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Abstract
In this article we prove the existence of a new family of periodic solutions

for discrete, nonlinear Schrödinger equations subject to spatially localized driv-
ing and damping and we show numerically that they provide a more accurate
approximation to metastable states in these systems than previous proposals.
We also study the stability properties of these solutions and show that they fit
well with a previously proposed mechanism for the emergence and persistence
of metastable behavior.

1 Introduction and background

In this paper we reexamine the existence and properties of metastable states in (finite)
lattices of coupled nonlinear oscillators. Systems of this type have often been used to
study energy transport in extended systems and in both stochastic and deterministic
versions of these systems it has been observed that the solution can be “trapped” for
long times in small regions of the phase space, which in turn affects the length of time
it takes for the system to exhibit ergodic properties - in some cases making that time
scale so long that these properties are effectively unobservable [1] [2] [3], [4].

In recent work, it has been proven that for chains of oscillators subject to very
weak, localized damping, there are open sets of initial data in which this metastable
behavior can be approximated for very long times by “breathers”, i.e. temporally
periodic, spatially localized solutions of the undamped equation [5] [6] [7]. The proof
used a modulation approach in which the solution of the damped system was decom-
posed into a breather whose frequency and phase were allowed to vary (slowly) in
time, and a correction term which was proven to remain small for very long times.
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In the present paper we prove the existence of a new family of breather type so-
lutions which give even better approximations to the metastable states. These are
constructed, not by regarding the damped system as a perturbation of the undamped
case, but instead by adding an additional very small perturbation to the damped sys-
tem. We prove that this perturbed system has breather solutions, and we show that
these new localized states (which we dub damped and driven breathers) reproduce
aspects of the metastable behavior which the undamped breathers do not. An addi-
tional advantage of these solutions is that they allow us to use standard techniques
for analyzing the stability of fixed points in studying the metastable states.

We then analyze the stability of these damped and driven breathers (DDB), and
conclude with some numerical experiments which both illustrate the effectiveness of
the DDB in approximating the metastable state, and also, how this approximation
may break down.

1.1 Past results

Following [5] [7], we work with a very specific system of coupled oscillators, namely
the discrete nonlinear Schrödinger (dNLS) equation:

− iżj = −ε(∆z)j + |zj|2zj , j = 1, 2, . . . , N . (1)

Note that if ε = 0, this system becomes N , uncoupled, nonlinear oscillators, and we
then have trivial, localized, periodic solutions in which one site rotates with non-zero
angular frequency, and all other sites have zero amplitude. This is sometimes referred
to as the anti-integrable limit.

We add a driving term to the first site of our system, and a damping term to the
last site by modifying the equation as

− iżj = −ε(∆z)j + |zj|2zj − iβδj,1z1 + iγδj,NzN , j = 1, 2, . . . , N . (2)

The addition of damping and driving to the equation allows one to study energy flow
from one end of the system to the other. The existence of breathers in the dNLS
equation with localized forcing but distributed damping was studied in [8].

If we now translate to a rotating frame of reference zj(t) = eiωtζj, then

− iζ̇j = −ε(∆ζ)j − ωζj + |ζj|2ζj − iβδj,1ζ1 + iγδj,NζN . (3)

Finally, we will often want to work with real variables so we decompose ζj =
pj + iqj. Then (3) can be written as the system of differential equations:

ṗj = ε(∆q)j + ωqj − (|pj|2 + |qj|2)qj + βδj,1p1 − δj,NpN (4)

q̇j = −ε(∆p)j − ωpj + (|pj|2 + |qj|2)pj + βδj,1q1 − δj,NqN . (5)

Past research on systems of this type has focused mainly on the Hamiltonian case
in which the damping and driving are both absent - i.e. γ = β = 0. In this case,
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there is an extensive theory investigating the existence and properties of “breathers”.
These spatially localized but temporally periodic solutions are known to exist for
very general types of lattice of nonlinear Hamiltonian oscillators including the NLS
equation, [9] [10] [11].

For the particular case of (4)-(5), one has the following result:

Theorem 1. (see [7]; Theorem 1.6) If β = γ = 0, there exists ε0 > 0 and ∆Ω > 0
such that for all |ε| < ε0, and |ω − 1| < ∆Ω, the equations (4)-(5) have a family
of fixed points (p∗j(ε, ω), 0) which vary smoothly with ε and ω, and such that p∗1 =
1 +O(ε, |1− ω|), p∗j = O(εj−1), j = 2, . . . , n, and q∗j = 0.

Remark 1. Note that when we say that (4)-(5) has a family of fixed points of the
form (p∗j(ε, ω), 0), we mean that the qj components of the fixed point are zero.

Remark 2. Due to the invariance of (3) under complex rotations ζj → eiθζj, each
of the fixed points constructed in Theorem 1 corresponds to a circle of fixed points.

Remark 3. Because the fixed points in Theorem 1 are constructed with the aid of
the Implicit Function Theorem, for each (ε, ω), they are the unique fixed points in a
neighborhood of p1 = 1, p2 = p3 = · · · = pN = 0 (up to the complex rotation noted in
the previous remark).

Remark 4. Note that each of the fixed points constructed in Theorem 1 corresponds
to a periodic solution with angular frequency ω for (2). If we fix ε and consider the
family of solutions as a function of ω, combined with the circle of solutions given by
the complex rotations we see that in the phase space of (2) we have a cylinder filled
with periodic orbits.

