo (Durmus and Moulines, 2022), Hamiltonian Monte Carlo (Dur-

mus et al., 2017) and many examples of Gibbs samplers. The reasoning extends to polynomial

drift conditions (Section 1.4 in Middleton et al., 2020). When applicable the above approach

is sufficient to establish that Assumption 1 holds for some or all κ ≥ 1, without providing

insight on how the meeting time behaves as a function of salient features of the problem.

As a concrete example, a simple random walk MRTH algorithm is implemented in R in

Figure 1.3. It employs a coupling of Normal proposal distributions presented in Section

2.3 of Bou-Rabee et al. (2020), and in Section 1.4.1 below. This coupling was employed to

generate all figures in this chapter. Assumption 1 can then be verified for all κ > 1 via

Proposition 4 in Jacob et al. (2020b) using the geometric drift function V (x) = π(x)−1/2

under the conditions of Theorem 3.2 in Roberts and Tweedie (1996). Section 1.4 provides

more discussion on the design of successful couplings of MCMC algorithms.
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1 # Metropol i s−Rosenbluth−Te l l e r−Hast ings t r a n s i t i o n with Normal p roposa l s
2 mrth = func t i on (x , U, sigma )
3 {
4 # proposa l = cur rent l o c a t i o n + Normal (0 , sigma ˆ2)
5 xprop = x + sigma ∗ rnorm ( length (x ) )
6 # log Uniform to accept / r e j e c t p roposa l s
7 logu = log ( r un i f (1 ) )
8 # return s t a t e accord ing to d e c i s i o n to accept or not
9 re turn ( i f ( logu < (U(x ) − U( xprop ) ) ) xprop e l s e x )

10 }
11 # coup l ing o f MRTH t r a n s i t i o n with Normal proposa l s
12 coupledmrth = func t i on (x , y , U, sigma )
13 {
14 # draw proposa l s us ing maximal coup l ing o f Bou−Rabee , Eber le and Zimmer (AAP 2020)
15 xstd = rnorm ( length (x ) ) # standard Normal v a r i a b l e s
16 z = (x − y ) / sigma # length ( sigma ) could be 1 or l ength (x )
17 e = z / sq r t (sum( z ˆ2) ) # normal i se
18 logu = log ( r un i f (1 ) )
19 sameprop = ( logu < sum(dnorm( xstd + z , l og = TRUE) − dnorm( xstd , l og = TRUE) ) )
20 ystd = i f ( sameprop ) xstd + z e l s e xstd − 2 ∗ sum( e ∗ xstd ) ∗ e
21 # xprop i s marg ina l ly Normal (x , sigma ˆ2)
22 xprop = x + sigma ∗ xstd
23 # yprop i s marg ina l ly Normal (y , sigma ˆ2)
24 yprop = y + sigma ∗ ystd
25 # log Uniform to accept / r e j e c t p roposa l s
26 logu = log ( r un i f (1 ) )
27 # dec i s i o n to accept or not
28 xaccept = ( logu < (U(x ) − U( xprop ) ) )
29 yaccept = ( logu < (U(y ) − U( yprop ) ) )
30 # return s t a t e accord ing to d e c i s i o n
31 re turn ( l i s t ( nextx = i f ( xaccept ) xprop e l s e x ,
32 nexty = i f ( yaccept ) yprop e l s e y ,
33 nextxequa lsnexty = sameprop && xaccept && yaccept ) )
34 }

Figure 1.3: R code for MRTH algorithm with Normal random walk proposals, and a coupling
of it. This defines the transition P and coupled transition P̄ required by Algorithm 1. Inputs:
current states x and y, a potential function U corresponding to x 7→ − log π(x), proposal
standard deviation sigma (a scalar or a vector of the same length as x and y).

1.2 Unbiased MCMC

This section presents unbiased MCMC estimators, assuming that successful couplings can

be implemented. We start with classical bias removal techniques in Section 1.2.1, re-derive

a simple unbiased MCMC estimator via the Poisson equation in Section 1.2.2, and present

more efficient versions in Sections 1.2.3-1.2.4. In Section 1.2.5 we comment on performance

and cost, and propose tuning strategies.
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1.2.1 Bias removal with a telescope

Randomized telescoping sums. Consider a quantity of interest expressed as the limit as

k →∞ of a deterministic sequence (bk)k≥0 that can be computed recursively. We can write

the limit as a telescoping series
∑∞

k=0(bk−bk−1), where b−1 = 0. How can we estimate a series∑∞
k=0 ak without bias? The following reasoning dates back to at least Glynn (1983); Rychlik

(1990). Let ξ be a random variable on {0, 1, 2 . . .} with pk := P(ξ = k) for all k ≥ 0; ξ is the

random truncation variable. Then sample ξ and compute: G = aξ/pξ. If the expectation

of G is finite then it is equal to
∑∞

k=0 ak, and its expected cost is E[ξ] =
∑

k≥0 kpk. The

cost is smaller if (pk) decay faster. However, the variance of G involves E[G2] =
∑

k≥0 a
2
k/pk

which is smaller if (pk) decay slower. An alternative is to sample ξ and then compute

H = a0 +
∑ξ

k=1 ak/P(ξ ≥ k). The estimator H also has expectation
∑∞

k=0 ak, its cost is

similar to that of G, but its variance is finite under weaker conditions than that of G. The

estimators G and H are termed single term and coupled sum in Rhee and Glynn (2015);

Vihola (2018).

Bias removal in MCMC. Direct use of the above strategy to remove the bias of MCMC

averages, where bk = k−1
∑k−1

s=0 h(Xs), is considered in McLeish (2011). An immediate diffi-

culty is that ergodic averages converge at the (slow) Monte Carlo rate, resulting in unbiased

estimators that tend to have either a large cost or a large variance. The convergence of

marginal distributions πt → π e.g. in total variation is comparably faster. Using contractive

couplings of Markov chains, Glynn and Rhee (2014) propose a debiasing strategy, described

below, that benefits from the fast convergence of marginal distributions. Agapiou et al.

(2018) explore that strategy in MCMC settings and highlight the practical difficulties as-

sociated with the specification of the truncation variable. Jacob et al. (2020a) find that

the conditional particle filter, which is an MCMC algorithm developed specifically for latent

variable estimation in continuous state space models (Andrieu et al., 2010), could be easily

coupled such that a pair of chains would meet, and that this removes the need for truncation

variables in the construction of Glynn and Rhee (2014). Jacob et al. (2020b) find that many

MCMC algorithms can be coupled successfully, building on works such as Johnson (1998).

