Dr. Daniel Hast, drhast@bu.edu

Today's topics

1 Derivatives of logarithmic and exponential functions 1
2 Review of Inverse Trigonometric Functions 2

1 Derivatives of logarithmic and exponential functions

Briggs-Cochran-Gillett §3.9, pp. 208-218
Example 1. Compute the derivative $\frac{d}{d x}\left(x^{\pi}+\pi^{x}\right)$.
We have

$$
\frac{d}{d x}\left(x^{\pi}+\pi^{x}\right)=\pi x^{\pi-1}+\pi^{x} \ln \pi
$$

Example 2 (§3.9, Ex. 90). Compute the following higher order derivatives: $\frac{d^{n}}{d x^{n}}\left(2^{x}\right)$.
We have $\frac{d}{d x} 2^{x}=2^{x} \ln 2$, so

$$
\frac{d^{n}}{d x^{n}} 2^{x}=2^{x}(\ln 2)^{n}
$$

Example 3 (§3.9, Ex. 70). Let $f(x)=\ln \frac{2 x}{\left(x^{2}+1\right)^{3}}$. Use the properties of logarithms to simplify the function before computing $f^{\prime}(x)$.

Solution: Using properties of logarithms, we have

$$
f(x)=\ln (2 x)-\ln \left(\left(x^{2}+1\right)^{3}\right)=\ln (2)+\ln (x)-3 \ln \left(x^{2}+1\right) .
$$

At this point, we cannot simplify any further using properties of logarithms. Taking the derivative, we obtain

$$
f^{\prime}(x)=\frac{1}{x}-3 \cdot \frac{1}{x^{2}+1} \cdot 2 x=\frac{1}{x}-\frac{6 x}{x^{2}+1} .
$$

Example 4 (§3.9, Ex. 60). Determine whether the graph of $y=x^{\sqrt{x}}$ has any horizontal tangent lines.

Solution: Using properties of logarithms and exponentials, we have

$$
x^{\sqrt{x}}=e^{\ln \left(x^{\sqrt{x}}\right)}=e^{\sqrt{x} \ln x} .
$$

Thus,

$$
\begin{aligned}
\frac{d y}{d x} & =e^{\sqrt{x} \ln x} \cdot \frac{d}{d x}(\sqrt{x} \ln x)=e^{\sqrt{x} \ln x} \cdot\left(\frac{1}{2 \sqrt{x}} \cdot \ln x+\sqrt{x} \cdot \frac{1}{x}\right) \\
& =e^{\sqrt{x} \ln x} \cdot \frac{1}{\sqrt{x}} \cdot\left(\frac{\ln x}{2}+1\right)
\end{aligned}
$$

So we are looking for solutions to the equation

$$
0=e^{\sqrt{x} \ln x} \cdot \frac{1}{\sqrt{x}} \cdot\left(\frac{\ln x}{2}+1\right)
$$

Note that $e^{\sqrt{x} \ln x}$ is always positive for $x>0$, and likewise for $1 / \sqrt{x}$. So we can divide both sides by these terms, yields

$$
0=\frac{\ln x}{2}+1
$$

which has the unique solution $\ln x=-2$, or equivalently, $x=e^{-2}$. This is the unique x-value at which the graph of $y=x^{\sqrt{x}}$ has a horizontal tangent line.

2 Review of Inverse Trigonometric Functions

Briggs-Cochran-Gillett §1.4, pp. 39-51

2.1 Sine and Arcsine

To invert a function f on a domain we need it to be one-to-one on that domain. This means that every output of the function f must correspond to exactly one input. (Recall that the one-to-one property is checked graphically by using the horizontal line test.) The function $\sin x$ is not one-to-one over all its domain, but if we restrict it to $[-\pi / 2, \pi / 2]$ it is one-to-one, and it makes sense to talk about its inverse.

The inverse of $\sin x$ is $\arcsin x=\sin ^{-1} x$.

- $\sin ^{-1}(x)$ is the angle whose \sin is x
- Domain $\left(\sin ^{-1} x\right)=[-1,1] \quad$ (range of $\sin x)$
- Range $\left(\sin ^{-1} x\right)=[-\pi / 2, \pi / 2]$ (restricted domain of $\sin x$)
- Graphically the two functions are symmetric about the line $y=x$
- $\sin \left(\sin ^{-1}(x)\right)=x$ for all x in $[-1,1]$
- $\sin ^{-1}(\sin (x))=x$ for all x in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- Remark: $\sin ^{-1} x$ is not $\frac{1}{\sin x}$

2.2 Cosine and Arccosine

In the same way as above, the function $\cos x$ is not one-to-one over all its domain, but if we restrict it to $[0, \pi]$ it is one-to-one, and it makes sense to talk about its inverse.

The inverse of $\cos x$ is $\arccos x=\cos ^{-1} x$.

- $\cos ^{-1}(x)$ is the angle whose \cos is x
- Domain $\left(\cos ^{-1} x\right)=[-1,1]$ (range of $\cos x)$
- Range $\left(\cos ^{-1} x\right)=[0, \pi]$ (restricted domain of $\cos x)$
- Graphically the two functions are symmetric about the line $y=x$
- $\cos \left(\cos ^{-1}(x)\right)=x$ for all x in $[-1,1]$
- $\cos ^{-1}(\cos (x))=x$ for all x in $[0, \pi]$
- Remark: $\cos ^{-1} x$ is not $\frac{1}{\cos x}$

2.3 Other inverse trig functions

We proceed in the same way to find the inverse functions to all trigonometric functions.

DEFINITION Other Inverse Trigonometric Functions

$y=\tan ^{-1} x$ is the value of y such that $x=\tan y$, where $-\frac{\pi}{2}<y<\frac{\pi}{2}$.
$y=\cot ^{-1} x$ is the value of y such that $x=\cot y$, where $0<y<\pi$.
The domain of both $\tan ^{-1} x$ and $\cot ^{-1} x$ is $\{x:-\infty<x<\infty\}$.
$y=\sec ^{-1} x$ is the value of y such that $x=\sec y$, where $0 \leq y \leq \pi$, with $y \neq \frac{\pi}{2}$.
$y=\csc ^{-1} x$ is the value of y such that $x=\csc y$, where $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$, with $y \neq 0$.
The domain of both $\sec ^{-1} x$ and $\csc ^{-1} x$ is $\{x:|x| \geq 1\}$.

2.4 Examples

Example 5 (§1.4, Ex. 49, 54, 55, 75, 76, 77). Evaluate the following expressions (without a calculator!) or state that they are not defined.
(a) $\sin ^{-1}(1)$
(c) $\cos ^{-1}(-1 / 2)$
(e) $\cot ^{-1}(-1 / \sqrt{3})$
(b) $\cos ^{-1}(2)$
(d) $\tan ^{-1}(\sqrt{3})$
(f) $\sec ^{-1}(2)$

Example 6 (§1.4, Ex. 61, 63, 83). Simplify the given expressions. Assume $x>0$. (Hint: draw a relevant right triangle in the unit circle.)
(a) $\cos \left(\sin ^{-1} x\right)$
(b) $\sin \left(\cos ^{-1}(x / 2)\right)$
(c) $\cos \left(\tan ^{-1} x\right)$