2 Existence and properties of damped and driven

breather for NLS

2.1 The implicit function theorem and the existence of breathers
for the damped and driven system

Coupled systems of nonlinear oscillators like (2) have often been studied as models for
heat transport in solid state matter. In these studies, the first and last oscillator are
coupled to stochastic heat baths with different temperatures, to force an energy flow
through the system, and a damping term is added to insure that the total energy in
the system does not grow without bound. It has been observed that the convergence
to the invariant measure in such systems is often extremely slow due to the presence
of metastable states in the phase space. In prior work, the energy flow through the
system is enforced by placing a localized damping term at one end of the system and
placing all the initial energy of the system at the opposite end [12] [5]. One can prove
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that the energy in the system tends to zero as t→∞ and hence it must flow through
the system in order to dissipate in this way. In [7] it is proven that for very long times
during this dissipative process the system remains in a neighborhood of the cylinder
of breather solutions for the undamped system.

In this paper we use the Implicit Function Theorem to construct a new family
of solutions for a system subject to both damping and (very weak) driving which
we argue provide even better approximations to the metastable states than do the
undamped breathers.

Theorem 2. For ε and γ sufficiently small and all ω in a neighborhood of ω = 1, there
exists a unique value of β such that the equations (4)-(5) have a stationary solution in
a neighborhood of the undamped breather. This family of fixed points depends smoothly
on γ, ω and ε.

Remark 5. Note that stationary solutions of (4)-(5) correspond to periodic solutions
with angular frequency ω of (2).

We begin by defining a function whose components are the equations for ṗj and
q̇j. Thus, we set

fj(p2, p3, . . . , pN , q2, q3, . . . , qN ; ε, ω, γ, p1, q1) = (6)

= ε(qj+1 + qj−1 − 2qj) + ωqj − (p2j + q2j )qj

fj+N(p2, p3, . . . , pN , q2, q3, . . . , qN ; ε, ω, γ, p1, q1) = (7)

= −ε(pj+1 + pj−1 − 2pj)− ωpj + (p2j + q2j )pj ,

for j = 2, 3, . . . N − 1, and

fN(p2, p3, . . . , pN , q2, q3, . . . , qN ; ε, ω, γ, p1, q1) = (8)

= ε(qN−1 − qN) + ωqN − (p2N + q2N)qN − γpN
f2N(p2, p3, . . . , pN , q2, q3, . . . , qN ; ε, ω, γ, p1, q1) = (9)

= −ε(pN−1 − pN)− ωpN + (p2N + q2N)pN − γqN .

Defining

F (p2, p3, . . . , pN , q2, q3, . . . , qN ; ε, ω, γ, p1, q1) = (f2, f3, . . . , fN , fN+2, fN+3, . . . , f2N) ,
(10)

we see that F : R2(N−1) × R5 → R2(N−1) and that F (0, 0, . . . , 0; 0, 1, 0, 1, 0) = 0.
Computing the Jacobian at this fixed point gives:

D(p̃,q̃)F =

(
0 1
−1 0

)
(11)

where p̃ = (p2, . . . , pN), q̃ = (q2, . . . , qN), and where 0 represents and (N−1)×(N−1)
matrix of zeros and 1 represents an (N − 1)× (N − 1) dimensional identity matrix.
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Thus, by the Implicit Function Theorem, for every ε, γ, q1 sufficiently close to zero
and every ω and p1 sufficiently close to 1, there exists (a unique) p∗2, . . . , p

∗
N , q

∗
2, . . . , q

∗
N

such that
F (p∗2, p

∗
3, . . . , p

∗
N , q

∗
2, q
∗
3, . . . , q

∗
N ; ε, ω, γ, p1, q1) = 0 . (12)

Furthermore, the solution (p∗2, . . . , p
∗
N , q

∗
2, . . . , q

∗
N) depends smoothly (in fact, analyt-

ically) on (ε, ω, γ, p1, q1).
Finally, consider the two equations for ṗ1 and q̇1. In order to have a fixed point,

we need

f1(ε, ω, β, p1, q1, p2, q2) = ε(q2 − q1) + ωq1 − (q21 + p21)q1 + βp1 = 0 (13)

fN+1(ε, ω, β, p1, q1, p2, q2) = −ε(p2 − p1)− ωp1 + (q21 + p21)p1 + βq1 = 0 (14)

By rotational invariance, we choose q1 = 0. Then, inserting the solutions q∗2 and
p∗2 from above, from the requirement that f1 = 0, we see that we must have

βp1 = −εq∗2 , (15)

while the requirement that fN+1 = 0 implies

− ε(p∗2 − p1)− ωp1 + p31 = 0 . (16)

Using the implicit function theorem, and the fact that p∗2 depends smoothly on p1,
we see that there exists a solution p∗1 of (16), for ω near 1 and γ and ε sufficiently
small which satisfies (p∗1)

2 = ω +O(ε). Inserting this into (15), we see that there is a
unique value of β (depending smoothly on ε, γ, and ω), such that we have a damped
and driven breather near the (1, 0, 0, . . . , 0) breather, for each value of ω near one and
ε and γ sufficiently small.

2.2 Approximating the damped and driven breathers

We wish to show that the damped and driven breathers constructed in the previous
subsection provide a better approximation to the metastable states that occur during
energy dissipation in these systems than do the undamped breathers. To do so, we
need accurate approximations to these solutions which we derive in this subsection.

Consider the equations

fj(p2, p3, . . . , pN , q2, q3, . . . , qN ; ε, ω, γ, p1, q1) = 0 (17)

fj+N(p2, p3, . . . , pN , q2, q3, . . . , qN ; ε, ω, γ, p1, q1) = 0 , (18)

for j = 2, . . . , N . We want to approximate the solutions of these equations when ε
and γ are small and p1 and ω are near 1.

