Dr. Daniel Hast, drhast@bu.edu

Today's topics

1	Lim 1.1	its at infinity End behavior
2	Con	tinuity
	2.1	Continuity checklist
	2.2	Continuity on an interval
	2.3	Intermediate Value Theorem

1 Limits at infinity

1.1 End behavior

Theorem 1 (End behavior of functions). Let n, m be a positive integers and $p(x) = a_m x^m + \ldots + a_1 x + a_0$, $q(x) = b_n x^n + \ldots + b_1 x + b_0$ polynomials with $a_m, b_n \neq 0$.

- 1. $\lim_{n \to +\infty} x^n = \infty$ when n is even;
- 2. $\lim_{x\to\infty} x^n = \infty$ and $\lim_{x\to-\infty} x^n = -\infty$ when n is odd;

3.
$$\lim_{x \to \infty} x^{-n} = \lim_{x \to \infty} \frac{1}{x^n} = 0;$$

4.
$$\lim_{x \to \pm \infty} p(x) = \lim_{x \to \pm \infty} a_m x^m;$$

5. If m < n (degree of numerator less than that of denominator) then $\lim_{x \to \pm \infty} \frac{p(x)}{q(x)} = 0$;

6. If m = n (degree of numerator equal to that of denominator) then $\lim_{x \to \pm \infty} \frac{p(x)}{q(x)} = \frac{a_m}{b_n}$;

7. If m > n (degree of numerator greater than that of denominator) then $\lim_{x \to \pm \infty} \frac{p(x)}{q(x)} = \infty$ or $-\infty$;

- 8. $\lim_{x \to \infty} e^x = \infty, \ \lim_{x \to -\infty} e^x = 0, \ \lim_{x \to \infty} e^{-x} = 0, \ \lim_{x \to -\infty} e^{-x} = \infty;$
- 9. $\lim_{x \to 0^+} \ln(x) = -\infty, \lim_{x \to \infty} \ln(x) = \infty;$

Example 2. Determine the given limits and the give the horizontal asymptotes of f (if any).

$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{2x + 1} = \lim_{x \to \infty} \frac{x^{-1}\sqrt{x^2 + 1}}{x^{-1}(2x + 1)} = \lim_{x \to \infty} \frac{\sqrt{x^{-2}}\sqrt{x^2 + 1}}{x^{-1}(2x + 1)} = \lim_{x \to \infty} \frac{\sqrt{1 + x^{-2}}}{2 + x^{-1}} = \frac{\sqrt{1 + 0}}{2 + 0} = \frac{1}{2},$$
$$\lim_{x \to -\infty} \frac{\sqrt{x^2 + 1}}{2x + 1} = \lim_{x \to -\infty} \frac{x^{-1}\sqrt{x^2 + 1}}{x^{-1}(2x + 1)} = \lim_{x \to -\infty} \frac{-\sqrt{x^{-2}}\sqrt{x^2 + 1}}{x^{-1}(2x + 1)} = \lim_{x \to -\infty} \frac{-\sqrt{1 + x^{-2}}}{2 + x^{-1}} = -\frac{1}{2}.$$

(Make sure you understand why the second limit is -1/2, not 1/2; it's easy to make a mistake and get the sign wrong there.)

2 Continuity

Briggs–Cochran–Gillett §2.6, pp. 103–115.

Informally, a function f is *continuous* at a if the graph of f does not have a hole or break at a (that is, if the graph near a can be drawn without lifting the pencil). If a function is not continuous at a, then a is a point of discontinuity. We have already seen a number of functions that are continuous:

Theorem 3. Polynomial functions are continuous for all x. A rational function (a function of the form p/q where p, q are polynomials) is continuous for all x for which $q(x) \neq 0$.

The informal description of continuity above is sufficient for determining the continuity of simple functions, but it is not precise enough to deal with more complicated functions.

Definition 4 (Continuity at a point). A function f is continuous at a if $\lim_{x\to a} f(x) = f(a)$. If f is not continuous at a, then a is a point of discontinuity.

2.1 Continuity checklist

In order for f to be continuous at a as in the definition above, the following three conditions must hold:

- 1. f(a) is defined (a is in the domain of f).
- 2. $\lim_{x \to a} f(x)$ exists
- 3. $\lim_{x \to a} f(x) = f(a)$ (the value of f equals the limit of f at a).

Example 5. Determine the points at which f has discontinuities.

We have some helpful results about composite functions:

Theorem 6 (Continuity of composite functions at a point). If g is continuous at a and f is continuous at g(a), then the composite function $f \circ g$ is continuous at a.

Theorem 7 (Limits of composite functions). If $\lim_{x\to a} g(x) = L$ and f is continuous at L, then

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right).$$

2.2 Continuity on an interval

When we talk about continuity of functions, to be more precise, we ought to specify the interval of the function we are considering. A function is *continuous on an interval* if it is continuous at every point in that interval. We must be careful about endpoints of intervals:

Definition 8 (Continuity at endpoints). A function f is continuous from the left (or leftcontinuous) at a is $\lim_{x\to a^-} f(x) = f(a)$, and f is continuous from the right (or right-continuous) at a if $\lim_{x\to a^+} f(x) = f(a)$.

Combining the definitions of left-continuous and right continuous with the definition of continuity at a point (Definition 4), we define what it means for a function to be continuous on an interval:

Definition 9 (Continuity on an interval). A function f is continuous on an interval I if it is continuous at all points of I. If I contains its endpoints, continuity on I means continuous from the right or left at the endpoints.

Example 10. Give the intervals where f is continuous.

Example 11. Determine whether f is continuous at a = 3.

$$f(x) = \begin{cases} \frac{x^2 - 4x + 3}{x - 3} & \text{if } x \neq 3\\ 2 & \text{if } x = 3 \end{cases}$$

Example 12. Let

$$f(x) = \begin{cases} 2x & \text{if } x < 1\\ x^2 + 3x & \text{if } x \ge 1 \end{cases}$$

- 1. Is f continuous at 1?
- 2. Is f continuous from the left or right at 1?
- 3. State the interval(s) of continuity.

2.3 Intermediate Value Theorem

Continuity plays an important role in the following theorem:

Theorem 13 (Intermediate Value Theorem). Suppose f is continuous on the interval [a, b] and L is a number strictly between f(a) and f(b). Then there exists at least one number c in (a, b) satisfying f(c) = L.