A first unbiased MCMC estimator. The idea of Glynn and Rhee (2014) in the
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context of successful couplings goes as follows. Write π(h) as a telescopic sum, for all k ≥ 0,

for any choice of lag L,

π(h) = lim
t→∞

πt(h) = πk(h) +
∞∑
j=1

πk+jL(h)− πk+(j−1)L(h). (1.2.1)

Since for all t ≥ 0, Xt and Yt have the same distribution πt, we can write πk+jL(h) =

E[h(Xk+jL)] and πk+(j−1)L(h) = E[h(Yk+(j−1)L)]. A bold swap of expectation and limit

suggests that the random variable defined as

Hk := h(Xk) +
∞∑
j=1

(h(Xk+jL)− h(Yk+(j−1)L)), (1.2.2)

is an unbiased estimator of π(h). For instance, if |h| is bounded by 1, then
∑∞

j=1 |h(Xk+jL)−
h(Yk+(j−1)L)| ≤ 2 max(0, (τ − k)/L). Therefore, if Assumption 1 holds with κ = 1, that is if

E[τ ] < ∞, then by Fubini’s theorem Hk indeed satisfies E[Hk] = π(h). Higher moments of

Hk can also be controlled as we discuss below.

The infinite sum can be computed in finite time since the lagged chains meet at a finite

time τ : the differences h(Xk+jL)− h(Yk+(j−1)L) are equal to zero for all k, j, L such that k+

jL ≥ τ . The estimator (1.2.2) can be computed without specifying truncation probabilities

thanks to the stopping criterion offered by the meeting time.

1.2.2 Alternative construction via the Poisson equation

Poisson equation and bias. Douc et al. (2023) provide an alternative derivation of Hk in

(1.2.2) via the Poisson equation. Write Pf(x) =
∫
P (x, dx′)f(x′) for a function f : X→ R.

A function g in L1(π) is a solution of the Poisson equation associated with h and P if

g(x)− Pg(x) = h(x)− π(h) ∀x ∈ X. (1.2.3)
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For example, the function

g? : x 7→
∞∑
t=0

P t {h− π(h)} (x), (1.2.4)

is a solution to (1.2.3); see Chapter 21 of Douc et al. (2018). In fact, all solutions are equal

to g? up to an additive constant. It is known that (1.2.4) is related to MCMC bias. Indeed,

consider the ergodic average t−1
∑t−1

s=0 h(Xs) when the chain starts from a fixed x0 ∈ X. The

bias is Ex0 [t−1
∑t−1

s=0 h(Xs)]− π(h), and if we multiply by t and consider the limit t→∞,

lim
t→∞

t× {Ex0 [t−1
t−1∑
s=0

h(Xs)]− π(h)} = lim
t→∞

t−1∑
s=0

Ex0 [h(Xs)− π(h)] = g?(x0), (1.2.5)

with g? as in (1.2.4) (Kontoyiannis and Dellaportas, 2009).

Estimation of g and unbiased MCMC. It turns out that we can estimate solutions

of the Poisson equation using successful chains, which then leads to unbiased estimators of

π(h). Consider the function x 7→ g(x, y) := g?(x) − g?(y), equal to g? up to the constant

g?(y), for any fixed y ∈ X, and thus solution of the Poisson equation. It can be written

g(x, y) =
∑

t≥0{P th(x)−P th(y)}. Consider successful chains with no lag (L = 0), where X0

is set to x and Y0 is set to y. Then h(Xt) and h(Yt) have expectation equal to P th(x) and

P th(y) for all t ≥ 0, but for t larger than inf{t ≥ 1 : Xt = Yt} we have h(Xt) − h(Yt) = 0.

This suggests the following, implementable estimator of g(x, y):

G(x, y) :=
τ−1∑
t=0

{h(Xt)− h(Yt)}, (1.2.6)

where X0 = x, and Y0 = y, τ = inf{t ≥ 1 : Xt = Yt}. With the ability to estimate solutions of

the Poisson equation we might envision the estimation of π(h) via the re-arranged equation:

π(h) = h(x) +Pg(x)− g(x). Setting x ∈ X arbitrarily, sample X1 ∼ P (x, ·) (performing one

step of MCMC), and sample G(X1, x) (running two chains, initialized at X1 and x, until

they meet). Then Ex[G(X1, x)] = Pg?(x) − g?(x), therefore h(x) + Gx(X1) is an unbiased

estimator of π(h). It is in fact exactly Hk in (1.2.2) with k = 0, L = 1 and π0 = δx.
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1.2.3 Unbiased MCMC estimators

Improved efficiency by averaging. Simple modifications of (1.2.2) can go a long way

to improve its efficiency, as noted in Jacob et al. (2020a) and Jacob et al. (2020b, and its

discussion). Consider a run of Algorithm 1 with lag L ≥ 1 (Vanetti and Doucet, 2020) and

length ` ≥ 0, from which we can construct unbiased estimators Hk, . . . , H` as in (1.2.2) for

a range of integers k, . . . , ` where 0 ≤ k ≤ `. Since these estimators (Ht)
`
t=k are unbiased,

their average is unbiased as well. After some algebraic manipulations, the average estimator

reads

Hk:` =
1

`− k + 1

∑̀
t=k

h(Xt)︸ ︷︷ ︸
MCMC

+
τ−1∑

t=k+L

vt(k, `, L) {h(Xt)− h(Yt−L)}︸ ︷︷ ︸
bias cancellation

. (1.2.7)

The first term on the right-hand side is the regular MCMC ergodic average, computed

from the trajectory (Xk, . . . , X`). The second term performs bias cancellation from weighted

differences between the chains. The weight vt(k, `, L) is defined as the number of appearances

of the difference h(Xt) − h(Yt−L) in the bias cancellation terms of Hk, . . . , H`, divided by

`− k + 1, and can be computed as

vt(k, `, L) =
b(t− k)/Lc − dmax(L, t− `)/Le+ 1

`− k + 1
. (1.2.8)

Both the number of terms in the bias cancellation and their weights can be reduced by

increasing the tuning parameters k, `, L. Section 1.2.5 provides guidance on tuning unbiased

MCMC such that its efficiency becomes comparable to that of regular MCMC.