Note the equations for f2, . . . fN−1, fN+2, . . . , f2N−1 are the same as those for the
undamped breathers, and hence we can construct power-series approximations for
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these equations exactly as in the undamped case - i.e., p∗2 = − εp1
ω

+ . . . , p∗3 =
εp∗2
ω

=
( ε
ω

)2p1 + . . . , . . . , p∗N−1 = (− ε
ω

)N−2p1 + . . . , while all of the q∗j are zero to this order
in ε. (See Section 2 of [5] for more details.) Note that because the implicit function
theorem guarantees that the solution is analytic and unique, if we can find a consistent
power series approximation to the solution to a given order in ε, γ, . . . , then it must
correspond to the actual solution. In order to find the leading order terms in p∗N and
q∗N , we must look simultaneously at the equations for fN and f2N . We find that (to
lowest order in ε and γ) they satisfy:

ωq∗N − γp∗N = 0 (19)

εp∗N−1 − ωp∗N − γq∗N = 0 .

Inserting our leading order expansion for p∗N−1, and inverting the matrix

(
ω −γ
−γ −ω

)
,

we find:(
q∗N
p∗N

)
=

1

ω2 + γ2

(
ω −γ
−γ −ω

)(
0

(−1)N−2εN−1

ωN−2 p1

)
+ · · · =

(
γ(−ε)N−1p1

ωN

(− ε
ω

)N−1p1

)
+ . . .

(20)
Using this result for q∗N , we construct the leading order terms for q∗j for j = N −
1, N − 2, . . . , 2. For instance, consider the equation

0 = fN−1 = ε(q∗N−2 + q∗N − 2q∗N−1) + ωq∗N−1 + ((p∗N−1)
2 + (q∗N−1)

2)q∗N−1 (21)

Inserting the leading order expression for q∗N from (20), we find

(−1)N−1γ
( ε
ω

)N
p1 + (ω − 2ε)q∗N−1 +O(εN+1) = 0 , (22)

or

q∗N−1 = (−1)N
γ

ω

( ε
ω

)N
p1 +O(εN+1) . (23)

Continuing in this way, we find the leading order expression

q∗j = (−1)2N−j−1
γ

ω

( ε
ω

)2N−j−1
p1 + . . . (24)

for j = 2, . . . , N − 1.
If we now substitute the leading order expression for q∗2 into (15) we calculate that

the unique value of β up to leading order is:

β = (−1)2N−2γ
( ε
ω

)2N−2
+ · · · = γ

( ε
ω

)2N−2
+ . . . (25)

Remark 6. The last equality used the fact that 2N − 2 is always even and it shows
that the value of β is positive for any choice of N , and also extremely small when N
becomes large. The positivity of β is important and natural, since in order to have a
steady state in the damped system we expect to need to inject energy at some point,
which corresponds to a positive value of β.
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2.3 The “twist” of the breathers

For the undamped breathers, the fixed points all have q∗j = 0 which means that the zj
all lie on the real line within the complex plane - although by rotational invariance,
they can be rotated to any line through the origin. In contrast, the damped and
driven breathers calculated in the previous section have q∗j 6= 0 for j > 1, when
q1 = 0. Therefore, the damped and driven breathers do not lie on the same line
through the origin. This is the twist of the breathers which we will explore in this
section.

An appropriate form of analyzing the twist is by studying the norm and the
complex phase of the equations zj(t) = rj(t)e

iϕj(t). The utility of such a representation
in the study of periodic solution of the undamped dNLS equation was noted at least as
long ago as [13]. Since we are interested in studying the energy of the system, we can
look at the energy of each site individually, defined by Ej(t) = 1

2
|zj(t)|2. The system

can be represented using these energies and the complex phase. Furthermore, due to
rotational invariance we can use the differences in the phases rather than the absolute
phases to represent the system. The breather solutions correspond to stationary
points of this representation. Calling ψj(t) = ϕj+1(t)− ϕj(t) for j = 1, 2, . . . , N − 1,
the system can be written as follows:

Ėj = −2ε
√
EjEj−1 sinψj−1 + 2ε

√
Ej+1Ej sinψj + 2βδ1,jE1 − 2γδN,jEN (26)

ψ̇1 = 2(E2 − E1)

(
1 + ε

cosψ1

2
√
E1E2

)
− ε
√
E3

E2

cosψ2 + ε (27)

ψ̇j = 2(Ej+1 − Ej)

(
1 + ε

cosψj

2
√
EjEj+1

)
− ε

(√
Ej+2

Ej+1

cosψj+1 −

√
Ej−1
Ej

cosψj−1

)
(28)

ψ̇N−1 = 2(EN − EN−1)
(

1 + ε
cosψN−1

2
√
EN−1EN

)
+ ε

√
EN−2
EN−1

cosψN−2 − ε (29)

Remark 7. Note that an additional advantage of the energy-phase representation is
that it uses the rotational invariance of the system to reduce the dimension of the
system of equations from 2N to 2N − 1.

Remark 8. In (26), we set the first term equal to zero if j = 1, and the second term
equal to zero if j = N .

There is a small change for the two-site system in which case the equations are:

Ė1 = 2ε
√
E1E2 sinψ + 2βE1 (30)

Ė2 = −2ε
√
E1E2 sinψ − 2γE2

ψ̇ = 2(E2 − E1)

(
1 + ε

cosψ

2
√
E1E2

)
Because of the simplicity of the two-site system of equations, we can explicitly

find all possible damped and driven breathers.
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Theorem 3. For the two-site system with fixed β > 0, γ > 0 such that γβ < ε2, there
exist two families of non-trivial breather solutions (E∗1 , E

∗
2 , ψ

∗) given by:

(a) If β = γ, we have breathers with E∗1 = E∗2 , and sin(ψ∗) = −β
ε
.

