Dr. Daniel Hast, drhast@bu.edu

Today's topics

1	Derivatives	1
	1.1 Graphs of functions and their derivatives	
	1.2 Differentiability and continuity	1
2	Rules of differentiation	3
2	Rules of differentiation 2.1 The constant, power, constant multiple, and sum rules	3

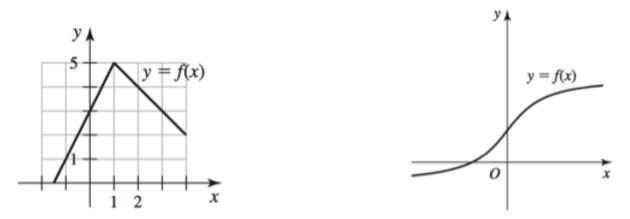
1 Derivatives

Briggs-Cochran-Gillett §3.2, pp. 140-152

1.1 Graphs of functions and their derivatives

Having defined the derivative, we now explore how the graphs of a function and its derivative are related. (You will be expected to recognize the derivative of a function given the graph of the function.)

Example 1. For each of the following functions f, use the graph of f to sketch a graph of f':



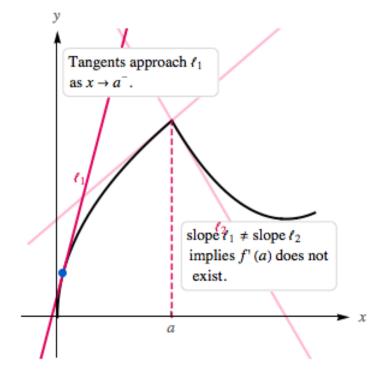
1.2 Differentiability and continuity

Theorem 2 (Differentiable implies continuous). If f is differentiable at a, then f is continuous at a.

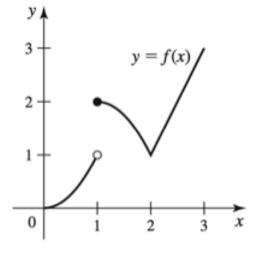
This can be stated in another way:

Theorem 3 (Not continuous implies not differentiable). If f is not continuous at a, then f is not differentiable at a.

Be careful: it might be tempting to read more into Theorem 2 than what it actually states. Note that if f is continuous at a point, f is *not necessarily* differentiable at that point. Here is one such example:



Example 4. Use the graph of f in the figure to do the following.



1. Find the values of x in (0,3) at which f is not continuous

2. Find the values of x in (0,3) at which f is not differentiable.

3. Sketch a graph of f'.

2 Rules of differentiation

Briggs–Cochran–Gillett §3.3, pp. 152–163

2.1 The constant, power, constant multiple, and sum rules

Theorem 5 (First Differentiation Rules). Let c be a constant, n a positive integer and f and g differentiable functions.

• Constant rule: $\frac{d}{dx}(c) = 0.$

• Power rule:
$$\frac{d}{dx}(x^n) = nx^{n-1}$$
.

• Constant multiple rule: $\frac{d}{dx}(cf(x)) = cf'(x)$.

• Sum rule:
$$\frac{d}{dx}(f(x) + g(x)) = f'(x) + g'(x)$$
.

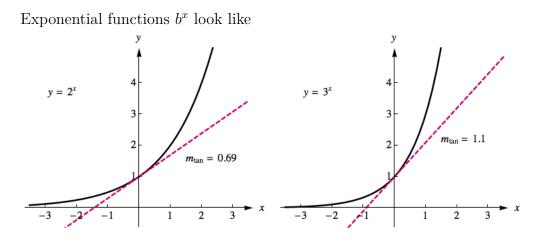
Example 6. Find the derivative of $g(x) = 6x^5 - x$.

Example 7. Find the derivative of $f(t) = 6\sqrt{t} - 4t^3 + 9$.

Example 8. Find the derivative of $g(r) = (5r^3 + 3r + 1)(r^2 + 3)$ by first expanding the expression. Simplify your answer.

2.2 Derivative of e^x

Definition of e



The number e can be defined as the base needed in the exponential function to get the slope of the tangent to the graph at x = 0 equal to 1. We have 2.7182 < e < 2.7183.

Definition 9. e^x is the exponential function such that the slope of the tangent to the graph at x = 0 is 1, i.e.,

$$\lim_{h \to 0} \frac{e^h - 1}{h} = 1.$$

Derivative of e^x

Theorem 10. The function $f(x) = e^x$ is differentiable for all real numbers x, and

$$\frac{d}{dx}e^x = e^x.$$

Example 11. Find an equation of the tangent line to $y = \frac{e^x}{4} - x$ at a = 0. Then use a graphing utility to graph the curve and the tangent line on the same set of axes.