Variance reduction. The estimator in (1.2.7) is presented with a generic lag L follow-

ing the observation of Vanetti and Doucet (2020) that increasing L can lead to significant

variance reduction. Control variates for Hk:` are proposed in Craiu and Meng (2022). They

observe that E[h(Xt) − h(Yt)] = 0 for all t ≥ 0, thus
∑

t≥0 ηt{h(Xt) − h(Yt)} can be added

to Hk:`, for any real sequence (ηt), without modifying its expectation. Even imperfect op-

timization over the sequence (ηt) can lead to a worthwhile reduction in variance. Other

coupling-based variance reduction strategies have been proposed for MCMC (Pinto and

Neal, 2001), and could be considered also for unbiased MCMC.
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Finite moments. The following result is taken from Douc et al. (2023).

Theorem 1.2.1. Under Assumption 1 with κ > 1, i.e. E[τκ] <∞, let h ∈ Lm(π) for some

m > κ/(κ − 1). Assume that π0 is such that dπ0/dπ ≤ M with M < ∞. Then for any

k, `, L, the estimator Hk:` in (1.2.7) satisfies E[|Hk:`|p] <∞ for p ≥ 1 such that 1
p
> 1

m
+ 1

κ
.

Finiteness of the variance ofHk:` is sufficient to validate the following classical construction

of confidence intervals: generate C independent copies of Hk:`, compute their average µ̂ and

their standard deviation σ̂, and an asymptotically (as C → ∞) valid confidence interval

for π(h) is given by [µ̂ + qα/2σ̂/
√
C, µ̂ + q1−α/2σ̂/

√
C], where qs is the s-th quantile of the

standard Normal distribution. According to Theorem 1.2.1 finiteness of second moments

(p = 2) results from a mild condition on π0, and the assumption that κ > 2, for all h ∈ Lm(π)

such that m > 2κ/(κ − 2). For geometrically ergodic Markov chains where κ can be taken

arbitrary large, the condition becomes arbitrarily close to h ∈ L2(π). The assumption that

dπ0/dπ ≤M is satisfied for example if π0 is supported entirely in a bounded set included in

the support of π. A similar result holds if the initial distribution π0 is a Dirac mass.

1.2.4 Unbiased signed measure

Replacing function evaluations by Dirac masses. The empirical measure

π̂(dx) =
1

`− k + 1

∑̀
t=k

δXt(dx)︸ ︷︷ ︸
MCMC

+
τ−1∑

t=k+L

vt(k, `, L)
{
δXt − δYt−L

}
(dx)︸ ︷︷ ︸

bias cancellation

, (1.2.9)

is an unbiased approximation of π, where vt is defined in (1.2.8). This is of the form∑N
n=1 ωnδZn as in (1.1.3), with N = max(0, τ−(k+L))+(`−k+1), Zn are states from either

(Xt) or (Yt) and ωn are either (` − k + 1)−1, or of the form ±vn(k, `, L); in particular the

weights can be negative. Figure 1.4 represents the unbiased MCMC approximation, made of

MCMC and bias cancellation components. This was obtained by kernel density estimation

from the weighted samples constituting the different elements in (1.2.9).

Sub-sampling and negative weights. We can sub-sample from the empirical measure
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Figure 1.4: Unbiased MCMC (left) = MCMC (middle) + bias cancellation (right). The
target density is the black curve on the left-most plot. On the right, the bias cancellation is
made of a positive measure (darker grey) added to a negative measure (lighter grey).

in (1.1.3). For example, we can draw an index I uniformly in {1, . . . , N} and return the

sample ZI with weight NωI . Then for a class of functions h, NωIh(ZI) will have expectation

equal to π(h) (Douc et al., 2023). We can also sample the index I non-uniformly, with

probabilities ξ1, . . . , ξN that depend on the atoms in (1.1.3), and the selected atom ZI is then

weighted by ξ−1I ωI , and we may repeat this selection multiple times to obtain a weighted

sub-sample from (1.1.3) with a desired size. Yet this does not produce a perfect sample

due to the weights being possibly negative. We can arbitrarily decrease the proportion of

negative weights in (1.1.3) by increasing the value of k, but we cannot make it zero. As a

result, unbiased MCMC estimators Hk:` can take values outside the range of the function h,

e.g. we may obtain negative estimates of positive quantities. There may not be any general

solution to this problem: according to Lemma 2.1 in Jacob and Thiery (2015) there is no

algorithm that takes unbiased estimators of a nonnegative quantity as input (and nothing

else), and returns nonnegative unbiased estimators of that same quantity.

1.2.5 Efficiency, cost and tuning

Asymptotic equivalence with MCMC. Theorem 1.2.1 validates unbiased MCMC for

the estimation of π(h) but does not help for the comparison of its performance with stan-

dard MCMC, or choosing the three tuning parameters k, `, L. The guiding principle in the
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tuning of k, `, L is that a judicious choice will make unbiased MCMC competitive with stan-

dard MCMC in terms of cost and variance. Proposition 3 in Jacob et al. (2020b) provides

conditions under which the increase of either k or ` − k results in variance reduction, and

in particular the variance of Hk:` is shown to be asymptotically equivalent to the variance

of standard MCMC estimators as ` → ∞. The result is shown under weaker conditions in

Middleton et al. (2020). In the same spirit Douc et al. (2023) provide the following CLT for

Hk:` as `→∞, where the asymptotic variance is the same as for standard MCMC.

Theorem 1.2.2. Under Assumption 1 with κ > 1, let h ∈ Lm(π) for some m > 2κ/(κ− 1).

Then for any k ∈ N,

√
`− k + 1 (Hk:` − π(h))

d→ Normal(0, v(P, h)), (1.2.10)

as `→∞, where v(P, h) is the asymptotic variance in the CLT for MCMC averages (1.1.2).

The asymptotic equivalence with regular MCMC as ` → ∞ should be expected since

the initialization bias vanishes as ` → ∞, and given the form of the bias cancellation term

in (1.2.7): the sum is over max(0, τ − L − k) terms (irrespective of `) while the weights

in (1.2.8) decrease as (` − k)−1. Thus the bias cancellation term disappears when ` − k

increases. Regarding cost: if we count the cost of sampling from the MCMC transition P as

one unit, and the cost of sampling from the coupled transition P̄ as one unit if the chains

have already met and two units if they have not, then the random cost of running Algorithm

1 with parameters ` and L to compute Hk:` equals max(L, ` − (τ − L)) + 2(τ − L) units.