(b) If E∗1 6= E∗2 , then

E∗1 =
1

2

√
γ

β

√
ε2 − γβ E∗2 =

1

2

√
β

γ

√
ε2 − γβ. (31)

If ε > 0, we have ψ∗ = −π + arcsin
(√

γβ
ε

)
, while if ε < 0, we have ψ∗ =

− arcsin
(√

γβ
ε

)
.

Note that in (30), if E1 = E2, ψ̇ = 0. Adding the first two equations in (30)
together implies 2βE1 − 2γE2 = 0 at a fixed point, and so, if E1 = E2, then β = γ.
Finally, if E1 = E2 and β = γ we see that the RHS of all three equations in (30) are
zero if sin(ψ∗) = −β

ε
. This gives our first family of breathers.

More generally, taking (30) and setting the left hand side to 0, we want the
solutions with E1 > 0, E2 > 0, β > 0, γ > 0, ε 6= 0. From the first and second
equations, we will get:

sinψ = −β
ε

√
E1

E2

= −γ
ε

√
E2

E1

Which leads to E1

E2
= γ

β
. Using this result in the first two equations in (30) implies

sinψ∗ = −
√
γβ
ε

. If E1 6= E2, the last equation requires cosψ∗ = −2
√
E∗

1E
∗
2

ε
. If ε > 0,

the fact that the sine of ψ∗ is negative and the cosine negative implies that we are in
the third quadrant, while if ε < 0, we see that ψ∗ is in the first quadrant. If we now
write 4E1E2

ε2
= cos2 ψ∗ = 1− sin2 ψ∗ = βγ

ε2
and solve for E∗1 and E∗2 , we obtain (31).

Remark 9. Note that if we take β = γε2, then as γ → 0, the solution in (31)
converges to the undamped breather near E1 = (1/2), E2 = 0 and ψ = 0 or π,
depending on the sign of ε.

This energy-phase representation of the breathers is especially useful when we
wish to compare the metastable states which emerge when the damped system is
allowed to decay with our breather solutions. In particular, in the undamped, n-site
case all the breathers have sinψj = 0 for all j. This means, for example, that if we use
the rotational invariance to set q∗1 = 0, then all the q∗j will be equal to zero. However,
for nonzero β, γ the equations will lead to sinψj 6= 0.

For the particular breather calculated in Section 2.2, the phase is calculated from

ϕj = arctan(
q∗j
p∗j

) =
q∗j
p∗j

+ . . . . The phases for this breather will be:

ϕj =
γ

ω

(
− ε
ω

)2(N−j)
+ · · · = γ

ω

( ε
ω

)2(N−j)
+ . . . (32)
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With the exception of ϕ1 = 0 as a consequence of choosing q1 = 0. Using this, we
find that ψj = ϕj+1 − ϕj to leading order is simply:

ψj =
γ

ω

( ε
ω

)2(N−j−1)
+ . . . (33)

In particular, we obtain the interesting following result for the last phase differ-
ence:

Theorem 4. For a fixed γ > 0, ω > 0, the phase difference between the last two
oscillators, ψN−1, is up to leading order independent of the number of sites. The
expression for this phase is:

ψN−1 =
γ

ω
+ . . . (34)

Remark 10. As we will see in the numerical experiments in Section 4, the metastable
states we observe during the energy decay in these systems, also exhibit a non-zero
“twist” of this type, whose value is very close to that predicted by (34).

3 Stability

In this section, we examine the stability of the damped and driven breathers con-
structed above, using the fact that they are fixed points of the equations (4)-(5).
Define

F̃ (p1, . . . , pN , q1, . . . , qN , β; ε, ω, γ) = (f1, f2, . . . , fN , fN+1, . . . f2N) , (35)

where the component functions fj are defined in (6)-(8)-(13).
If we linearize F̃ at the the fixed points (p∗, q∗) = (p∗1, . . . , p

∗
N , q

∗
1, . . . , q

∗
N), the

Jacobian matrix takes the form

D(p,q)F̃
∣∣
(p∗,q∗)

=

(
D(1) A(ω,ε)

B(ω,ε) D(2)

)
(36)

Here, A(ω,ε) and B(ω,ε) are N × N tri-diagonal matrices and D(1) and D(2) are
N × N diagonal matrices. More precisely, the matrix A(ω,ε) has ε on the sub- and
super-diagonal, while the diagonal elements are ω−ajε−(p∗j)

2−3(q∗j )
3, j = 1, 2, . . . , N ,

where a1 = 1, aN = 1 and all other aj = 2. The matrix B(ω,ε) has sub- and super-
diagonal elements equal to−ε, while the diagonal elements are−ω+ajε+3(p∗j)

2+(q∗1)2.

The diagonal matrix D(1) has diagonal elements D
(1)
jj = βδ1,j−γδN,j−2p∗jq

∗
j , while D(2)

has matrix elements D
(2)
jj = βδ1,j − γδN,j + 2p∗jq

∗
j . Note that from the approximations

to p∗j and q∗j derived in Subsection 2.2, we see that D
(k)
jj = −γδj,N + O(γε2(N−1)).

