Dr. Daniel Hast,drhast@bu.edu

Today's topics

1 Infinite limits and vertical asymptotes, continued 1
2 Limits at infinity 2
2.1 Limits at infinity and horizontal asymptotes 2
2.2 Infinite limits at infinity . 3
2.3 End behavior . 3

1 Infinite limits and vertical asymptotes, continued

Briggs-Cochran-Gillett $\S 2.4$, pp. 83-91.

Example 1. Determine the following limits or state that they do not exist.

1. $\lim _{x \rightarrow-2^{+}} \frac{x^{3}-5 x^{2}+6 x}{x^{4}-4 x^{2}}$
2. $\lim _{x \rightarrow-2^{-}} \frac{x^{3}-5 x^{2}+6 x}{x^{4}-4 x^{2}}$
3. $\lim _{x \rightarrow-2} \frac{x^{3}-5 x^{2}+6 x}{x^{4}-4 x^{2}}$
4. $\lim _{x \rightarrow 2} \frac{x^{3}-5 x^{2}+6 x}{x^{4}-4 x^{2}}$

Example 2. Find all vertical asymptotes $x=a$ of the following functions. For each value of a determine $\lim _{x \rightarrow a^{+}} f(x), \lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a} f(x)$.

1. $f(x)=\frac{\cos x}{x^{2}+2 x}$
2. $f(x)=\frac{x+1}{x^{3}-4 x^{2}+4 x}$

2 Limits at infinity

Briggs-Cochran-Gillett §2.5, pp. 91-102.

2.1 Limits at infinity and horizontal asymptotes

Definition 3 (Limits at infinity and horizontal asymptotes). If $f(x)$ becomes arbitrarily close to a finite number L for all sufficiently large and positive x, then we write

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

and we say that the limit of $f(x)$ as x approaches infinity is \boldsymbol{L}.
In this case the line $y=L$ is a horizontal asymptote of f.
The limit at negative infinity $\lim _{x \rightarrow-\infty} f(x)=M$ is defined analogously. When it exists, $y=M$ is also called a horizontal asymptote.

Example 4. Evaluate

$$
\lim _{x \rightarrow \infty}\left(5+\frac{1}{x}+\frac{10}{x^{2}}\right)
$$

Example 5. Consider the function

$$
f(x)=\frac{4 x^{2}-7}{8 x^{2}+5 x+2}
$$

Determine $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$. Then give the horizontal asymptotes of f (if any).
Remark 6. Note that the graph of f can intersect its horizontal asymptote!
Example 7. Consider the function $f(x)=\frac{\sin x}{\sqrt{x}}$:

What is the horizontal asymptote here?

2.2 Infinite limits at infinity

Definition 8 (Infinite limits at infinity). If f becomes arbitrarily large as x becomes arbitrarily large, then we write $\lim _{x \rightarrow \infty} f(x)=+\infty$. The limits $\lim _{x \rightarrow \infty} f(x)=-\infty, \lim _{x \rightarrow-\infty} f(x)=+\infty$ and $\lim _{x \rightarrow-\infty} f(x)=-\infty$ are defined analogously.

Example 9. Determine the limit $\lim _{x \rightarrow-\infty}\left(2 x^{-8}+4 x^{3}\right)$.

2.3 End behavior

Theorem 10 (End behavior of functions). Let n, m be a positive integers and $p(x)=$ $a_{m} x^{m}+\ldots+a_{1} x+a_{0}, q(x)=b_{n} x^{n}+\ldots+b_{1} x+b_{0}$ polynomials with $a_{m}, b_{n} \neq 0$.

1. $\lim _{x \rightarrow \pm \infty} x^{n}=\infty$ when n is even;
2. $\lim _{x \rightarrow \infty} x^{n}=\infty$ and $\lim _{x \rightarrow-\infty} x^{n}=-\infty$ when n is odd;
3. $\lim _{x \rightarrow \infty} x^{-n}=\lim _{x \rightarrow \infty} \frac{1}{x^{n}}=0$;
4. $\lim _{x \rightarrow \pm \infty} p(x)=\lim _{x \rightarrow \pm \infty} a_{m} x^{m}$;
5. If $m<n$ (degree of numerator less than that of denominator) then $\lim _{x \rightarrow \pm \infty} \frac{p(x)}{q(x)}=0$;
6. If $m=n$ (degree of numerator equal to that of denominator) then $\lim _{x \rightarrow \pm \infty} \frac{p(x)}{q(x)}=\frac{a_{m}}{b_{n}}$;
7. If $m>n$ (degree of numerator greater than that of denominator) then $\lim _{x \rightarrow \pm \infty} \frac{p(x)}{q(x)}=$ ∞ or $-\infty$;
8. $\lim _{x \rightarrow \infty} e^{x}=\infty, \lim _{x \rightarrow-\infty} e^{x}=0, \lim _{x \rightarrow \infty} e^{-x}=0, \lim _{x \rightarrow-\infty} e^{-x}=\infty$;
9. $\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty, \lim _{x \rightarrow \infty} \ln (x)=\infty$;
