Dr. Daniel Hast, drhast@bu.edu

Today's topics

Average to instantaneous velocity, geometric idea					
Definition of limits	2				
1 Finding limits with graphs	2				
2 Finding limits with tables	3				
3 One-sided limits	3				
A 2. 2. 2.	Average to instantaneous velocity, geometric idea Definition of limits 2.1 Finding limits with graphs 2.2 Finding limits with tables 2.3 One-sided limits				

1 Average to instantaneous velocity, geometric idea

Briggs–Cochran–Gillett §2.1 pp. 54–60

Last time, we looked at the average velocity over various intervals [0, h] (with h > 0) of an object whose position is given by a function f, and used this to make a conjecture about the instantaneous velocity at 0. Now let's look at a more geometric perspective on the same phenomenon.

Example 1 (§2.1 Ex. 28) Let $f(x) = x^3 - x$. Make a table of slopes of secant lines and make a conjecture about the slope of the tangent line at x = 1. (Recall that a secant line is a straight line joining two points on a curve.)

For the interval [1, t], the slope of the secant line is

$$\frac{(t^3 - t) - (1^3 - 1)}{t - 1} = \frac{t^3 - t}{t - 1}.$$

Here's one possible table (you could choose other endpoints):

Interval	Slope of secant line
[1, 2]	6
[1, 1.5]	3.75
[1, 1.1]	2.31
[1, 1.01]	2.0301
[1, 1.001]	2.003001

This strongly suggests that the slope of the tangent line at x = 1 is 2.

To summarize:

The instantaneous	=	"Limit as $t \to t_0$ of the average
velocity at $t = t_0$		velocities in the intervals $[t_0, t]$ "

This geometrically corresponds to the following:

The slope of the tangent = "Limit as $t \to t_0$ of the slopes line to s(t) at $(t_0, s(t_0))$ of the secant lines between $(t_0, s(t_0))$ and (t, s(t))"

2 Definition of limits

Briggs-Cochran-Gillett § 2.2, pp. 61–68

Definition 2 (Limit of a function (Preliminary)) Suppose the function f is defined for all x near a except possibly at a. If f(x) is arbitrarily close to L (as close to L as we like) for all x sufficiently close (but not equal) to a, we write

$$\lim_{x \to a} f(x) = L$$

and say the limit of f(x) as x approaches a equals L.

2.1 Finding limits with graphs

Example 3 (§2.2 **Ex. 8**) Use the graph of g in the figure to find the following values or state that they do not exist.

2.2 Finding limits with tables

Example 4 (§2.2 Ex. 12) Let $f(x) = \frac{x^3-1}{x-1}$.

(a) Calculate f(x) for each value of x in the following table.

x	0.9	0.99	0.999	0.9999
$f(x) = \frac{x^3 - 1}{x - 1}$				
x	1.1	1.01	1.001	1.0001
$f(x) = \frac{x^3 - 1}{x - 1}$				

(b) Make a conjecture about the value of $\lim_{x \to 1} \frac{x^3 - 1}{x - 1}$.

2.3 One-sided limits

Definition 5 (One-sided Limits: a right-sided limit or a left-sided limit) *Right-sided limit:* Suppose f is defined for all x near a with x > a. If f(x) is arbitrarily close to L for all x sufficiently close to a with x > a, we write

$$\lim_{x \to a^+} f(x) = L$$

and say the limit of f(x) as x approaches a from the right equals L. Left-sided limit: Suppose f is defined for all x near a with x < a. If f(x) is arbitrarily close to L for all x sufficiently close to a with x < a, we write

$$\lim_{x \to a^{-}} f(x) = I$$

and say that the limit of f(x) as x approaches a from the left equals L.

Note (one-sided versus two-sided limits): The limit $\lim_{x\to a} f(x) = L$ is a two-sided limit because f(x) approaches L as x approaches a for values of x less than a and for values of x greater than a.

Theorem 6 (Relationship between one-sided and two-sided limits) Assume f is defined for all x near a except possibly at a. Then $\lim_{x\to a} f(x) = L$ if and only if $\lim_{x\to a^+} f(x) = L$ and $\lim_{x\to a^-} f(x) = L$.

Example 7 (§2.2 **Ex. 24)** Use the graph of g in the figure to find the following values or state that they do not exist. If a limit does not exist, explain why.

