Dr. Daniel Hast,drhast@bu.edu

Today's topics

1 Techniques for computing limits 1
1.1 One-sided limits 1
1.2 Other techniques 2
1.3 Infinite limits and one-sided infinite limits 2
1.4 Vertical asymptotes 4

1 Techniques for computing limits

1.1 One-sided limits

Theorem 1 (One-sided limit laws) Limit laws 1-6 (sum, difference, constant multiple, product, quotient, and power) hold with $\lim _{x \rightarrow a}$ replaced with $\lim _{x \rightarrow a^{+}}$or $\lim _{x \rightarrow a^{-}}$. Law 7 is modified as follows. Assume $n>0$ is an integer.
7. Root
(a) $\lim _{x \rightarrow a^{+}}(f(x))^{1 / n}=\left(\lim _{x \rightarrow a^{+}} f(x)\right)^{1 / n}$, provided $f(x) \geq 0$ for all x near a with $x>a$
if n is even.
(b) $\lim _{x \rightarrow a^{-}}(f(x))^{1 / n}=\left(\lim _{x \rightarrow a^{-}} f(x)\right)^{1 / n}$, provided $f(x) \geq 0$ for all x near a with $x<a$ if n is even.

Example 2 Let

$$
f(x)= \begin{cases}0 & \text { if } x \leq-5 \\ \sqrt{25-x^{2}} & \text { if }-5<x<5 \\ 3 x & \text { if } x \geq 5\end{cases}
$$

Compute the following limits or state that they do not exist.
(a) $\lim _{x \rightarrow-5^{-}} f(x)$
(c) $\lim _{x \rightarrow-5} f(x)$
(e) $\lim _{x \rightarrow 5^{+}} f(x)$
(b) $\lim _{x \rightarrow-5^{+}} f(x)$
(d) $\lim _{x \rightarrow 5^{-}} f(x)$
(f) $\lim _{x \rightarrow 5} f(x)$

Example 3 Compute the following limits or state that they do not exist.
(a) $\lim _{x \rightarrow 4} \frac{x^{2}-2 x-3}{x-3}$
(b) $\lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x-3}$

Example 4 Evaluate $\lim _{x \rightarrow a} \frac{x^{2}-a^{2}}{\sqrt{x}-\sqrt{a}}$, where $a>0$ is a real number.

1.2 Other techniques

Example 5 Here we analyze the behavior of $x \sin \frac{1}{x}$ near $x=0$:

1. Show that $-|x| \leq x \sin \frac{1}{x} \leq|x|$ for $x \neq 0$.
2. Illustrate the inequalities above with a graph.
3. Make a conjecture about $\lim _{x \rightarrow 0} x \sin \frac{1}{x}$.

Theorem 6 (Squeeze Theorem) Assume functions f, g, h satisfy $f(x) \leq g(x) \leq h(x)$ for all values of x near a, except possibly at a. If

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L
$$

then

$$
\lim _{x \rightarrow a} g(x)=L
$$

1.3 Infinite limits and one-sided infinite limits

We will now look at functions for which values increase or decrease without a bound near a point.

Example 7 Consider the graph of g in the figure. Analyze the following limits.

1. $\lim _{x \rightarrow 2^{-}} g(x)$
2. $\lim _{x \rightarrow 2^{+}} g(x)$
3. $\lim _{x \rightarrow 2} g(x)$
4. $\lim _{x \rightarrow 4^{-}} g(x)$
5. $\lim _{x \rightarrow 4^{+}} g(x)$
6. $\lim _{x \rightarrow 4} g(x)$

Definition 8 (Infinite Limits and One-sided Limits)

Suppose f is defined for all x near a.

- If $f(x)$ grows arbitrarily large for all x sufficiently close (but not equal) to a we write

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

and we say that the limit of $f(x)$ as x approaches is infinity.

- If $f(x)$ is negative and grows arbitrarily large in magnitude for all x sufficiently close (but not equal) to a we write

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

and we say that the limit of $f(x)$ as x approaches a is negative infinity.
In both cases, the limit does not exist.
Suppose now that f is defined for all x near a with $x>a$. If $f(x)$ grows arbitrarily large for all x sufficiently close (but not equal) to a with $x>a$ we write

$$
\lim _{x \rightarrow a^{+}} f(x)=\infty
$$

The one sided limits $\lim _{x \rightarrow a^{+}} f(x)=-\infty, \lim _{x \rightarrow a^{-}} f(x)=\infty$ and $\lim _{x \rightarrow a^{-}} f(x)=-\infty$ are defined analogously.

1.3.1 Finding infinite limits analytically

Example 9 Determine the following limits or state that they do not exist.

1. $\lim _{x \rightarrow-2^{+}} \frac{x^{3}-5 x^{2}+6 x}{x^{4}-4 x^{2}}$
2. $\lim _{x \rightarrow-2^{-}} \frac{x^{3}-5 x^{2}+6 x}{x^{4}-4 x^{2}}$
3. $\lim _{x \rightarrow-2} \frac{x^{3}-5 x^{2}+6 x}{x^{4}-4 x^{2}}$
4. $\lim _{x \rightarrow 2} \frac{x^{3}-5 x^{2}+6 x}{x^{4}-4 x^{2}}$

1.4 Vertical asymptotes

Definition 10 (Vertical asymptotes)

If $\lim _{x \rightarrow a} f(x)= \pm \infty, \lim _{x \rightarrow a^{+}} f(x)= \pm \infty$, or $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$ then the line $x=a$ is called a vertical asymptote.

Example 11 Find all vertical asymptotes $x=a$ of the following functions. For each value of a determine $\lim _{x \rightarrow a^{+}} f(x), \lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a} f(x)$.

1. $f(x)=\frac{\cos x}{x^{2}+2 x}$
2. $f(x)=\frac{x+1}{x^{3}-4 x^{2}+4 x}$
