Dr. Daniel Hast, drhast@bu.edu

Today's topics

1	Tecl	nniques for computing limits	1
	1.1	One-sided limits	1
	1.2	Other techniques	2
	1.3	Infinite limits and one-sided infinite limits	2
	1.4	Vertical asymptotes	4

1 Techniques for computing limits

1.1 One-sided limits

Theorem 1 (One-sided limit laws) Limit laws 1-6 (sum, difference, constant multiple, product, quotient, and power) hold with $\lim_{x\to a}$ replaced with $\lim_{x\to a^+}$ or $\lim_{x\to a^-}$. Law 7 is modified as follows. Assume n > 0 is an integer.

7. Root

(a)
$$\lim_{x \to a^+} (f(x))^{1/n} = \left(\lim_{x \to a^+} f(x)\right)^{1/n}$$
, provided $f(x) \ge 0$ for all x near a with $x > a$ if n is even.

(b)
$$\lim_{\substack{x \to a^- \\ if \ n \ is \ even.}} (f(x))^{1/n} = \left(\lim_{x \to a^-} f(x)\right)^{1/n}$$
, provided $f(x) \ge 0$ for all x near a with $x < a$

Example 2 Let

$$f(x) = \begin{cases} 0 & \text{if } x \le -5\\ \sqrt{25 - x^2} & \text{if } -5 < x < 5\\ 3x & \text{if } x \ge 5. \end{cases}$$

Compute the following limits or state that they do not exist.

Example 3 Compute the following limits or state that they do not exist.

(a)
$$\lim_{x \to 4} \frac{x^2 - 2x - 3}{x - 3}$$

(b) $\lim_{x \to 3} \frac{x^2 - 2x - 3}{x - 3}$

Example 4 Evaluate $\lim_{x \to a} \frac{x^2 - a^2}{\sqrt{x} - \sqrt{a}}$, where a > 0 is a real number.

1.2 Other techniques

Example 5 Here we analyze the behavior of $x \sin \frac{1}{x}$ near x = 0:

- 1. Show that $-|x| \le x \sin \frac{1}{x} \le |x|$ for $x \ne 0$.
- 2. Illustrate the inequalities above with a graph.
- 3. Make a conjecture about $\lim_{x \to 0} x \sin \frac{1}{x}$.

Theorem 6 (Squeeze Theorem) Assume functions f, g, h satisfy $f(x) \le g(x) \le h(x)$ for all values of x near a, except possibly at a. If

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L,$$

then

$$\lim_{x \to a} g(x) = L.$$

1.3 Infinite limits and one-sided infinite limits

We will now look at functions for which values increase or decrease without a bound near a point.

Example 7 Consider the graph of g in the figure. Analyze the following limits.

Definition 8 (Infinite Limits and One-sided Limits)

Suppose f is defined for all x near a.

• If f(x) grows arbitrarily large for all x sufficiently close (but not equal) to a we write

$$\lim_{x \to a} f(x) = \infty$$

and we say that the limit of f(x) as x approaches is infinity.

• If f(x) is negative and grows arbitrarily large in magnitude for all x sufficiently close (but not equal) to a we write

$$\lim_{x \to a} f(x) = -\infty$$

and we say that the limit of f(x) as x approaches a is negative infinity.

In both cases, the limit **does not exist**. Suppose now that f is defined for all x near a with x > a. If f(x) grows arbitrarily large for all x sufficiently close (but not equal) to a with x > a we write

$$\lim_{x \to a^+} f(x) = \infty.$$

The one sided limits $\lim_{x\to a^+} f(x) = -\infty$, $\lim_{x\to a^-} f(x) = \infty$ and $\lim_{x\to a^-} f(x) = -\infty$ are defined analogously.

1.3.1 Finding infinite limits analytically

Example 9 Determine the following limits or state that they do not exist.

1.
$$\lim_{x \to -2^+} \frac{x^3 - 5x^2 + 6x}{x^4 - 4x^2}$$

2.
$$\lim_{x \to -2^-} \frac{x^3 - 5x^2 + 6x}{x^4 - 4x^2}$$

3. $\lim_{x \to -2} \frac{x^3 - 5x^2 + 6x}{x^4 - 4x^2}$ 4. $\lim_{x \to 2} \frac{x^3 - 5x^2 + 6x}{x^4 - 4x^2}$

1.4 Vertical asymptotes

Definition 10 (Vertical asymptotes)

If $\lim_{x \to a} f(x) = \pm \infty$, $\lim_{x \to a^+} f(x) = \pm \infty$, or $\lim_{x \to a^-} f(x) = \pm \infty$ then the line x = a is called a vertical asymptote.

Example 11 Find all vertical asymptotes x = a of the following functions. For each value of a determine $\lim_{x \to a^+} f(x)$, $\lim_{x \to a^-} f(x)$ and $\lim_{x \to a} f(x)$.

1.
$$f(x) = \frac{\cos x}{x^2 + 2x}$$

2. $f(x) = \frac{x+1}{x^3 - 4x^2 + 4x}$