Dr. Daniel Hast,drhast@bu.edu

Today's topics

1 Average to instantaneous velocity, geometric idea 1
2 Definition of limits 2
2.1 Finding limits with graphs . 2
2.2 Finding limits with tables . 3
2.3 One-sided limits . 3

1 Average to instantaneous velocity, geometric idea

Briggs-Cochran-Gillett §2.1 pp. 54-60

Last time, we looked at the average velocity over various intervals $[0, h]$ (with $h>0$) of an object whose position is given by a function f, and used this to make a conjecture about the instantaneous velocity at 0 . Now let's look at a more geometric perspective on the same phenomenon.

Example 1 ($\S 2.1$ Ex. 28) Let $f(x)=x^{3}-x$. Make a table of slopes of secant lines and make a conjecture about the slope of the tangent line at $x=1$. (Recall that a secant line is a straight line joining two points on a curve.)

For the interval $[1, t]$, the slope of the secant line is

$$
\frac{\left(t^{3}-t\right)-\left(1^{3}-1\right)}{t-1}=\frac{t^{3}-t}{t-1}
$$

Here's one possible table (you could choose other endpoints):

Interval	Slope of secant line
$[1,2]$	6
$[1,1.5]$	3.75
$[1,1.1]$	2.31
$[1,1.01]$	2.0301
$[1,1.001]$	2.003001

This strongly suggests that the slope of the tangent line at $x=1$ is 2 .

To summarize:
$\left.\begin{array}{c}\text { The instantaneous } \\ \text { velocity at } t=t_{0}\end{array}=\begin{array}{c}\text { "Limit as } t \rightarrow t_{0} \text { of the average } \\ \text { velocities in the intervals }\left[t_{0}, t\right] "\end{array}\right]$

This geometrically corresponds to the following:

> The slope of the tangent $=\quad$ "Limit as $t \rightarrow t_{0}$ of the slopes line to $s(t)$ at $\left(t_{0}, s\left(t_{0}\right)\right)$

2 Definition of limits

Briggs-Cochran-Gillett § 2.2, pp. 61-68

Definition 2 (Limit of a function (Preliminary)) Suppose the function f is defined for all x near a except possibly at a. If $f(x)$ is arbitrarily close to L (as close to L as we like) for all x sufficiently close (but not equal) to a, we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

and say the limit of $f(x)$ as x approaches a equals L.

2.1 Finding limits with graphs

Example $3(\S 2.2$ Ex. 8) Use the graph of g in the figure to find the following values or state that they do not exist.

(a) $g(0)$
(c) $g(1)$
(b) $\lim _{x \rightarrow 0} g(x)$
(d) $\lim _{x \rightarrow 1} g(x)$

2.2 Finding limits with tables

Example 4 (§2.2 Ex. 12) Let $f(x)=\frac{x^{3}-1}{x-1}$.
(a) Calculate $f(x)$ for each value of x in the following table.

x	0.9	0.99	0.999	0.9999
$f(x)=\frac{x^{3}-1}{x-1}$				
x	1.1	1.01	1.001	1.0001
$f(x)=\frac{x^{3}-1}{x-1}$				

(b) Make a conjecture about the value of $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}$.

2.3 One-sided limits

Definition 5 (One-sided Limits: a right-sided limit or a left-sided limit)
Right-sided limit: Suppose f is defined for all x near a with $x>a$. If $f(x)$ is arbitrarily close to L for all x sufficiently close to a with $x>a$, we write

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

and say the limit of $f(x)$ as x approaches a from the right equals L.
Left-sided limit: Suppose f is defined for all x near a with $x<a$. If $f(x)$ is arbitrarily close to L for all x sufficiently close to a with $x<a$, we write

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

and say that the limit of $f(x)$ as x approaches a from the left equals L.
Note (one-sided versus two-sided limits): The limit $\lim _{x \rightarrow a} f(x)=L$ is a two-sided limit because $f(x)$ approaches L as x approaches a for values of x less than a and for values of x greater than a.

Theorem 6 (Relationship between one-sided and two-sided limits) Assume f is defined for all x near a except possibly at a. Then $\lim _{x \rightarrow a} f(x)=L$ if and only if $\lim _{x \rightarrow a^{+}} f(x)=L$ and $\lim _{x \rightarrow a^{-}} f(x)=L$.

Example $7(\S 2.2$ Ex. 24) Use the graph of g in the figure to find the following values or state that they do not exist. If a limit does not exist, explain why.

(a) $g(-1)$
(d) $\lim _{x \rightarrow-1} g(x)$
(g) $\lim _{x \rightarrow 3} g(x)$
(b) $\lim _{x \rightarrow-1^{-}} g(x)$
(e) $g(1)$
(h) $g(5)$
(c) $\lim _{x \rightarrow-1^{+}} g(x)$
(f) $\lim _{x \rightarrow 1} g(x)$
(i) $\lim _{x \rightarrow 5^{-}} g(x)$

