Dr. Daniel Hast,drhast@bu.edu

Today's topics

1 Continuity 1
1.1 A couple more examples 1
1.2 Intermediate Value Theorem 1
2 Derivatives 2
2.1 Rate of change and the slope of the tangent line 2
2.2 The derivative function 3

1 Continuity

Briggs-Cochran-Gillett §2.6, pp. 103-115.

1.1 A couple more examples

Example 1. Determine whether f is continuous at $a=3$.

$$
f(x)=\left\{\begin{array}{lll}
\frac{x^{2}-4 x+3}{x-3} & \text { if } & x \neq 3 \\
2 & \text { if } & x=3
\end{array}\right.
$$

Example 2. Let

$$
f(x)=\left\{\begin{array}{lll}
2 x & \text { if } & x<1 \\
x^{2}+3 x & \text { if } & x \geq 1
\end{array}\right.
$$

1. Is f continuous at 1 ?
2. Is f continuous from the left or right at 1 ?
3. State the interval(s) of continuity.

1.2 Intermediate Value Theorem

Continuity plays an important role in the following theorem:
Theorem 3 (Intermediate Value Theorem). Suppose f is continuous on the interval $[a, b]$ and L is a number strictly between $f(a)$ and $f(b)$. Then there exists at least one number c in (a, b) satisfying $f(c)=L$.

2 Derivatives

Briggs-Cochran-Gillett $\S \S 3.1-3.2$ pp. 131-152

In this section, we revisit the idea of finding the slope of a line tangent to a curve. We will:

- Identify the slope of the tangent line with the instantaneous rate of change of a function
- Study the slopes of the tangent lines as they change along a curve (these slopes are the values of a new function called the derivative)

2.1 Rate of change and the slope of the tangent line

Definition 4 (Rate of change and the slope of the tangent line). The average rate of change in f on the interval $[a, x]$ is the slope of the corresponding secant line:

$$
m_{s e c}=\frac{f(x)-f(a)}{x-a} .
$$

The instantaneous rate of change in f at a is

$$
m_{t a n}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

which is also the slope of the tangent line at $(a, f(a))$, provided this limit exists. The tangent line is the unique line through $(a, f(a))$ with slope $m_{\text {tan }}$. Its equation is $y-f(a)=m_{\text {tan }} \cdot(x-a)$.

Here is an alternative definition:
Definition 5 (Rate of change and the slope of the tangent line). The average rate of change in f on the interval $[a, a+h]$ is the slope of the corresponding secant line:

$$
m_{s e c}=\frac{f(a+h)-f(a)}{h} .
$$

The instantaneous rate of change in f at a is

$$
m_{t a n}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

which is also the slope of the tangent line at $(a, f(a))$, provided this limit exists.
Example 6. Let $f(x)=-3 x^{2}-5 x+1$ and consider $P=(1,-7)$. Use Definition 4 to find the slope of the line tangent to the graph of f at P. Determine an equation of the tangent line at P.

The slope of the tangent line at $(1,-7)$ is given by the limit

$$
\begin{aligned}
m_{\mathrm{tan}} & =\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{-3 x^{2}-5 x+1-(-7)}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)(-3 x-8)}{x-1} \\
& =\lim _{x \rightarrow 1}(-3 x-8)=-11 .
\end{aligned}
$$

So an equation of the tangent line is $y+7=-11(x-1)$.

2.2 The derivative function

Definition 7. The derivative of f is the function

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided the limit exists and x is in the domain of f. If $f^{\prime}(x)$ exists, we say that f is differentiable at x. If f is differentiable at every point of an open interval I, we say that f is differentiable on I.

Example 8. Consider the function $f(x)=2 x^{3}$.
(a) Compute the derivative f^{\prime}.
(b) Find an equation of the tangent to the curve $y=f(x)$ at the point (10, $f(10))$.

Solutions:
(a) The derivative f^{\prime} is given by

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{2(x+h)^{3}-2 x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)-2 x^{3}}{h}=\lim _{h \rightarrow 0} \frac{6 x^{2} h+6 x h^{2}+2 h^{3}}{h} \\
& =\lim _{h \rightarrow 0}\left(6 x^{2}+6 x h+2 h^{2}\right)=6 x^{2} .
\end{aligned}
$$

(b) The slope of the tangent line is $f^{\prime}(10)=6 \cdot 10^{2}=600$, and $f(10)=2 \cdot 10^{3}=2000$, so an equation of the tangent line is

$$
y-2000=600(x-10)
$$

Example 9. We compute the derivative of the function given by $f(x)=\sqrt{3 x}$. First, observe that, for all $x>0$ and all h such that $x+h \geq 0$, we have

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{\sqrt{3(x+h)}-\sqrt{3 x}}{h}=\frac{(\sqrt{3(x+h)}-\sqrt{3 x})(\sqrt{3(x+h)}+\sqrt{3 x})}{h(\sqrt{3(x+h)}+\sqrt{3 x})} \\
& =\frac{3(x+h)-3 x}{h(\sqrt{3(x+h)}+\sqrt{3 x})}=\frac{3 h}{h(\sqrt{3(x+h)}+\sqrt{3 x})}=\frac{3}{\sqrt{3(x+h)}+\sqrt{3 x}}
\end{aligned}
$$

(This algebraic technique is sometimes called "rationalizing the numerator".)
So for all $x>0$, using the above computation, we have

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{3}{\sqrt{3(x+h)}+\sqrt{3 x}} \\
& =\frac{3}{\lim _{h \rightarrow 0}(\sqrt{3(x+h)}+\sqrt{3 x})}=\frac{3}{\sqrt{3 x}+\sqrt{3 x}}=\frac{3}{2 \sqrt{3 x}} .
\end{aligned}
$$

