Dr. Daniel Hast,drhast@bu.edu

Today's topics

1 Limits at infinity 1
1.1 End behavior . 1

2 Continuity 2
2.1 Continuity checklist . 2
2.2 Continuity on an interval . 3
2.3 Intermediate Value Theorem . 4

1 Limits at infinity

1.1 End behavior

Theorem 1 (End behavior of functions). Let n, m be a positive integers and $p(x)=$ $a_{m} x^{m}+\ldots+a_{1} x+a_{0}, q(x)=b_{n} x^{n}+\ldots+b_{1} x+b_{0}$ polynomials with $a_{m}, b_{n} \neq 0$.

1. $\lim _{x \rightarrow \pm \infty} x^{n}=\infty$ when n is even;
2. $\lim _{x \rightarrow \infty} x^{n}=\infty$ and $\lim _{x \rightarrow-\infty} x^{n}=-\infty$ when n is odd;
3. $\lim _{x \rightarrow \infty} x^{-n}=\lim _{x \rightarrow \infty} \frac{1}{x^{n}}=0$;
4. $\lim _{x \rightarrow \pm \infty} p(x)=\lim _{x \rightarrow \pm \infty} a_{m} x^{m}$;
5. If $m<n$ (degree of numerator less than that of denominator) then $\lim _{x \rightarrow \pm \infty} \frac{p(x)}{q(x)}=0$;
6. If $m=n$ (degree of numerator equal to that of denominator) then $\lim _{x \rightarrow \pm \infty} \frac{p(x)}{q(x)}=\frac{a_{m}}{b_{n}}$;
7. If $m>n$ (degree of numerator greater than that of denominator) then $\lim _{x \rightarrow \pm \infty} \frac{p(x)}{q(x)}=$ ∞ or $-\infty$;
8. $\lim _{x \rightarrow \infty} e^{x}=\infty, \lim _{x \rightarrow-\infty} e^{x}=0, \lim _{x \rightarrow \infty} e^{-x}=0, \lim _{x \rightarrow-\infty} e^{-x}=\infty$;
9. $\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty, \lim _{x \rightarrow \infty} \ln (x)=\infty$;

Example 2. Determine the given limits and the give the horizontal asymptotes of f (if any).

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+1}}{2 x+1}=\lim _{x \rightarrow \infty} \frac{x^{-1} \sqrt{x^{2}+1}}{x^{-1}(2 x+1)}=\lim _{x \rightarrow \infty} \frac{\sqrt{x^{-2}} \sqrt{x^{2}+1}}{x^{-1}(2 x+1)}=\lim _{x \rightarrow \infty} \frac{\sqrt{1+x^{-2}}}{2+x^{-1}}=\frac{\sqrt{1+0}}{2+0}=\frac{1}{2}, \\
& \lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+1}}{2 x+1}=\lim _{x \rightarrow-\infty} \frac{x^{-1} \sqrt{x^{2}+1}}{x^{-1}(2 x+1)}=\lim _{x \rightarrow-\infty} \frac{-\sqrt{x^{-2}} \sqrt{x^{2}+1}}{x^{-1}(2 x+1)}=\lim _{x \rightarrow-\infty} \frac{-\sqrt{1+x^{-2}}}{2+x^{-1}}=-\frac{1}{2} .
\end{aligned}
$$

(Make sure you understand why the second limit is $-1 / 2$, not $1 / 2$; it's easy to make a mistake and get the sign wrong there.)

2 Continuity

Briggs-Cochran-Gillett §2.6, pp. 103-115.

Informally, a function f is continuous at a if the graph of f does not have a hole or break at a (that is, if the graph near a can be drawn without lifting the pencil). If a function is not continuous at a, then a is a point of discontinuity. We have already seen a number of functions that are continuous:

Theorem 3. Polynomial functions are continuous for all x. A rational function (a function of the form p / q where p, q are polynomials) is continuous for all x for which $q(x) \neq 0$.

The informal description of continuity above is sufficient for determining the continuity of simple functions, but it is not precise enough to deal with more complicated functions.

Definition 4 (Continuity at a point). A function f is continuous at a if $\lim _{x \rightarrow a} f(x)=f(a)$. If f is not continuous at a, then a is a point of discontinuity.

2.1 Continuity checklist

In order for f to be continuous at a as in the definition above, the following three conditions must hold:

1. $f(a)$ is defined (a is in the domain of f).
2. $\lim _{x \rightarrow a} f(x)$ exists
3. $\lim _{x \rightarrow a} f(x)=f(a)$ (the value of f equals the limit of f at a).

Example 5. Determine the points at which f has discontinuities.

We have some helpful results about composite functions:
Theorem 6 (Continuity of composite functions at a point). If g is continuous at a and f is continuous at $g(a)$, then the composite function $f \circ g$ is continuous at a.

Theorem 7 (Limits of composite functions). If $\lim _{x \rightarrow a} g(x)=L$ and f is continuous at L, then

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)
$$

2.2 Continuity on an interval

When we talk about continuity of functions, to be more precise, we ought to specify the interval of the function we are considering. A function is continuous on an interval if it is continuous at every point in that interval. We must be careful about endpoints of intervals:

Definition 8 (Continuity at endpoints). A function f is continuous from the left (or leftcontinuous) at a is $\lim _{x \rightarrow a^{-}} f(x)=f(a)$, and f is continuous from the right (or right-continuous) at a if $\lim _{x \rightarrow a^{+}} f(x)=f(a)$.

Combining the definitions of left-continuous and right continuous with the definition of continuity at a point (Definition 4), we define what it means for a function to be continuous on an interval:

Definition 9 (Continuity on an interval). A function f is continuous on an interval I if it is continuous at all points of I. If I contains its endpoints, continuity on I means continuous from the right or left at the endpoints.

Example 10. Give the intervals where f is continuous.

Example 11. Determine whether f is continuous at $a=3$.

$$
f(x)=\left\{\begin{array}{lll}
\frac{x^{2}-4 x+3}{x-3} & \text { if } & x \neq 3 \\
2 & \text { if } & x=3
\end{array}\right.
$$

Example 12. Let

$$
f(x)=\left\{\begin{array}{lll}
2 x & \text { if } & x<1 \\
x^{2}+3 x & \text { if } & x \geq 1
\end{array}\right.
$$

1. Is f continuous at 1 ?
2. Is f continuous from the left or right at 1 ?
3. State the interval(s) of continuity.

2.3 Intermediate Value Theorem

Continuity plays an important role in the following theorem:
Theorem 13 (Intermediate Value Theorem). Suppose f is continuous on the interval $[a, b]$ and L is a number strictly between $f(a)$ and $f(b)$. Then there exists at least one number c in (a, b) satisfying $f(c)=L$.

