Dr. Daniel Hast, drhast@bu.edu

Today's topics

1 Derivatives as rates of change 1
2 Chain Rule 3

1 Derivatives as rates of change

Briggs-Cochran-Gillett §3.6, pp. 178-191

Definition 1 (Average and instantaneous velocity). Let $s=f(t)$ be the position function of an object moving along a line. The average velocity of the object over the time interval $[a, a+\Delta t]$ is the slope of the secant line between $(a, f(a))$ and $(a+\Delta t, f(a+\Delta t))$:

$$
v_{a v}=\frac{f(a+\Delta t)-f(a)}{\Delta t} .
$$

The instantaneous velocity at a is the slope of the line tangent to the position curve, which is the derivative of the position function:

$$
v(a)=\lim _{\Delta t \rightarrow 0} \frac{f(a+\Delta t)-f(a)}{\Delta t}=f^{\prime}(a) .
$$

Definition 2 (Velocity, speed, and acceleration). Suppose an object moves along a line with position $s=f(t)$. Then

- the velocity at time t is $v=\frac{d s}{d t}=f^{\prime}(t)$
- the speed at time t is $|v|=\left|f^{\prime}(t)\right|$, and
- the acceleration at time t is $a=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}=f^{\prime \prime}(t)$.

Example 3 (§3.6, based on Ex. 18). Suppose the position of an object moving horizontally after t seconds is given by the function $s=f(t)$, where $f(t)=6 t-t^{2}$ with s measured in meters, with $s>0$ corresponding to positions right of the origin. Consider the function on the interval $0 \leq t \leq 8$.
(a) Graph the position function.
(b) Find and graph the velocity function. When is the object stationary, moving to the right, and moving to the left?
We have $v(t)=6-2 t$. The object is stationary when $0=v(t)=6-2 t$, so when $t=3$. The object is moving to the right when $v(t)>0$, i.e., when $0 \leq t<3$, and is moving to the left when $3<t \leq 8$.
(c) Determine the velocity and acceleration of the object at $t=1$.

We have $v(1)=6-2=4$ and $a(1)=-2$.
(d) Determine the acceleration of the object when its velocity is zero.

The acceleration is always -2 because $d v / d t=-2$.
(e) On what intervals is the speed increasing?

The speed is $|v(t)|=|6-2 t|$, which is increasing when $t>3$.
Example 4 (§3.6, Ex. 24). Suppose a stone is thrown vertically upward from the edge of a cliff on Earth (where the acceleration due to gravity is about $9.8 \mathrm{~m} / \mathrm{s}^{2}$) with an initial velocity of $19.6 \mathrm{~m} / \mathrm{s}$ from height of 24.5 m above the ground. The height (in meters) s of the stone above the ground after t seconds is given by $s(t)=-4.9 t^{2}+19.6 t+24.5$.
(a) Determine the velocity v of the stone after t seconds.

$$
v(t)=-9.8 t+19.6
$$

(b) When does the stone reach its highest point?

Set $v(t)=0$ and solve for t.
(c) What is the height of the stone at the highest point?

Plug the t value from (b) into s to get the height.
(d) When does the stone strike the ground?

Factoring, we have $s(t)=-4.9(t+1)(t-5)$, so this is when $t=-1$ or $t=5$. Only $t=5$ makes physical sense ($t=-1$ is before the stone was thrown), so that's the answer.
(e) With what velocity does the stone strike the ground?

Evaluate v(5).
(f) On what intervals is the speed increasing?

The speed is $|-9.8 t+19.6|$, which is increasing when $t>2$.

2 Chain Rule

Briggs-Cochran-Gillett §3.7, pp. 191-200

The Chain Rule lets us differentiate composite functions:
Theorem 5 (Chain Rule). Suppose $y=f(u)$ is differentiable at $u=g(x)$, and $u=g(x)$ is differentiable at x. The composite function $y=f(g(x))$ is differentiable at x, and its derivative can be expressed in two equivalent ways:

- Version 1:

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

- Version 2:

$$
\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Example 6 (§3.7, Ex. 16). Use the Chain Rule to compute the derivative of

$$
y=\left(5 x^{2}+11 x\right)^{4 / 3}
$$

First, let's write down the component functions and compute their derivatives:

$$
\begin{array}{ll}
y=f(u)=u^{4 / 3} & \frac{d y}{d u}=f^{\prime}(u)=\frac{4}{3} u^{1 / 3} \\
u=g(x)=5 x^{2}+11 x & \frac{d u}{d x}=g^{\prime}(x)=10 x+11
\end{array}
$$

Now we apply the chain rule:

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=\frac{4}{3} u^{1 / 3} \cdot(10 x+11)=\frac{4}{3}\left(5 x^{2}+11 x\right)^{1 / 3} \cdot(10 x+11) .
$$

Equivalently, using the notation of version 2 of the chain rule:

$$
\frac{d y}{d x}=f^{\prime}(g(x)) \cdot g^{\prime}(x)=\frac{4}{3} g(x)^{1 / 3} \cdot(10 x+11)=\frac{4}{3}\left(5 x^{2}+11 x\right)^{1 / 3} \cdot(10 x+11)
$$

