Dr. Daniel Hast,drhast@bu.edu

Today's topics

1 Derivatives of trigonometric functions 1

1.1 Special trigonometric limits . 1
1.2 Derivatives . 2

Note: Solutions for quizzes 1 and 2 are available at https://math.bu.edu/people/ tasso/ma123/

For sections B1-B5 (the Monday and Tuesday sections), all quiz 1 and 2 papers have been graded and were posted over the weekend on Gradescope. For the other sections (Wed-Thurs), most graded quiz 1 papers have already been posted as well, and the graded quiz 2 papers will be posted by late tomorrow afternoon. So, everyone will have their graded quiz 1 and 2 papers back before they take the double quiz (quiz 3) this week.

1 Derivatives of trigonometric functions

Briggs-Cochran-Gillett §3.5, pp. 171-178

1.1 Special trigonometric limits

In the same way that finding the derivative of e^{x} needed the special limit $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$, to find the derivatives of $\sin x$ and $\cos x$, we also need some limits that are not computed directly using the rules which we have already learned.

Theorem 1.

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0 .
$$

Remark 2. In other words, $\frac{d \sin }{d x}(0)=1$ and $\frac{d \cos }{d x}(0)=0$. We can see this intuitively from the unit circle: at the point $(1,0)$, corresponding to an angle of 0 radians, the line tangent to the unit circle is the vertical line $x=1$. So, near this point, small changes in the angle produce an approximately equal change in the y-value (the sine value), but very little change in the x-coordinate (the cosine value).

Example 3 (§3.5, Ex. 17 and 20). Use the theorem above to evaluate the following limits.
(a) $\lim _{x \rightarrow 0} \frac{\tan 7 x}{\sin x}$
(b) $\lim _{x \rightarrow-3} \frac{\sin (x+3)}{x^{2}+8 x+15}$

For the first limit:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan (7 x)}{\sin (x)} & =\lim _{x \rightarrow 0} \frac{\sin (7 x)}{\sin (x) \cos (7 x)}=\lim _{x \rightarrow 0} \frac{7 x \cdot \sin (7 x)}{7 x \cdot \sin (x) \cos (7 x)} \\
& =\lim _{x \rightarrow 0}\left(\frac{7}{\cos (7 x)} \cdot \frac{\sin (7 x)}{7 x} \cdot \frac{x}{\sin (x)}\right) \\
& =\lim _{x \rightarrow 0} \frac{7}{\cos (7 x)} \cdot \lim _{x \rightarrow 0} \frac{\sin (7 x)}{7 x} \cdot\left(\lim _{x \rightarrow 0} \frac{\sin (x)}{x}\right)^{-1} \\
& =\frac{7}{\cos (0)} \cdot 1 \cdot 1=7 .
\end{aligned}
$$

For the second limit:

$$
\begin{aligned}
\lim _{x \rightarrow-3} \frac{\sin (x+3)}{x^{2}+8 x+15} & =\lim _{x \rightarrow-3} \frac{\sin (x+3)}{(x+3)(x+5)}=\lim _{x \rightarrow-3} \frac{\sin (x+3)}{x+3} \cdot \lim _{x \rightarrow-3} \frac{1}{x+5} \\
& =1 \cdot \frac{1}{-3+5}=\frac{1}{2}
\end{aligned}
$$

1.2 Derivatives

Theorem 4 (Derivatives of trigonometric functions).

1. $\frac{d}{d x}(\sin x)=\cos x$
2. $\frac{d}{d x}(\cos x)=-\sin x$
3. $\frac{d}{d x}(\tan x)=\sec ^{2} x$
4. $\frac{d}{d x}(\cot x)=-\csc ^{2} x$
5. $\frac{d}{d x}(\sec x)=\sec x \tan x$
6. $\frac{d}{d x}(\csc x)=-\csc x \cot x$

Example 5 (§3.5, Ex. 24 and 30). Find $d y / d x$ for the following functions.
(a) $y=5 x^{2}+\cos x$

$$
\frac{d y}{d x}=10 x-\sin (x)
$$

(b) $y=\frac{1-\sin x}{1+\sin x}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} \frac{1-\sin x}{1+\sin x}=\frac{(1+\sin x) \frac{d}{d x}(1-\sin x)-(1-\sin x) \frac{d}{d x}(1+\sin x)}{(1+\sin x)^{2}} \\
& =\frac{(1+\sin x)(-\cos x)-(1-\sin x)(\cos x)}{(1+\sin x)^{2}} \\
& =\frac{-2 \cos x}{(1+\sin x)^{2}}
\end{aligned}
$$

Example 6 (§3.5, based on Ex. 46). Find the derivative of $y=\frac{\tan w}{1+\tan w}$
(a) ... directly using the formulas above;
(b) ... using only the formulas for the derivatives of $\sin x$ and $\cos x$.

Solutions:
(a) Using the formula for the derivative of tangent:

$$
\begin{aligned}
\frac{d y}{d w} & =\frac{(1+\tan w) \frac{d}{d w}(\tan w)-(\tan w) \frac{d}{d w}(1+\tan w)}{(1+\tan w)^{2}} \\
& =\frac{(1+\tan w) \sec ^{2} w-\tan w \sec ^{2} w}{(1+\tan w)^{2}}=\frac{\sec ^{2} w}{(1+\tan w)^{2}}
\end{aligned}
$$

(b) Left as an exercise to the reader.

Example 7 (§3.5, Ex. 76).
(a) For what values of x does $g(x)=x-\sin x$ have a horizontal tangent line?
(b) For what values of x does $g(x)=x-\sin x$ have a slope of 1 ?

This is equivalent to asking for solutions to the equations $g^{\prime}(x)=0$ and $g^{\prime}(x)=1$. Since

$$
g^{\prime}(x)=1-\cos (x)
$$

for part (a) we want to solve $1-\cos (x)=0$, that is, $\cos (x)=1$. This is the case exactly when x is an integer multiple of 2π. For part (b), we're solving $1-\cos (x)=1$, that is, $\cos (x)=0$, which is the case exactly when $x=\frac{\pi}{2}+\pi k$ for an integer k.