Thus, the diagonal part of the Jacobian is dominated by the dissipation coming from
γ.
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To make the form of the Jacobian matrix more explicit, we write out the form of
the submatrices for N = 3. We have

A(ω,ε) =

 ω − ε− (p∗1)
2 − 3(q∗1)2 ε 0

ε ω − 2ε− (p∗2)
2 − 3(q∗2)2 ε

0 ε ω − ε− (p∗3)
2 − 3(q∗3)2

 ,

(37)

B(ω,ε) =

 −ω + ε+ 3(p∗1)
2 + (q∗1)2 −ε 0

−ε −ω + 2ε+ 3(p∗2)
2 + (q∗2)2 −ε

0 −ε −ω + ε+ 3(p∗3)
2 + (q∗3)2

 ,

(38)

D(1) =

 β∗ − 2p∗1q
∗
1 0 0

0 −2p∗2q
∗
2 0

0 0 −γ − 2p∗3q
∗
3

 , (39)

and finally,

D(2) =

 β∗ + 2p∗1q
∗
1 0 0

0 2p∗2q
∗
2 0

0 0 −γ + 2p∗3q
∗
3

 . (40)

Note that because of the γ dependence of q∗j and β∗, both D(1) and D(2) vanish

in the γ = 0 limit, as do all the terms involving (q∗j ) in the matrices A(ω,ε) and B(ω,ε).
Thus the Jacobian reduces to the Jacobian of the linearization of the undamped
breather. The spectrum of this matrix when ε > 0 was analyzed in detail in prior
work [7]. The same methods used in Theorem 5.1 of that reference also apply to the
case when ε < 0 and we find that if γ = 0, the matrix D(p,q)F̃

∣∣
(p∗,q∗)

has:

• a two-dimensional zero eigenspace, spanned by the derivatives of the family of
breathers with respect to the frequency and phase of the breather, and

• (N − 1) simple, purely imaginary eigenvalues near +i, separated by a distance
∼ Cε from each other, and

• (N − 1) simple, purely imaginary eigenvalues near −i that are similarly sepa-
rated.

The next thing we note is that by the results of Section 2.2, the elements β∗, and
2p∗jq

∗
j in D(1) and D(2) are much smaller than γ (smaller by a factor of O(ε2(N−1)).)

The effects of perturbing the simple eigenvalues of the undamped Jacobian matrices
by the simplified, lower order diagonal matrices

D̄
(k)
ij =

{
−γ if i = j = N

0 otherwise .

where k = 1, 2 and 1 ≤ i, j ≤ N was considered in [7] and by using those methods,
one can show that the 2(N − 1) simple, imaginary eigenvalues near ±i all perturb to
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simple eigenvalues with negative real parts satisfying

Re(λj) ≤ −C(N)γ , (41)

where C(N) is a constant depending on N , but independent of γ or ε.1

If we now consider the effects of including the elements β∗ and 2p∗jq
∗
j in D(1)

and D(2) and the additional diagonal elements proportional to q(j∗)2 in A(ω,ε) and
B(ω,ε), then again from the results of the perturbation theory of simple eigenvalues,
[14], the shift in these eigenvalues is proportional to γε2(N−1). In particular, for ε
sufficiently small, these eigenvalues remain simple and still satisfy the bound (41),
though possibly with a slightly smaller value of C(N).

We next note that the Jacobian matrix for the linearization at the damped and
driven breather has a zero eigenvalue with explicitly computable eigenvector. This
is due to the invariance of (3) under complex rotations ζ → eiφζ. If we write the
equations (35) in terms of ζj = pj + iqj, (and in a slight abuse of notation still denote
the function whose zeros give the fixed points by F̃ ,) we see that

F̃ (eiφζ∗1 , e
iφζ∗2 , . . . , e

iφζ∗N , β
∗; ε, ω, γ) = F̃ (ζ∗1 , ζ

∗
2 , . . . , ζ

∗
N , β

∗; ε, ω, γ) = 0 , (42)

for all φ. Thus, if we differentiate with respect to φ and then set φ = 0, we find

DζF̃ |ζ∗(iζ∗) = 0 , (43)

or, returning to our (p, q) coordinates, we see that the Jacobian has a zero eigenvalue,
with eigenvector

v(0) =

(
−q∗
p∗

)
. (44)

One might expect the zero-eigenspace of the Jacobian to be two-dimensional due
to the family of fixed points as one varies ω. This turns out not to be the case (as
near as we can tell) due to the dependence of the parameter β on ω. More precisely,
suppose one differentiates the fixed-point equation

F (ζ∗1 (ω), ζ∗2 (ω), . . . , ζ∗N(ω), β(ω); ε, ω, γ) = 0 , (45)

with respect to ω. We find

D(p,q)F̃ |(p∗,q∗)
(
∂ωq

∗

∂ωp
∗

)
+

(
q∗

−p∗
)

+


(∂ωβ

∗)q∗1
0

(∂ωβ
∗)p∗1

0

 = 0 . (46)

Here, the final vector in (46) is a 2N dimensional vector whose first element is
(∂ωβ

∗)q∗1, followed by (N − 1) zeros, then the (∂ωβ
∗)p∗1 and another (N − 1) ze-

ros. Thus, we see that the Jacobian matrix maps the vector (∂ωq
∗, ∂ωp

∗)T onto the

1The form of the estimate in (41) differs slighly from that found in Theorem 6.1 of the prior work
[7] because the parameter called γ in this paper was called γε in that work.
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zero eigenvector, plus the very small correction ((∂ωβ
∗)q∗1, 0, (∂ωβ

∗)p∗1, 0)T . (Note that
this last vector has norm O(ε2(N−1)).)