This behaves as ` when `→∞. Thus both cost and variance of Hk:` are equivalent to those

of MCMC as `→∞. By carefully choosing k, `, L we can hope to obtain unbiased MCMC

estimators with an efficiency close to that of MCMC.

Cost and parallel computing. Some users might prefer less efficient but cheaper

estimators when enough parallel machines are available to produce them. Consider the task

of obtaining C estimates using M parallel machines. When M is much smaller than C,

each machine produces many estimates and the computing times even out across machines

so that the speed-up is close to linear in M . On the other hand, if M ≥ C, then each
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Figure 1.5: Left: compute time to generate 1000 independent copies of Hk:`, with k = L =
400, ` = 10k, using parallel machines. Right: inefficiency relative to standard MCMC versus
average cost of Hk:`, for different choices of k, and L set to either 1 or k, always with ` = 10k.
The configuration k = 800, L = 800 is not shown as it would be overlaid with k = 800, L = 1.

machine produces one estimate, and there is no speed-up in increasing M further. Careful:

running unbiased MCMC on M � C machines and retaining the C estimators that are

first completed would introduce a bias, since the estimator is not independent of its cost.

Figure 1.5 (left) illustrates the speed-up associated with an increasing number of machines,

for the task of producing 1000 estimates. If each machine produces a single estimate, the

total time is driven by the longest run, which is in average an increasing function of C. For

example if τ has Geometric tails, the average maximum cost of unbiased MCMC behaves as

log(C). Handling of budget constraints, such as hard or soft deadlines, on parallel machines

is discussed in Glynn and Heidelberger (1990, 1991).

Choice of length `. We proceed to proposing guidance for the tuning parameters. First

we simplify the choice by recommending that ` is set as a large multiple of k, for example

` = 10k. This is because a portion k/` of iterations is simply discarded in the construction of

(1.2.7), and we would like to limit this apparent waste. Thus, we are left with the choice of

k and L; increasing k will automatically increase ` and `− k, thus decreasing the magnitude

of the weights vt in the bias cancellation term.

Choice of burn-in k and lag L. The bias cancellation is exactly zero in the event

{τ − L < k}. By setting k as a large quantile of τ − L, we ensure that the event occurs
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with high probability. The increase of the lag L, compared to the choice L = 1 in Glynn

and Rhee (2014); Jacob et al. (2020b), is advocated in Vanetti and Doucet (2020). From the

expression of the weights in (1.2.8), increasing L decreases the weights in the bias cancellation

term, and thus brings Hk:` closer to regular MCMC. Furthermore, setting L = k leads to a

minor increase of cost per estimator compared to L = 1, and thus the efficiency is typically

improved, sometimes drastically.

Concrete guideline. In our experience, satisfactory tuning can be done as follows. First

generate 1000 independent meeting times with lag L = 1 (by lack of a better guess). Then

set k as a large (e.g. 99%) quantile of τ − L, which is the number of calls to P̄ before

observing the meeting Xτ = Yτ−L. Finally, redefine L := k, and set ` = 10k. Figure 1.5

(right) shows how different choices of k, L (always with ` = 10k) lead to vastly different

costs and efficiencies, for the estimation of π(h) with h : x 7→ x. In the figure, inefficiency

is divided by the asymptotic variance v(P, h) of the MCMC estimate, estimated using the

method of Section 1.3.3. The relative inefficiency goes to one with increasing k, and setting

L := k instead of L := 1 is often worthwhile.

1.3 Beyond the estimation of stationary expectations

Unbiased MCMC provides estimators of stationary expectations π(h), and also enables other

methods that can be of interest for MCMC users, including non-asymptotic convergence

diagnostics (Section 1.3.1), estimators of nested expectations (Section 1.3.2) and asymptotic

variances (Section 1.3.3).

1.3.1 Convergence diagnostics

Upper bounds on the distance to stationarity. As a by-product of the unbiased

estimator in (1.2.2) we can construct upper bounds on the total variation distance |πk−π|TV,

for any finite k, that can be estimated from samples of meeting times, as first proposed in

Section 6 of Jacob et al. (2020b), and improved with the use of L > 1 in Biswas et al. (2019),
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and with control variates in Craiu and Meng (2022). A simple way of deriving such bound

is to write |πk − π|TV = 1
2

sup|h|≤1 |π(h) − πk(h)|. Since Hk in (1.2.2) is unbiased, we can

replace π(h)− πk(h) by E[
∑∞

j=1(h(Xk+jL)− h(Yk+(j−1)L))], where the terms in the sum are

zero if k + jL ≥ τ . There remains max(0, d(τ − L − k)/Le) non-zero terms, corresponding

to indices j ≥ 1 such that k + jL < τ . Finally, each non-zero term of the form h(x)− h(y)

can be upper-bounded by 2 if h is such that supx |h(x)| ≤ 1. Thus, we obtain

∀k ≥ 0 |πk − π|TV ≤ E[max(0, d(τ − L− k)/Le)]. (1.3.1)

The right-hand side can be estimated by replacing the expectation by an empirical average

over C independent meeting times τ1, . . . , τC , for any value of k. This is obtained by running

Algorithm 1 with lag L and ` = 0, C times independently. The empirical upper bound

C−1
∑C

c=1 max(0, d(τc − L − k)/Le) is exactly zero for all k ≥ maxc τc − L, so it is enough

to evaluate it at integers k less than maxc τc − L. Figure 1.6 shows these bounds obtained

for different lags L. Increasing the lag yields lower bounds, but with diminishing returns;

as L → ∞ the bounds are still not sharp, as they depend on the coupling employed. In

practice, we can first generate meeting times with L = 1, and then redefine L as a large

(e.g. 99%) empirical quantile of τ − L. A similar reasoning lead to upper bounds on other

distances than total variation: Biswas et al. (2019) consider 1-Wasserstein bounds and Papp

and Sherlock (2022a) general Wp bounds.

Practical significance. We emphasize the convenience of (1.3.1) compared to the usual

bounds encountered in the literature on Markov chains. In continuous state spaces, the

coupling inequality due to Wolfgang Doeblin (Lindvall, 2002) reads: |πk−π|TV ≤ Pπ0⊗π(τ >

k) for all k ≥ 0, where the meeting time corresponds to a pair of chains (without any lag),

started from π0 and π, but by definition MCMC users can rarely sample from π. In discrete

state spaces, one can also write maxx |P k(x, ·)−π|TV ≤ maxx,y Px,y(τ > k) where the meeting

time corresponds to chains started from states x, y (Corollary 5.3 in Levin and Peres, 2017).

