Dr. Daniel Hast, drhast@bu.edu

# **Today's topics**

| 1 | Derivatives of logarithmic and exponential functions | 1        |
|---|------------------------------------------------------|----------|
| 2 | Review of Inverse Trigonometric Functions            | <b>2</b> |

# 1 Derivatives of logarithmic and exponential functions

Briggs–Cochran–Gillett §3.9, pp. 208–218

**Example 1.** Compute the derivative  $\frac{d}{dx}(x^{\pi} + \pi^{x})$ .

We have

$$\frac{d}{dx}(x^{\pi} + \pi^x) = \pi x^{\pi - 1} + \pi^x \ln \pi$$

**Example 2** (§3.9, Ex. 90). Compute the following higher order derivatives:  $\frac{d^n}{dx^n}(2^x)$ .

We have  $\frac{d}{dx}2^x = 2^x \ln 2$ , so

$$\frac{d^n}{dx^n}2^x = 2^x(\ln 2)^n.$$

**Example 3** (§3.9, Ex. 70). Let  $f(x) = \ln \frac{2x}{(x^2+1)^3}$ . Use the properties of logarithms to simplify the function before computing f'(x).

Solution: Using properties of logarithms, we have

$$f(x) = \ln(2x) - \ln((x^2 + 1)^3) = \ln(2) + \ln(x) - 3\ln(x^2 + 1).$$

At this point, we cannot simplify any further using properties of logarithms. Taking the derivative, we obtain

$$f'(x) = \frac{1}{x} - 3 \cdot \frac{1}{x^2 + 1} \cdot 2x = \frac{1}{x} - \frac{6x}{x^2 + 1}$$

**Example 4** (§3.9, Ex. 60). Determine whether the graph of  $y = x^{\sqrt{x}}$  has any horizontal tangent lines.

Solution: Using properties of logarithms and exponentials, we have

$$x^{\sqrt{x}} = e^{\ln(x^{\sqrt{x}})} = e^{\sqrt{x}\ln x}$$

Thus,

$$\frac{dy}{dx} = e^{\sqrt{x}\ln x} \cdot \frac{d}{dx} \left(\sqrt{x}\ln x\right) = e^{\sqrt{x}\ln x} \cdot \left(\frac{1}{2\sqrt{x}} \cdot \ln x + \sqrt{x} \cdot \frac{1}{x}\right)$$
$$= e^{\sqrt{x}\ln x} \cdot \frac{1}{\sqrt{x}} \cdot \left(\frac{\ln x}{2} + 1\right).$$

So we are looking for solutions to the equation

$$0 = e^{\sqrt{x}\ln x} \cdot \frac{1}{\sqrt{x}} \cdot \left(\frac{\ln x}{2} + 1\right).$$

Note that  $e^{\sqrt{x} \ln x}$  is always positive for x > 0, and likewise for  $1/\sqrt{x}$ . So we can divide both sides by these terms, yields

$$0 = \frac{\ln x}{2} + 1,$$

which has the unique solution  $\ln x = -2$ , or equivalently,  $x = e^{-2}$ . This is the unique x-value at which the graph of  $y = x^{\sqrt{x}}$  has a horizontal tangent line.

## 2 Review of Inverse Trigonometric Functions

Briggs–Cochran–Gillett §1.4, pp. 39–51

#### 2.1 Sine and Arcsine

To invert a function f on a domain we need it to be one-to-one on that domain. This means that every output of the function f must correspond to exactly one input. (Recall that the one-to-one property is checked graphically by using the *horizontal line test*.) The function sin x is not one-to-one over all its domain, but if we restrict it to  $[-\pi/2, \pi/2]$  it is one-to-one, and it makes sense to talk about its inverse.



The inverse of  $\sin x$  is  $\arcsin x = \sin^{-1} x$ .

- $\sin^{-1}(x)$  is the angle whose sin is x
- Domain $(\sin^{-1} x) = [-1, 1]$  (range of  $\sin x$ )
- Range( $\sin^{-1} x$ )=[ $-\pi/2, \pi/2$ ] (restricted domain of  $\sin x$ )
- Graphically the two functions are symmetric about the line y = x
- $\sin(\sin^{-1}(x)) = x$  for all x in [-1, 1]
- $\sin^{-1}(\sin(x)) = x$  for all x in  $[-\frac{\pi}{2}, \frac{\pi}{2}]$
- Remark:  $\sin^{-1} x$  is not  $\frac{1}{\sin x}$

### 2.2 Cosine and Arccosine



In the same way as above, the function  $\cos x$  is not one-to-one over all its domain, but if we restrict it to  $[0, \pi]$  it is one-to-one, and it makes sense to talk about its inverse.



The inverse of  $\cos x$  is  $\arccos x = \cos^{-1} x$ .

- $\cos^{-1}(x)$  is the angle whose  $\cos is x$
- Domain  $(\cos^{-1} x) = [-1, 1]$  (range of  $\cos x$ )
- Range  $(\cos^{-1} x) = [0, \pi]$  (restricted domain of  $\cos x$ )
- Graphically the two functions are symmetric about the line y = x
- $\cos(\cos^{-1}(x)) = x$  for all x in [-1, 1]
- $\cos^{-1}(\cos(x)) = x$  for all x in  $[0, \pi]$
- Remark:  $\cos^{-1} x$  is not  $\frac{1}{\cos x}$



## 2.3 Other inverse trig functions

We proceed in the same way to find the inverse functions to all trigonometric functions.

**DEFINITION** Other Inverse Trigonometric Functions  $y = \tan^{-1} x$  is the value of y such that  $x = \tan y$ , where  $-\frac{\pi}{2} < y < \frac{\pi}{2}$ .  $y = \cot^{-1} x$  is the value of y such that  $x = \cot y$ , where  $0 < y < \pi$ . The domain of both  $\tan^{-1} x$  and  $\cot^{-1} x$  is  $\{x : -\infty < x < \infty\}$ .  $y = \sec^{-1} x$  is the value of y such that  $x = \sec y$ , where  $0 \le y \le \pi$ , with  $y \ne \frac{\pi}{2}$ .  $y = \csc^{-1} x$  is the value of y such that  $x = \sec y$ , where  $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ , with  $y \ne 0$ . The domain of both  $\sec^{-1} x$  and  $\csc^{-1} x$  is  $\{x : |x| \ge 1\}$ .

### 2.4 Examples

**Example 5** (§1.4, Ex. 49, 54, 55, 75, 76, 77). Evaluate the following expressions (without a calculator!) or state that they are not defined.

(a)  $\sin^{-1}(1)$  (c)  $\cos^{-1}(-1/2)$  (e)  $\cot^{-1}(-1/\sqrt{3})$ (b)  $\cos^{-1}(2)$  (d)  $\tan^{-1}(\sqrt{3})$  (f)  $\sec^{-1}(2)$ 

**Example 6** (§1.4, Ex. 61, 63, 83). Simplify the given expressions. Assume x > 0. (Hint: draw a relevant right triangle in the unit circle.)

(a) 
$$\cos(\sin^{-1} x)$$
 (b)  $\sin(\cos^{-1}(x/2))$  (c)  $\cos(\tan^{-1} x)$