Thus, we expect that this remaining eigenvalue is non-zero, but very small, a
conjecture born out by the numerical experiments of the next subsection.

Summing up, we have shown that the Jacobian matrix of the linearization of the
equations of motion at the damped and driven breathers:

• One zero eigenvalue.

• 2(N − 1) complex eigenvalues with negative real parts satisfying (41).

• One eigenvalue which we conjecture is very small, and which on the basis of our
numerics is positive.

3.1 Numerical investigation of stability

The remaining eigenvalue proves challenging to analyze so we first look at the two-site
case due to its simplicity. From the result of Theorem 3 we obtain that the Jacobian
at the breather is:

D(p,q)F =


β 0 2E∗2 ε

0 −2β(1− γβ
ε2

)− γ ε −4E∗2
γβ
ε2

+ 2E∗1
4E∗1 − 2E∗2 −ε β 0

−ε 4E∗2(1− γβ
ε2

)− 2E∗1 0 2β(1− γβ
ε2

)− γ

 (47)

Note that in simplifying the form of the Jacobian matrix we have repeatedly used
that for the breather constructed in Theorem 3, one has ω − ε = 2(E∗1 + E∗2).

We used Mathematica to solve the characteristic polynomial and find the eigen-
values. After inserting the approximate value of β for the two-site case in accordance
to (15), the results for the nonzero eigenvalues are:

µ1 = 4γ
( ε
ω

)2
+O(γε4) (48)

µ2 = −γ
(

1 +
( ε
ω

)2
+O(ε4)

)
+ i
(
ω +O(ε2)

)
(49)

µ3 = −γ
(

1 +
( ε
ω

)2
+O(ε4)

)
− i
(
ω +O(ε2)

)
(50)

The eigenvalue we could not compute through other methods turned out to be
small and positive. We can also look at the Jacobian for the Energy-phase represen-
tation, which at the breather is:
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 β −γ −(ε2 − γβ)
β −γ (ε2 − γβ)

−1 + β
γ

1− γ
β

β − γ

 (51)

Once again we used Mathematica to solve the characteristic polynomial and after
inserting the approximate value of β, the eigenvalues are (up to leading order) the
same as those in (48), (49), (50).

To better understand the instability caused by this positive eigenvalue we can
look at the corresponding eigenvector. In the energy-phase representation, numerical
evaluation of the eigenvector leads us to propose that the eigenvector is, up to leading
order, expressed as:

v1 =

 1

− ε2

ω2

−2 γ
ω2

+ . . . (52)

The error in this approximation can be estimated from ||DE,ψv1−µ1v1|| which is

of order O( γ
2

ω2 + γ ε4

ω4 ).
On the other hand, we can compute a vector pointing in the direction of the family
of breathers by differentiating the analytic expression for the breather with respect
to ω. The calculation is as follows:

∂

∂ω

 1
2
ω

1
2
ε2

ω
γ
ω

+ · · · = 1

2

 1

− ε2

ω2

−2 γ
ω2

+ . . . (53)

Thus, the vector describing the direction of the family of breathers is - up to
leading order - in the same direction as the eigenvector corresponding to the positive
eigenvalue in (52).

We conjecture that there is always a (very small) positive eigenvalue with an
eigenvector approximately pointing roughly in the same direction as the family of
breathers. Assuming this spectral picture is correct, initial conditions chosen close
to the family of damped and driven breather would be attracted toward the cylin-
der of fixed points (due to the fact that the eigenvalues corresponding to directions
normal to this cylinder all have negative real part) while we have a very slow drift
along the cylinder, corresponding to the one positive eigenvalue. Eventually, when
either higher order corrections become important, or when the family of breathers
disappears through a bifurcation, this approximation will break down. Our numer-
ical experiments in the next section indicate that it is the second of these scenarios
which actually leads to the breakdown of the approximation by breathers.
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Figure 1: The energy of each oscillator in the two-site system. The parameters
chosen were ω0 = 1, γ = 0.005, ε = −0.1 and the initial conditions correspond to the
approximation to the damped and driven breathers from Section 2.2.

4 Numerical verification

In this section, we present the results of numerical experiments to illustrate the re-
sults of the preceding sections. We focus on systems with a small number of sites
(specifically, N = 2, 3) because the very slow drift along the family of breathers means
that the computational time required increases very rapidly with N . In addition, by
concentrating on these small systems we are able to perform many computations ex-
plicitly, which helps to elucidate the numerical results. All numerical computations
are done with Mathematica using the LSODA method.

We choose as initial conditions for our numerics the approximation to the damped
and driven breather computed in Section 2.2. This in turn requires us to choose a
value for ω0, our initial approximation to angular frequency of the breather. We then
set p1 =

√
ω0. We can approximate the initial values for the other variables using the

equations of motion and our knowledge of the breather solution. For example, when
the solution is close to a damped and driven breather we can consider ψ̇j ≈ 0 and
so all the ϕ̇j are the same. For this reason, we can define ω(t) to be any of the ϕ̇j
and we should obtain approximately the same result. For simplicity, we define it as
ω(t) = ϕ̇1(t) and in turn we can calculate it from:

ϕ̇1 = 2E1 + ε− ε
√
E2

E1

cosψ1 (54)

Notice that ω0 6= ω(0) because of the fact that we calculate an approximation to
p1 from ω0 and then use it to calculate approximations for E1(0), E2(0), ψ1(0). In fact
ω0 = 2E1(0).