Optimizing over the states x, y could be computationally difficult. In contrast, the upper

bounds in (1.3.1) only involve pairs of chains started from an arbitrary π0.

Limitation. As a warning, the following describes a situation where the use of (1.3.1)
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Figure 1.6: Upper bounds on |πk − π|TV for different times k, obtained using (1.3.1) and
104 independent copies of meeting times associated with different lags. The bounds are
tighter with a larger lag, up to a certain point. Left: y-axis in linear scale. Right: y-axis in
logarithmic scale.

would fail to provide reliable bounds on |πk−π|TV. Suppose that the target π is multimodal,

and that chains tend to get stuck in local modes. Assume further that the initial distribution

π0 puts its mass entirely in a local mode of π. The user might then observe a small empirical

average of the meeting time, even after many independent runs. Yet the expectation of the

meeting time could be much larger. Indeed, there could be a small probability that one chain

moves to a different mode before meeting the second chain, and in that event, the meeting

time could take large values, driving the expectation upward. This is illustrated in Section

5.1 of Jacob et al. (2020b). The risk is mitigated by specifying an initial distribution π0 that

is spread out relative to the modes of π, or by increasing the lag L (Biswas et al., 2019).

1.3.2 Nested expectations

Two-step target distributions. Consider expectations with respect to a joint distribution

on X1 × X2 defined as π12(x1, x2) = π1(x1)π2(x2|x1). Suppose that π1(x1) can be evaluated

up to a normalizing constant Z1, and that π2(x2|x1) can be evaluated up to a normalizing

constant Z2(x1), which is not constant with respect to x1. The unnormalized density of

π12(x1, x2) involves the term Z2(x1). If Z2(x1) cannot be evaluated, then standard MCMC

algorithms such as MRTH cannot be implemented (Plummer, 2015). The setting occurs
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commonly in data analysis (e.g. Blocker and Meng, 2013; Liu et al., 2009). For example x1

could be missing values or generated regressors that act as input in a second model, in which

π2(x2|x1) is the distribution of a parameter of interest x2. Then π12(x1, x2) would correspond

to a Bayesian version of two-step estimation, as opposed to a Bayesian analysis using a joint

model of all unknown quantities treated simultaneously.

Two-step MCMC. A direct MCMC strategy to approximate π12(x1, x2) would start by

running an MCMC algorithm with transition P1, targeting π1, for t1 steps. Then, run MCMC

algorithms with transition P2,x1 targeting π2(·|x1), for a subset of the states x1 visited by

the first chain. Each second-stage run could go for t2(x1) steps. From all of these chains one

can indeed approximate π12(x1, x2) consistently as long as t1 and each t2(x1) go to infinity.

Such scheme raises questions because the second stage involves transition kernels P2,x1 that

depend on x1. How long should we run each of the second-stage chain? How should we

construct confidence intervals for the final estimates?

Unbiased approximation to the rescue. Some of these difficulties can be bypassed

to some extent with unbiased MCMC. First, obtain π̂1 =
∑N

n=1 ω1,nδX1,n , an unbiased ap-

proximation of π1. Optionally, sub-sample the measure to reduce the number of atoms, as

described in Section 1.2.4. Then obtain for each n ∈ {1, . . . , N} an unbiased approximation

π̂2(·|X1,n) =
∑Mn

m=1 ω2,n,mδX2,n,m of π2(·|x1 = X1,n). Under adequate assumptions on the

couplings at both stages and on h, π̂12(h) =
∑N

n=1 ω1,n

∑Mn

m=1 ω2,n,mh(X1,n, X2,n,m) has ex-

pectation equal to
∫
h(x1, x2)π12(dx1, dx2). Averaging C independent copies of π̂12(h) leads

to consistent approximations as C →∞, and confidence intervals can simply be constructed

from the CLT. If we use the same tuning parameters k, `, L for all second-stage approxima-

tions, their inefficiencies will be uneven as x1 varies, but it does not affect the consistency

as C → ∞. Rainforth et al. (2018) provide relevant discussions on the efficiency of nested

Monte Carlo schemes.

Normalizing constants. Nested expectations occur in the estimation of normalizing

constants via thermodynamic integration or path sampling (Gelman and Meng, 1998). In-

troduce a sequence of distributions (πλ) on X, continuously indexed by λ ∈ [0, 1], with

πλ(x) = exp(−Uλ(x))/Zλ. For example πλ could be a posterior distribution where the like-
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lihood was raised to the power λ. The thermodynamic integration identity reads:

log(Z1/Z0) = −
∫ 1

0

πλ(∇λUλ)dλ, (1.3.2)

which is an integral with respect to λ ∈ [0, 1] where the integrand is itself an expectation with

respect to πλ. Thus one can sample λ uniformly in [0, 1] and then approximate −πλ(∇λUλ)

with unbiased MCMC to obtain an unbiased estimator of log(Z1/Z0) (Rischard et al., 2018).

Wang and Wang (2022) consider the problem of estimating a nonlinear function g of an

expectation π(h), and take the estimation of Z1/Z0 as an example. They develop generic

unbiased estimators of g(π(h)) by combining unbiased MCMC with unbiased multilevel

Monte Carlo (Blanchet et al., 2019).

1.3.3 Asymptotic variance

Unbiased estimators of the asymptotic variance. Unbiased MCMC and its connec-

tion to the Poisson equation elicited in Douc et al. (2023), see Section 1.2.2, lead to the

construction of unbiased estimators of v(P, h), the asymptotic variance in the CLT (1.1.2).

