Today's topics

1 Derivatives of Inverse Trigonometric Functions 1

1 Derivatives of Inverse Trigonometric Functions

Example 1 (§1.4, Ex. 61, 63, 83). Simplify the given expressions. Assume $x>0$. (Hint: draw a relevant right triangle.)
(a) $\cos \left(\sin ^{-1} x\right)$
(b) $\sin \left(\cos ^{-1}(x / 2)\right)$
(c) $\cos \left(\tan ^{-1} x\right)$

Solutions:
(a) Drawing a right triangle with hypotenuse 1 , height x, and base $\cos \left(\sin ^{-1} x\right)$, we see that

$$
\cos \left(\sin ^{-1} x\right)=\sqrt{1-x^{2}}
$$

(b) Draw a right triangle with hypotenuse 1 , base $x / 2$, and height $\sin \left(\cos ^{-1}(x / 2)\right)$:

$$
\sin \left(\cos ^{-1}(x / 2)\right)=\sqrt{1-(x / 2)^{2}}
$$

(c) Draw a right triangle with hypotenuse 1 , base $\cos \left(\tan ^{-1} x\right)$ and height $x \cos \left(\tan ^{-1} x\right.$) (to ensure that the ratio of the side lengths is x):

$$
\left(x \cos \left(\tan ^{-1} x\right)\right)^{2}+\left(\cos \left(\tan ^{-1} x\right)\right)^{2}=1
$$

so

$$
\left(x^{2}+1\right)\left(\cos \left(\tan ^{-1} x\right)\right)^{2}=1
$$

Thus

$$
\cos \left(\tan ^{-1} x\right)=\frac{1}{\sqrt{x^{2}+1}}
$$

Briggs-Cochran-Gillett §3.10, pp. 218-227

Let's use implicit differentiation to compute the derivative of $\sin ^{-1} x$: If $y=\sin ^{-1} x$, then $\sin (y)=x$, so

$$
\frac{d}{d x} \sin y=\frac{d}{d x} x=1
$$

We compute $\frac{d}{d x} \sin y$ using the chain rule:

$$
\frac{d}{d x} \sin (y)=\cos (y) \cdot \frac{d y}{d x}
$$

By the Pythagorean theorem, if $\cos y \geq 0$, then

$$
\cos y=\sqrt{1-\sin ^{2} y}
$$

Since $y=\sin ^{-1} x$ is in the interval $[-\pi / 2, \pi / 2]$, we do indeed have $\cos y \geq 0$. So

$$
\frac{d y}{d x}=\frac{1}{\cos y}=\frac{1}{\sqrt{1-\sin ^{2} y}}=\frac{1}{\sqrt{1-x^{2}}}
$$

Similarly, for the other inverse trigonometric functions, using implicit differentiation and trigonometric identities we get:

Derivatives of Inverse Trigonometric Functions

$$
\begin{array}{ll}
\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}}, \text { for }-1<x<1 \\
\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} & \frac{d}{d x}\left(\cot ^{-1} x\right)=-\frac{1}{1+x^{2}}, \text { for }-\infty<x<\infty \\
\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{|x| \sqrt{x^{2}-1}} & \frac{d}{d x}\left(\csc ^{-1} x\right)=-\frac{1}{|x| \sqrt{x^{2}-1}}, \text { for }|x|>1
\end{array}
$$

Example 2 (§3.10, Ex. 14, 22, 24, 30, 39). Evaluate the derivatives of the following functions.

1. $f(x)=x \sin ^{-1} x$

$$
\frac{d f}{d x}=\sin ^{-1} x+x \cdot \frac{1}{\sqrt{1-x^{2}}} .
$$

2. $g(z)=\tan ^{-1}(1 / z)$

$$
\frac{d g}{d z}=\frac{1}{1+(1 / z)^{2}} \cdot \frac{-1}{z^{2}}=\frac{-1}{z^{2}+1}
$$

Note that g has the same derivative as the inverse cotangent. This is because $\cot ^{-1}(x)=$ $\tan ^{-1}(1 / x)$ for all x, so in fact g is the inverse cotangent function.
3. $f(x)=\sec ^{-1} \sqrt{x}$: For all $x>1$ (the domain of f), we have:

$$
f^{\prime}(x)=\frac{1}{|\sqrt{x}| \sqrt{\sqrt{x}^{2}-1}} \cdot \frac{1}{2 \sqrt{x}}=\frac{1}{2 x \sqrt{x-1}}
$$