We begin by looking at the evolution of the energy-site for the two and three site
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Figure 2: The energy of each oscillator in the three-site system. The parameters
chosen were then same as in Figure 1 and the initial conditions correspond to the
approximation to the damped and driven breathers from Section 2.2.

systems. These calculations are presented in Figures 1 and 2.
We note that in both cases, the solution remains close to the breather for very

long times - much longer for the three-site case than the two-site case, illustrating the
fact that these metastable states have a much greater impact on the equilibration of
the system as the number of sites grows.

We now show that the damped and driven breathers provide a more accurate
approximation to the metastable states than the undamped breathers. Recall that
for the undamped breathers in the (p.q) representation, q∗j = 0 (see Theorem 1 ).
Thus, the “twist” angle ψj, discussed in section 2.3 is either 0 or π for all j. On
the other hand, the damped and driven breathers have non-zero twist whose value is
related to γ and ω, and we show that this is also true for the metastable state and that
our approximate formula for the twist derived above provides a good approximation
to the twist of the metastable states.

The phase difference for the two-site system is graphed in Figure 3. The blue line
corresponds to the solution computed by Mathematica. The first important result
is that the phase difference is nonzero, as we predicted from the calculations for the
damped and driven breathers, proving the existence of the twist. The orange line
corresponds to the function γ

ω(t)
. This function is the instantaneous highest order

approximation to the twist of the damped and driven breather derived in Theorem 4.
The value of ω(t) is calculated from (54). Recall that ω(t) ≈ p1(t)

2 ≈ 2E1(t). We have
also included in Figure 3 the green curve, which plots γ

2E(t)
and which numerically

seems to provide a better approximation to the twist. At the moment, we do not have
an explanation of why it gives a better approximation though presumably it results
from the higher order terms omitted in the approximation of either ω(t) or ψj.

Note that from graph (a) in Figure 3 we see that with either approximation, the
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Figure 3: Graph of the phase difference and its approximation for the same parameters
and initial conditions as Figure 1; (a) is graphed between times 0 and 2000, and (b)
between times 0 and 4800, approximately when it leaves the metastable state.

Figure 4: Graph of the phase difference between the first and second oscillator and
its approximation for the same parameters and initial conditions as Figure 2; (a) is
graphed between times 0 and 20 000, and (b) between times 0 and 295 000, approxi-
mately when it leaves the metastable state.

error in the approximation of the twist is less than 10% for a very long period. Graph
(b) in this Figure shows that the twist metastable state is well approximated by the
twist of the damped and driven breather until shortly before the time (t ≈ 4800) at
which time the breather solution breaks down. This bifurcation is analyzed in more
detail in subsection 4.1.

Figure 4 and Figure 5 are the graphs in the three-site system for ψ1(t) and ψ2(t)
respectively. The blue, orange and green lines have the same meaning as in Figure 3.
The same observations that applied for the phase of the two-site system also apply to
those of the three-site system. However, the effectiveness of approximating the phase
using E seems to have increased while the approximation using ω has become less
accurate.

Speaking colloquially, our numerics show that the metastable state slides along
the family of damped and driven breathers. This is consistent with our numerical
observation that the eigenvector corresponding to the positive eigenvalue of the lin-
earization points along the direction of the family of breathers.
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Figure 5: Graph of the phase difference between the second and third oscillator
and its approximation for the same parameters and initial conditions as Figure 2;
(a) is graphed between times 0 and 20 000, and (b) between times 0 and 295 000,
approximately when it leaves the metastable state.

4.1 Detailed analysis of the two-site system

For the two-site system, we do not have to limit the analysis to just the metastable
breather we have studied so far, but can make a more global investigation of the phase
space. This analysis is better suited to using the energy-phase equations rather than
expressing the system in the p, q coordinates.

For the undamped case (i.e. (30) with β = γ = 0), all breather solutions were
found in [13] and in our notation they take the form:

E
(1)
1 =

1

2
E E

(1)
2 = 1

2
E ψ(1) = 0 (55)

E
(2)
1 =

1

2
E E

(2)
2 = 1

2
E ψ(2) = π (56)

E
(3)
1 =

1

2

(
E +
√
E2 − ε2

)
E

(3)
2 = 1

2

(
E −

√
E2 − ε2

)
ψ(3) = π (57)

E
(4)
1 =

1

2

(
E −

√
E2 − ε2

)
E

(4)
2 = 1

2

(
E +
√
E2 − ε2

)
ψ(4) = π (58)

when ε > 0 with similar expressions for ε < 0.
For each of these breathers, we can calculate the angular frequency ω from E.

The values are ω(1) = E,ω(2) = E + 2ε, ω(3) = ω(4) = 2E + ε. The third breather is
the one close to the metastable states discussed so far.

For |ε| >> γ > 0 but β = 0, the breathers disappear but they can be used to
help find solutions of the damped problem. For example, if we make the Ansatz that
E1(t) = E2(t) for all time, and substitute this into the equations of motion we find
exact solutions:

E1(t) = 1
2
E0e

−γt E2(t) = 1
2
E0e

−γt ψ(t) = − arcsin
( γ

2ε

)
(59)

E1(t) = 1
2
E0e

−γt E2(t) = 1
2
E0e

−γt ψ(t) = −π + arcsin
( γ

2ε

)
(60)
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where E0 = E1(0) + E2(0) is the initial total energy, and ε > 0. One has similar
expressions when ε < 0.

