Dr. Daniel Hast,drhast@bu.edu

Today's topics

1 Derivatives 1
1.1 Graphs of functions and their derivatives . 1
1.2 Differentiability and continuity . 1

2 Rules of differentiation 3
2.1 The constant, power, constant multiple, and sum rules 3
2.2 Derivative of e^{x}. 3

1 Derivatives

Briggs-Cochran-Gillett §3.2, pp. 140-152

1.1 Graphs of functions and their derivatives

Having defined the derivative, we now explore how the graphs of a function and its derivative are related. (You will be expected to recognize the derivative of a function given the graph of the function.)

Example 1. For each of the following functions f, use the graph of f to sketch a graph of f^{\prime} :

1.2 Differentiability and continuity

Theorem 2 (Differentiable implies continuous). If f is differentiable at a, then f is continuous at a.

This can be stated in another way:

Theorem 3 (Not continuous implies not differentiable). If f is not continuous at a, then f is not differentiable at a.

Be careful: it might be tempting to read more into Theorem 2 than what it actually states. Note that if f is continuous at a point, f is not necessarily differentiable at that point. Here is one such example:

Example 4. Use the graph of f in the figure to do the following.

1. Find the values of x in $(0,3)$ at which f is not continuous
2. Find the values of x in $(0,3)$ at which f is not differentiable.
3. Sketch a graph of f^{\prime}.

2 Rules of differentiation

Briggs-Cochran-Gillett §3.3, pp. 152-163

2.1 The constant, power, constant multiple, and sum rules

Theorem 5 (First Differentiation Rules). Let c be a constant, n a positive integer and f and g differentiable functions.

- Constant rule: $\frac{d}{d x}(c)=0$.
- Power rule: $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$.
- Constant multiple rule: $\frac{d}{d x}(c f(x))=c f^{\prime}(x)$.
- Sum rule: $\frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x)$.

Example 6. Find the derivative of $g(x)=6 x^{5}-x$.
Example 7. Find the derivative of $f(t)=6 \sqrt{t}-4 t^{3}+9$.
Example 8. Find the derivative of $g(r)=\left(5 r^{3}+3 r+1\right)\left(r^{2}+3\right)$ by first expanding the expression. Simplify your answer.

2.2 Derivative of e^{x}

Definition of e
Exponential functions b^{x} look like

The number e can be defined as the base needed in the exponential function to get the slope of the tangent to the graph at $x=0$ equal to 1 . We have $2.7182<e<2.7183$.

Definition 9. e^{x} is the exponential function such that the slope of the tangent to the graph at $x=0$ is 1, i.e.,

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

Derivative of e^{x}

Theorem 10. The function $f(x)=e^{x}$ is differentiable for all real numbers x, and

$$
\frac{d}{d x} e^{x}=e^{x}
$$

Example 11. Find an equation of the tangent line to $y=\frac{e^{x}}{4}-x$ at $a=0$. Then use a graphing utility to graph the curve and the tangent line on the same set of axes.

