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1 Average to instantaneous velocity, geometric idea

Briggs—Cochran—Gillett §2.1 pp. 54-60

Last time, we looked at the average velocity over various intervals [0, k] (with A > 0) of an
object whose position is given by a function f, and used this to make a conjecture about
the instantaneous velocity at 0. Now let’s look at a more geometric perspective on the same
phenomenon.

Example 1 (§2.1 Ex. 28) Let f(z) = 2® — x. Make a table of slopes of secant lines and
make a conjecture about the slope of the tangent line at x = 1. (Recall that a secant line is
a straight line joining two points on a curve.)

For the interval [1,¢], the slope of the secant line is

(P —t)—(1P=1) t*—t
t—1 Ct—1

Here’s one possible table (you could choose other endpoints):

Interval | Slope of secant line
[1,2] 6

(1, 1.5] 3.75

[1,1.1] | 231

[1,1.01] | 2.0301

[1,1.001] | 2.003001

This strongly suggests that the slope of the tangent line at x =1 is 2.
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To summarize:

The instantaneous = “Limit as ¢t — ¢y of the average
velocity at t =t velocities in the intervals [to, t]”

This geometrically corresponds to the following:

The slope of the tangent = “Limit as t — t; of the slopes
line to s(t) at (to, s(to)) of the secant lines between (t, s(tp)) and (¢, s(t))”

2 Definition of limits

Briggs-Cochran-Gillett § 2.2, pp. 61-68

Definition 2 (Limit of a function (Preliminary)) Suppose the function f is defined for
all x near a except possibly at a. If f(x) is arbitrarily close to L (as close to L as we like)
for all x sufficiently close (but not equal) to a, we write

lim f(z) =L

r—ra

and say the limit of f(x) as x approaches a equals L.

2.1 Finding limits with graphs

Example 3 (§2.2 Ex. 8) Use the graph of g in the figure to find the following values or
state that they do not exist.

(a) 9(0) (c) g(1)
(b) lim g(z) (d) lim g(x)

z—0 z—1
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2.2 Finding limits with tables
Example 4 (§2.2 Ex. 12) Let f(z) = “f_‘ll.

(a) Calculate f(x) for each value of x in the following table.

X 09 0.99 0.999 (0.9999
f@ ik
X)= ——
x-1
X 1.1 1.01 1.001 1.0001
flx)= —
x=1
3 —1

(b) Make a conjecture about the value of lim :
=1 ¢ —1

2.3 One-sided limits

Definition 5 (One-sided Limits: a right-sided limit or a left-sided limit)
Right-sided limit: Suppose f is defined for all x near a with x > a. If f(x) is arbitrarily
close to L for all x sufficiently close to a with x > a, we write

lim f(z) =1L

r—a™t

and say the limit of f(x) as x approaches a from the right equals L.
Left-sided limit: Suppose f is defined for all x near a with x < a. If f(x) is arbitrarily
close to L for all x sufficiently close to a with v < a, we write

lim f(z)=1L

Tr—a~
and say that the limit of f(x) as x approaches a from the left equals L.
Note (one-sided versus two-sided limits): The limit lim f(z) = L is a two-sided limit

because f(x) approaches L as x approaches a for values of x less than a and for values of z
greater than a.

Theorem 6 (Relationship between one-sided and two-sided limits) Assume f
is defined for all x mnear a except possibly at a. Then glﬂllg f(z) = L if and only if

lim f(z) =L and lim,_,,- f(x) = L.

Tr—a
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Example 7 (§2.2 Ex. 24) Use the graph of g in the figure to find the following values or

state that they do
¥i
,6 =}

S_

not exist. If a limit does not exist, explain why.

B A
(a) g(=1) (d) lim g(z) (9) lim g(x)
(b) lim_g(z) (e) g(1) (h) 9(5)
(¢) lim g(x) (f) lim g(z) (i) lim g(z)
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