We can use a similar argument to approximate the effects of initial conditions
close to the solution E(3) of (55). First, differentiate d

dt
E

(3)
1 and d

dt
E

(3)
2 :

d

dt
E

(3)
1 =

1

2
Ė

(
1 +

E√
E2 − ε2

)
d

dt
E

(3)
2 =

1

2
Ė

(
1− E√

E2 − ε2

)
Using Ė = Ė1 + Ė2 = −2γE2, and considering E1 = E

(3)
1 , E2 = E

(3)
2 , we set d

dt
E

(3)
1 −

d
dt
E

(3)
2 = Ė1 − Ė2 and solve for sinψ. The result will be:

sinψ =
γ

2
√
E2 − ε2

(61)

Note that this is only an approximation to the solution - this value of ψ will not satisfy
the equation for ψ̇. However Figure 6 shows that it is a very accurate approximation
when E & |ε|. Recall that for this breather ω(3) = 2E + ε, so calculating the leading
order in ψ we find ψ = γ

ω
+ . . . , which is identical to the value of the twist in the

damped and driven breather from Theorem 4. This is further evidence of the fact that
the damped and driven breathers provide a better approximation to the metastable
states than do the undamped breathers.

We also obtain an approximation to the time evolution of the energy through:

Ė = −2γE2 ≈ −2γE
(3)
2 = −γ

(
E −

√
E2 − ε2

)
(62)

If the system starts with initial total energy E0, an approximate expression for E(t)
can be calculated by solving the differential equation to obtain:

E(t) ≈ |ε|
2

(√
−W−1 (−e−1+4γ(t−τ)) +

1√
−W−1 (−e−1+4γ(t−τ))

)
(63)

Here W−1 is the −1 branch of the product logarithm, and τ is the time for which
limt→τ E(t) = |ε| and is given by:

τ =
1

2γ

(
E0
E0 +

√
E2

0 − ε2
ε2

− ln

(
E0 +

√
E2

0 − ε2
|ε|

)
− 1

)
(64)

If the solution found was exact, τ would be the time when E = |ε|, corresponding
to the bifurcation for the undamped system, therefore the solution would be valid up
until τ . Since this is not the case, τ instead serves as an approximation for the time
at which the approximation (63) stops working. In fact, the approximation stops
working a small amount of time before τ . This is expected since (61) does not make

sense for E >
√
ε2 − γ2

4
due to the domain of the arcsin.
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Figure 6: Graphs of the total energy and the phase difference for E0 = 0.505, ε =
−0.1, γ = 0.005. (a) Is the total energy graphed from t = 0 to t = τ + 300 ≈ 5000
and (b) is the phase difference graphed from t = 0 to τ − 100 ≈ 4600.

Figure 6 shows the effectiveness of the approximation. E0 was chosen so that it
coincided with the initial energy of the graphs in the previous sections, leading to
τ = 4700.8. The energy was graphed for longer than τ to identify the behaviour after
it leaves the breather, while the phase difference was graphed for less than τ since the
expression for the approximation explodes due to the singularity in the arcsin. After
this, we see that the behavior of the solution is governed either by (59) or (60). Note
that by approximating the energy of the solution by the expression for the energy of
the breather in (62) we are assuming that this approximation moves along the family
of breathers and from Figure 6 we again see that this scenario accurately reproduces
the observed numerical behavior of the solution of the system.

4.2 Metastable evolution of the three-site system

The method outlined in 4.1 for calculating the approximate time evolution of the
metastable solution is unsuitable for systems with three or more sites. This is be-
cause the calculation would be too complicated or even impossible since it requires the
analytical solution to the undamped breather in terms of the total energy. Nonethe-
less, a comparison between Figure 1 with Figure 2 shows they behave similarly. They
both start with a very slow decay in the energy as the system drifts along a family
of damped and driven breathers, with the drift being much slower in the three-site
case. Eventually it reaches a point at which all the oscillators have the same energy.
Shortly before reaching that point, the energy decay accelerates, with the effect on
the three-site system being significantly more dramatic.

Moreover, we can numerically compute the bifurcations for the three-site un-
damped system in terms of E. For example, if ε < 0, we find three bifurcations
occurring at E ∼ 4.92|ε|, E ∼ 1.97|ε|, E ∼ 0.75|ε|. The undamped breather close to
the metastable state ceases to exist for E < 0.75|ε|. When the energies of the three
sites are approximately all the same for the first time (at t ∼ 293 800 by looking at
the numerical results), the total energy of the system is ∼ 0.063 = 0.63|ε|. The value
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of the energy when it reaches this state is close to that of the bifurcation value for
the undamped breather, just as in the two-site system.

Thus, we conjecture that the general evolution of these metastable states is as fol-
lows. When the trajectory is “captured” by one of the damped and driven breathers,
the system begins to evolve by drifting along this family until the family of breathers
disappears through bifurcation, at which point the system may be captured by an-
other attractive family of approximately periodic orbits. There may, of course be
other, possibly large, parts of the phase space where these metastable solutions do
not exist and the evolution of the system is chaotic. In particular, it is not clear what
properties of the periodic orbit in the undamped Hamiltonian system result in the
solution becoming attractive once the system is subjected to damping.

5 Summary and Conclusions

In this paper we have derived a new family of periodic solutions of the damped and
driven discrete nonlinear Schrödinger equation. We have derived approximations to
these solutions and analyzed their stability. We have also proposed an explanation
for the appearance of very long-lived metastable states in the phase space of weakly
damped lattice systems in which the trajectory is attracted to a cylinder of such
breathers and then drifts very slowly along the cylinder of breathers until this family of
solutions disappears. We suspect that the disappearance occurs near a bifurcation of
the undamped system. Finally, we have shown that certain aspects of the metastable
states are better approximated by these damped and driven breathers than by the
breather solutions of the undamped lattice system.
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