A standard way of establishing the CLT for Markov chain averages (Douc et al., 2018, Chap-

ter 21) is to write
∑t−1

s=0{h(Xs)−π(h)} =
∑t

s=1 {g(Xs)− Pg(Xs−1)}+g(X0)−g(Xt), where g

is a solution of the Poisson equation (1.2.3), and then to observe that {g(Xs)− Pg(Xs−1)}s≥1
forms a martingale difference sequence. The CLT for martingale difference sequences yields

v(P, h) = Eπ[{g(X1)− Pg(X0)}2] = 2 π({h− π(h)}g)︸ ︷︷ ︸
(a)

− (π(h2)− π(h)2)︸ ︷︷ ︸
(b)

. (1.3.3)

The expression involves expectations with respect to π and the solution g of the Poisson

equation. Using successful couplings, Douc et al. (2023) combine unbiased estimators G

of evaluations g, from (1.2.6) in Section 1.2.2, with unbiased MCMC approximations π̂ of

π as in (1.2.9), to deliver estimators v̂(P, h) with E[v̂(P, h)] = v(P, h). Considering the

simpler problem of estimating π(g), the idea goes as follows: first, run unbiased MCMC

to obtain π̂ =
∑N

n=1 ωnδZn approximating π. Then sample I uniformly in {1, . . . , N}, and

generate G(ZI , y) with expectation g(ZI , y), as in (1.2.6) where y is an arbitrary state.
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Finally, compute NωIG(ZI , y), which has expectation equal to π(g) under conditions similar

to those of Theorem 1.2.1 on the meeting time τ and the function h.

In contrast to the bounds on |πk − π|TV presented in Section 1.3.1, that could be loose if

the coupling is ill-chosen, here we can construct estimators with expectation equal to v(P, h),

thus the choice of coupling only affects variance and cost.

Practical significance. Estimation of v(P, h) is required to compare the efficiency

of unbiased MCMC relative to regular MCMC. It is also a key quantity to compare the

performance of different MCMC algorithms. Unbiased estimators of v(P, h) enable such

efficiency comparisons without ever relying on long runs. Averages of C independent runs

converge with the usual Monte Carlo rate. This compares favorably to classical estimators

of v(P, h). Indeed, commonly-used estimators of v(P, h), such as batch means and spectral

variance estimators, converge at a sub-Monte Carlo rate, e.g. T−2/3 for batch means (Flegal

and Jones, 2010). On the other hand, the unbiased estimators in Douc et al. (2023) require a

successful coupling of the algorithm under consideration, and not just generated trajectories.

1.4 Design of successful coupling of MCMC algorithms

To implement unbiased MCMC, users need to design a successful coupling of their MCMC

algorithm. Focusing on Markovian couplings, this amounts to constructing a coupled transi-

tion P̄ to plug in Algorithm 1 and for which Assumption 1 is satisfied. Concretely, we need

to be able to sample (X, Y ) ∼ P̄ ((x, y), ·), where (x, y) represent the current positions of the

chains, such that 1) X ∼ P (x, ·) and Y ∼ P (y, ·), and 2) there is a possibility of meeting i.e.

P̄ ((x, y), {X = Y }) > 0 at least from some pairs (x, y). In Section 1.4.1 we review the more

basic task of coupling random variables, before dealing with MCMC transitions in Section

1.4.2. References to realistic examples are provided in Section 1.4.3.
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1.4.1 Couplings of random variables

Maximal couplings. A coupling of (X, Y ) with X ∼ p and Y ∼ q is maximal if P(X =

Y ) is maximal and thus equal to 1 − |p − q|TV. There may be more than one maximal

coupling. Algorithm 2 is a modification by Gerber and Lee (2020) of the γ-coupling of

Johnson (1998) with an extra parameter η ∈ (0, 1]. The scheme requires samples from p and

q, and evaluations of the ratio of their densities. The probability of {X = Y } is maximal

only when to η = 1. However, the cost of running Algorithm 2, which contains a while loop,

has a variance that goes to infinity when η = 1 and when |p− q|TV goes to zero. With η < 1,

the coupling is sub-maximal, but the variance of the cost is upper bounded uniformly over

p and q. Under Algorithm 2, conditionally on {X 6= Y }, X is independent of Y .

Algorithm 2 Sampling a coupling of p and q, with parameter η ∈ (0, 1]. The coupling
maximizes P(X = Y ) when η = 1, but the variance of the cost is bounded when η < 1.

1. Sample X ∼ p.

2. Sample W ∼ Uniform(0, 1).

(a) If W ≤ min(η, q(X)/p(X)), set Y = X.

(b) Otherwise sample Y ? ∼ q and W ? ∼ Uniform(0, 1) until W ? > ηp(Y ?)/q(Y ?),

and set Y = Y ?.

3. Return (X, Y ).

Algorithm 3 samples the same pairs (X, Y ) as Algorithm 2 with η = 1, but via a mixture

representation. Algorithm 3 is applicable when
∫

min(p(x), q(x))dx can be computed, and

when p̃ and q̃ defined on line 3 can be sampled from. Its appeal is that its cost is deterministic.

Algorithm 3 Sampling a maximal coupling of p and q via a mixture. Note that |p− q|TV =
1−

∫
p ∧ q, where p ∧ q represents the point-wise minimum between p and q.

1. Draw U ∼ Uniform(0, 1).

2. If U ≤
∫
p ∧ q, draw X ∼ ν with ν : x 7→ (p ∧ q)(x)/

∫
p ∧ q, and set Y = X.

3. Otherwise, draw X ∼ p̃ and Y ∼ q̃ independently, with p̃ ∝ p− p ∧ q, q̃ ∝ q − p ∧ q.
4. Return (X, Y ).

Synchronous couplings. The above algorithms generate X and Y independently in

the event {X 6= Y }, and thus revert to the independent coupling when |p− q|TV is close to



1.4. DESIGN OF SUCCESSFUL COUPLING OF MCMC ALGORITHMS 23

one. A natural way of introducing dependencies among random variables is to use common

random numbers to generate them. In one dimension, if X has quantile function F−p and

Y has quantile function F−q , then one can sample U ∼ Uniform(0, 1) and set X = F−p (U)

and Y = F−q (U). The resulting joint distribution minimizes E[(X − Y )2]: it is an optimal

transport coupling (Villani, 2008), or equivalently it maximizes Cov(X, Y ) (Glasserman and

Yao, 1992). Typically, such couplings assign zero probability to the event {X = Y }. Figure

1.7 (left) illustrates with bivariate Normals the common random numbers or synchronous

coupling, where X = µ1 + Σ1/2Z and Y = µ2 + Σ1/2Z with common Z ∼ Normal(0, I).

