Dr. Daniel Hast, drhast@bu.edu

Today's topics

1	Infinite limits and vertical asymptotes, continued	1
2	Limits at infinity	2
	2.1 Limits at infinity and horizontal asymptotes	2
	2.2 Infinite limits at infinity	3
	2.3 End behavior	3

1 Infinite limits and vertical asymptotes, continued

Briggs–Cochran–Gillett §2.4, pp. 83–91.

Example 1. Determine the following limits or state that they do not exist.

1. $\lim_{x \to -2^{+}} \frac{x^3 - 5x^2 + 6x}{x^4 - 4x^2}$ 2. $\lim_{x \to -2^{-}} \frac{x^3 - 5x^2 + 6x}{x^4 - 4x^2}$ 3. $\lim_{x \to -2} \frac{x^3 - 5x^2 + 6x}{x^4 - 4x^2}$ 4. $\lim_{x \to 2} \frac{x^3 - 5x^2 + 6x}{x^4 - 4x^2}$

Example 2. Find all vertical asymptotes x = a of the following functions. For each value of a determine $\lim_{x \to a^+} f(x)$, $\lim_{x \to a^-} f(x)$ and $\lim_{x \to a} f(x)$.

1.
$$f(x) = \frac{\cos x}{x^2 + 2x}$$

2. $f(x) = \frac{x+1}{x^3 - 4x^2 + 4x}$

2 Limits at infinity

Briggs-Cochran-Gillett §2.5, pp. 91–102.

2.1 Limits at infinity and horizontal asymptotes

Definition 3 (Limits at infinity and horizontal asymptotes). If f(x) becomes arbitrarily close to a finite number L for all sufficiently large and positive x, then we write

$$\lim_{x \to \infty} f(x) = L,$$

and we say that the limit of f(x) as x approaches infinity is L.

In this case the line y = L is a horizontal asymptote of f.

The limit at negative infinity $\lim_{x \to -\infty} f(x) = M$ is defined analogously. When it exists, y = M is also called a horizontal asymptote.

Example 4. Evaluate

 $\lim_{x\to\infty}\left(5+\frac{1}{x}+\frac{10}{x^2}\right)$

Example 5. Consider the function

$$f(x) = \frac{4x^2 - 7}{8x^2 + 5x + 2}.$$

Determine $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$. Then give the horizontal asymptotes of f (if any). **Demons 6** Note that the same of f can intersect its horizontal asymptotes.

Remark 6. Note that the graph of f can intersect its horizontal asymptote!

Example 7. Consider the function $f(x) = \frac{\sin x}{\sqrt{x}}$:

What is the horizontal asymptote here?

2.2 Infinite limits at infinity

Definition 8 (Infinite limits at infinity). If f becomes arbitrarily large as x becomes arbitrarily large, then we write $\lim_{x\to\infty} f(x) = +\infty$. The limits $\lim_{x\to\infty} f(x) = -\infty$, $\lim_{x\to-\infty} f(x) = +\infty$ and $\lim_{x\to-\infty} f(x) = -\infty$ are defined analogously.

Example 9. Determine the limit $\lim_{x \to -\infty} (2x^{-8} + 4x^3)$.

2.3 End behavior

Theorem 10 (End behavior of functions). Let n, m be a positive integers and $p(x) = a_m x^m + \ldots + a_1 x + a_0$, $q(x) = b_n x^n + \ldots + b_1 x + b_0$ polynomials with $a_m, b_n \neq 0$. 1. $\lim_{x \to \pm \infty} x^n = \infty$ when n is even; 2. $\lim_{x \to \infty} x^n = \infty$ and $\lim_{x \to -\infty} x^n = -\infty$ when n is odd; 3. $\lim_{x \to \pm \infty} x^{-n} = \lim_{x \to \pm \infty} \frac{1}{x^n} = 0$; 4. $\lim_{x \to \pm \infty} p(x) = \lim_{x \to \pm \infty} a_m x^m$; 5. If m < n (degree of numerator less than that of denominator) then $\lim_{x \to \pm \infty} \frac{p(x)}{q(x)} = 0$; 6. If m = n (degree of numerator equal to that of denominator) then $\lim_{x \to \pm \infty} \frac{p(x)}{q(x)} = \frac{a_m}{b_n}$; 7. If m > n (degree of numerator greater than that of denominator) then $\lim_{x \to \pm \infty} \frac{p(x)}{q(x)} = \frac{a_m}{b_n}$; 8. $\lim_{x \to \infty} e^x = \infty$, $\lim_{x \to -\infty} e^x = 0$, $\lim_{x \to \infty} e^{-x} = 0$; 9. $\lim_{x \to 0^+} \ln(x) = -\infty$, $\lim_{x \to \infty} \ln(x) = \infty$;