MA 123 (Calculus 1) Lecture 8: September 22, 2021

Section A3

Dr. Daniel Hast, drhast@bu.edu
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1 Derivatives

Briggs—Cochran—Gillett §3.2, pp. 140-152

1.1 Graphs of functions and their derivatives

Having defined the derivative, we now explore how the graphs of a function and its derivative
are related. (You will be expected to recognize the derivative of a function given the graph of

the function.)

Example 1. For each of the following functions f, use the graph of f to sketch a graph of f’:

1.2 Differentiability and continuity
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Theorem 2 (Differentiable implies continuous). If f is differentiable at a, then f is continuous

at a.

This can be stated in another way:
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Theorem 3 (Not continuous implies not differentiable). If f is not continuous at a, then f
is not differentiable at a.

Be careful: it might be tempting to read more into Theorem 2 than what it actually
states. Note that if f is continuous at a point, f is not necessarily differentiable at that point.
Here is one such example:

y
] /
Tangents approach ¢
asx —+da .

ElDPFI_‘.r'II'] # slope £
implies f' {a) does not
exist.

=

/

Example 4. Use the graph of f in the figure to do the following.
YA

3T y = f(x)

E

1. Find the values of x in (0,3) at which f is not continuous
2. Find the values of z in (0,3) at which f is not differentiable.

3. Sketch a graph of f.
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2 Rules of differentiation

Briggs—Cochran—Gillett §3.3, pp. 152-163

2.1 The constant, power, constant multiple, and sum rules

Theorem 5 (First Differentiation Rules). Let ¢ be a constant, n a positive integer and f
and g differentiable functions.

d
Constant rule: — =0.
onstant rule dx<c)

» Power rule: %(x”) =na" L.

d
« Constant multiple rule: d—(cf(x)) =cf'(x).
T

o Sum rule: ddx(f(x) +g(x)) = f'(x) + ¢ ().

Example 6. Find the derivative of g(z) = 62° — .
Example 7. Find the derivative of f(t) = 6/t — 43 + 9.
Example 8. Find the derivative of g(r) = (57 + 3r + 1)(r? + 3) by first expanding the

expression. Simplify your answer.

2.2 Derivative of ¢e*

Definition of ¢

Exponential functions * look like
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The number e can be defined as the base needed in the exponential function to get the
slope of the tangent to the graph at x = 0 equal to 1. We have 2.7182 < e < 2.7183.

Definition 9. e* is the exponential function such that the slope of the tangent to the graph
atx=01s1, ie.,
e —1
lim =

h—0 h L

Derivative of ¢*

Theorem 10. The function f(x) = e* is differentiable for all real numbers x, and

GI
Example 11. Find an equation of the tangent line to y = — — x at a = 0. Then use a

graphing utility to graph the curve and the tangent line on the same set of axes.
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