Reflection couplings. Spherically symmetric random variables are invariant by reflec-

tions with respect to planes passing through their center. From this observation, reflection

couplings can be designed for e.g. Normal or Student distributions with means µ1,µ2 and

equal variance Σ, in any dimension. The sample Y is defined by reflection of X with respect

to the hyperplane bisecting the segment (µ1, µ2). The resulting coupling is synchronous

in all directions orthogonal to the difference (µ1 − µ2), along which it is anti-synchronous:

X − µ1 and Y − µ2 either point toward each other, or face opposite directions. Bou-Rabee

et al. (2020) propose a coupling that both maximizes P(X = Y ) and reverts to a reflection

coupling in the event {X 6= Y }, described in Algorithm 4 and with a deterministic cost.

Figure 1.3 includes an implementation and Figure 1.7 (right) represents a sample from a

reflection coupling.

Algorithm 4 A coupling for distributions p and q obtained from a common spherically
symmetric distribution s, rescaled with a common covariance Σ, and shifted by µ1 and µ2

respectively. For example p = Normal(µ1,Σ) and q = Normal(µ2,Σ) if s = Normal(0, I).

1. Let ∆ = Σ−1/2(µ1 − µ2) and e = ∆/|∆| where | · | is the L2 norm.

2. Sample Ẋ ∼ s, and W ∼ Uniform(0, 1).

3. If s(Ẋ)W ≤ s(Ẋ + ∆), set Ẏ = Ẋ + ∆.

4. Else set Ẏ = Ẋ − 2(eT Ẋ)e.

5. Set X = Σ1/2Ẋ + µ1, Y = Σ1/2Ẏ + µ2, and return (X, Y ).
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Figure 1.7: Left: common random numbers or synchronous coupling of Normal(µ1,Σ) and
Normal(µ2,Σ). Each draw (X, Y ) is represented by a segment. Right: reflection coupling.
The dotted line represents the line bisecting the segment (µ1, µ2). The lengths |X − Y | are
constant under the synchronous coupling, but vary under the reflection coupling.

1.4.2 Coupling MCMC transitions

Coupling the constituents of a transition. MCMC algorithms describe how to obtain

Xt conditional on Xt−1 = x through a succession of steps. With MRTH (e.g. Figure

1.3), a proposal X? is sampled from a transition q(x, ·) (step 1), then U is sampled from

Uniform(0, 1) and Xt is set to X? if U < π(X?)q(X?, x)/π(x)q(x,X?), or to x otherwise (step

2). Couplings of the entire transition can be obtained by coupling each of the steps, e.g.

coupling proposals X? ∼ q(x, ·) and Y ? ∼ q(y, ·), and then coupling the Uniforms employed

for accepting or rejecting the proposals. For example Johnson (1998) uses maximal couplings

as in Algorithm 2 for the proposals, and a common Uniform for acceptance. Wang et al.

(2021) refine the coupling of the Uniforms to maximize the probability of {Xt = Yt}. O’Leary

and Wang (2021) show that all couplings of MRTH transitions can be obtained by certain

stepwise couplings. Since there are often many coupling possibilities for each step, it is

impossible to test all combinations. Below we provide some guiding principles.

Contracting before meeting. For some MCMC algorithms it may be possible to

sample from a maximal coupling of P (x, ·) and P (y, ·) (e.g. Wang et al., 2021, for MRTH).

However, even the maximal probability of {X = Y }, which is 1 − |P (x, ·) − P (y, ·)|TV, is

very small unless x and y are close to one another. Under an independent coupling, this
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would rarely occur. Thus, the aim is first to bring the chains closer, so that they may then

have a decent chance to meet. A coupling of P may alternate between different strategies

depending on the current states x and y: for example one can employ a contractive coupling

of P (as described below) if |x− y| is large and a maximal coupling of P if |x− y| is small.

Eberle (2016) refers to such alternation as mixed couplings.

Contractive couplings. In the context of Markov chains, the transition Xt ∼ P (Xt−1, ·)
can be represented as Xt = ψ(Xt−1, Ut), where Ut is a source of randomness and ψ is a

deterministic function. Then the synchronous coupling refers to the computation of Xt =

ψ(Xt−1, Ut) and Yt = ψ(Yt−1, Ut) using the same random variable Ut at time t. It has

long been observed that synchronous couplings of MCMC algorithms can be contractive

(Agapiou et al., 2018; Johnson, 1996; Neal, 1999; Neal and Pinto, 2001), in the sense that

the generated chains tend to get closer to one another. Assuming strong convexity of the

potential function, it is known that common noise terms result in contraction for Langevin

diffusions (pages 22-23 in Villani, 2008), for unadjusted Langevin (e.g. Appendix A in

Wibisono, 2018), and for Hamiltonian Monte Carlo (e.g. Mangoubi and Smith, 2017) for at

least some tuning parameters. Contraction from synchronous couplings has been observed

in the context of Gibbs samplers, sometimes in high dimensions, e.g. Biswas et al. (2022) for

linear regression with horseshoe priors, and Atchadé and Wang (2023) for regression with

spike-and-slab priors. It does not always work either: for example two Brownian motions

started at different positions and driven by the same noise always remain at a constant

distance.

Reflection couplings were introduced to analyze Brownian motions on Euclidean spaces,

leading to the smallest possible meeting times (Hsu and Sturm, 2013; Lindvall and Rogers,

1986). Reflections were later employed to obtain contraction for various processes: Eberle

(2016) for a class of diffusion processes, Eberle et al. (2019) for Langevin dynamics, Bou-

Rabee et al. (2020) for Hamiltonian Monte Carlo, for example. Jacob et al. (2020b) observe

good performance of Algorithm 4 for random walk proposals in MRTH, on spherical Normal

distributions as the dimension increases. Papp and Sherlock (2022b) establish this formally

and propose another coupling, termed gradient common random number coupling, which is

shown to work optimally for a class of target distributions.
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Mixing different MCMC transitions to enable meetings. For an MCMC algorithm

with transition P1, it may be possible to design a contractive coupling P̄1 without being able

to induce meetings. For example with Hamiltonian Monte Carlo, contraction can result

from the use of common momentum variables (e.g Mangoubi and Smith, 2017). However,

to obtain meetings would require pairs of momentum variables such that two Hamiltonian

trajectories, propagated with these momentum variables, would end up at the same final

position (see Figure 1 in Bou-Rabee and Eberle, 2023). A way to bypass this difficulty is to

introduce another transition P2 with a coupling P̄2 that induces meetings when chains are

close. Heng and Jacob (2019) then propose to use the mixture w1P1 + w2P2, with coupling

given by the mixture w1P̄1 + w2P̄2. The resulting chains contract thanks to P̄1 and have a

chance to meet thanks to P̄2. Careful: it would not be legal to employ P̄1 when the chains

are distant and P̄2 when they are close, as this would violate the marginal constraint that

each chain evolves according to w1P1 + w2P2.

1.4.3 References to couplings of realistic MCMC algorithms

Successful couplings have been developed for a number of popular MCMC algorithms.

Discrete state spaces. Convergence diagnostics are challenging on discrete spaces, for

which visualization is difficult; there, unbiased MCMC could be particularly useful. Jacob

et al. (2020b) present a coupling of the Gibbs sampler studied in Yang et al. (2016) for

Bayesian variable selection in high dimension. Nguyen et al. (2022) couple Gibbs samplers

to perform Bayesian data clustering, where the states are partitions of finite sets. Kelly et al.

(2023) couple MCMC samplers for phylogenetic inference, where the state space is that of

discrete tree topologies along with parameters and latent variables.

Particle filtering and importance sampling. Conditional particle filters for smooth-

ing in state space models are coupled in Jacob et al. (2020a). Lee et al. (2020) extend

the methodology and propose a detailed study of the meeting times. Particle marginal

Metropolis–Hastings for Bayesian inference in state space models (Andrieu et al., 2010) is

coupled in Middleton et al. (2020). Particle independent Metropolis–Hastings is coupled in
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(Middleton et al., 2019), with the curious implication that the bias of self-normalized impor-

tance sampling estimators can be removed in finite time; and likewise for general sequential

Monte Carlo samplers. Ruiz et al. (2021) couple variants of iterated sampling importance

resampling to fit variational auto-encoders.

Gradient-based MCMC. Heng and Jacob (2019); Xu et al. (2021) consider couplings

of simple variants of Hamiltonian Monte Carlo with applications to logistic regression and

log-Gaussian Cox point processes in non-trivial dimensions. Reflection couplings as in Figure

1.3 or Algorithm 4 can be directly used for Langevin Monte Carlo. Corenflos et al. (2023)

propose couplings of some piecewise deterministic MCMC algorithms such as the bouncy

particle sampler (Bouchard-Côté et al., 2018).

Tempering. For multimodal targets, a standard strategy is tempering. Jacob et al.

(2020b) couple a parallel tempering version of a Gibbs sampler for the Ising model. Zhu and

Atchadé (2020) consider simulated tempering for sparse canonical correlation analysis.

1.5 Comments and outstanding questions

1.5.1 Usefulness

Access to unbiased signed measures approximating the target π facilitates parallel comput-

ing: instead of long chains, unbiased MCMC users rely on large numbers of independent

runs. The lack of bias has other appeals. For example iterative optimization methods

may require the approximation of an integral at each iteration. Such approximation should

preferably be unbiased to prevent accumulation of bias over the iterations (e.g. Tadić and

Doucet, 2011). The usefulness of unbiased MCMC is investigated in the context of a Monte

Carlo Expectation-Maximization scheme in Chen et al. (2018), and of a stochastic gradient

optimization for variational auto-encoders in Ruiz et al. (2021).

Access to unbiased estimators enables various statistical tools that are primarily developed

for independent variables. For example one can readily replace empirical averages by more
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robust estimators of expectations. Nguyen et al. (2022) consider trimmed means, and one

could naturally employ median-of-means estimators (Lecué and Lerasle, 2020; Lugosi and

Mendelson, 2019) to aggregate unbiased MCMC estimators that have two finite moments

under conditions stated in Theorem 1.2.1.

Unbiased estimators can also be plugged into the framework of multi-arm bandits, for

example to identify the algorithm with minimal asymptotic variance among a collection of

MCMC algorithms, or to identify the model with largest marginal likelihood in a collection of

models. One could view each algorithm (or model) as an arm, and each unbiased estimator

of an asymptotic variance (or a normalizing constant) as an observed loss. Then, best arm

identification techniques (Audibert et al., 2010) can be used to find, as efficiently as possible,

the arm associated with the smallest expected loss.

1.5.2 Applicability

There exists a world, of a size to be determined, between standard MCMC and perfect

sampling, where unbiased estimators can be obtained but not exact samples (Glynn, 2016).

Access to that world demands successful couplings of MCMC algorithms. Currently, such

construction is endeavored algorithm-by-algorithm, by mixing ingredients such as maximal

couplings, common random numbers and reflections. There is no guarantee that such ad hoc

constructions can always be found. According to the theory (e.g. Pitman, 1976), for ergodic

chains there always exist couplings such that |πt − π0| = P(τ > t), but there may not be

implementable in settings of relevance for MCMC practitioners. It is however possible to

plug arbitrary Markov transitions into mixtures of kernels, as described in Section 1.4.2, or in

an SMC sampler, and then to remove its bias via a generic coupling of particle independent

Metropolis–Hastings (Middleton et al., 2019).

A successful coupling of inhomogeneous Markov transitions, e.g. for adaptive MCMC

algorithms, remains elusive. For a stochastic process (Xt) with marginals converging to π

in the sense that π(h) = limt→∞ E[h(Xt)], assuming that (Yt) is a copy of (Xt) such that
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t≥1 E [|h(Xt)− h(Yt−1)|] is finite, then π(h) has the representation

π(h) = E[h(X0) +
∑
t≥1

(h(Xt)− h(Yt−1))]. (1.5.1)

Many adaptive MCMC algorithms are known to have converging marginals (Andrieu and

Thoms, 2008; Atchade et al., 2011). In principle the debiasing device could be applied to

(1.5.1), but it is unclear how to construct a faithful coupling of (Xt) and (Yt) that would lead

to an unbiased estimator with a finite computing time. Random truncation techniques as in

Section 1.2.1 could be used, but good performance would depend on a choice of truncation

variable that assumes detailed knowledge of (Xt).

The benefits of unbiased estimators are also reaped under different frameworks that do not

require successful couplings, such as regeneration (Mykland et al., 1995). Techniques such

as Brockwell and Kadane (2005) to automate the identification of regeneration times could

also suggest coupling strategies, e.g. where chains could meet when they simultaneously visit

regenerative atoms.

Links to code repositories and complementary information can be found on the companion

website at https://pierrejacob.quarto.pub/unbiased-mcmc.
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