4. $f(t)=\left(\cos ^{-1} t\right)^{2}$

$$
f^{\prime}(t)=2\left(\cos ^{-1} t\right) \cdot \frac{-1}{\sqrt{1-x^{2}}}=\frac{-2 \cot ^{-1} t}{\sqrt{1-x^{2}}}
$$

5. $f(s)=\cot ^{-1}\left(e^{s}\right)$

$$
\frac{d f}{d s}=\frac{-1}{1+\left(e^{s}\right)^{2}} \cdot e^{s}=\frac{-e^{s}}{1+e^{2 s}}
$$

Example 3 (§3.10, Ex. 34, 38). Evaluate the derivatives of the following functions.

1. $f(w)=\sin \left(\sec ^{-1}(2 w)\right)$

$$
\frac{d f}{d w}=\cos \left(\sec ^{-1}(2 w)\right) \cdot \frac{1}{|2 w| \sqrt{(2 w)^{2}-1}} \cdot 2=\frac{1}{2 w} \cdot \frac{2}{|2 w| \sqrt{(2 w)^{2}-1}}
$$

using the fact that $\cos \left(\sec ^{-1} x\right)=\cos \left(\cos ^{-1}(1 / x)\right)=1 / x$ for all x with $|x|>1$.
2. $f(x)=\sin \left(\tan ^{-1}(\ln x)\right)$

$$
\begin{aligned}
\frac{d f}{d x} & =\cos \left(\tan ^{-1}(\ln x)\right) \cdot \frac{1}{1+(\ln x)^{2}} \cdot \frac{1}{x}=\frac{1}{\sqrt{(\ln x)^{2}+1}} \cdot \frac{1}{1+(\ln x)^{2}} \cdot \frac{1}{x} \\
& =\frac{1}{x\left((\ln x)^{2}+1\right)^{3 / 2}}
\end{aligned}
$$

Example 4 (§3.10, Ex. 44). Find an equation of the line tangent to the graph of $f(x)=$ $\sec ^{-1}\left(e^{x}\right)$ at the point $(\ln 2, \pi / 3)$.

The derivative is

$$
f^{\prime}(x)=\frac{1}{\left|e^{x}\right| \sqrt{\left(e^{x}\right)^{2}-1}} \cdot e^{x}=\frac{1}{\sqrt{e^{2 x}-1}}
$$

Since $e^{2 \ln 2}=e^{\ln \left(2^{2}\right)}=4$, we have $f^{\prime}(\ln 2)=1 / \sqrt{3}$, so an equation of the tangent line is

$$
y-\frac{\pi}{3}=\frac{1}{\sqrt{3}}(x-\ln 2)
$$

1.1 Application

Example 5 (§3.10, Ex. 46). A small plane, moving at $70 \mathrm{~m} / \mathrm{s}$, flies horizontally on a line 400 m directly above an observer. Let θ be the angle of elevation of the plane (see figure).

(a) What is the rate of change of the angle of elevation $\frac{d \theta}{d x}$ when the plane is $x=500 \mathrm{~m}$ past the observer?
(b) Graph $\frac{d \theta}{d x}$ as a function of x and determine the point at which θ changes most rapidly.

Observe that $\cot \theta=x / 400$. So

$$
\theta=\cot ^{-1} \frac{x}{400}
$$

Taking the derivative, we have

$$
\frac{d \theta}{d x}=\frac{-1}{1+(x / 400)^{2}} \cdot \frac{1}{400}=\frac{-400}{400^{2}+x^{2}}
$$

(Note that $d \theta / d x$ does not depend on the speed of the plane, because we are looking at the change with respect to x, not with respect to time!)

In particular, when x is 500 meters, we get

$$
\frac{d \theta}{d x}=\frac{-400}{400^{2}+500^{2}} \approx-0.000976
$$

which is in units of radians per meter.
The angle θ is changing the most rapidly when $|d \theta / d t|$ is as large as possible. By the chain rule, we have

$$
\frac{d \theta}{d t}=\frac{d \theta}{d x} \cdot \frac{d x}{d t}=\frac{d \theta}{d x} \cdot 70 \mathrm{~m} / \mathrm{s} .
$$

We have

$$
\left|\frac{d \theta}{d x}\right|=\frac{400}{400^{2}+x^{2}},
$$

and this is as large as possible when the denominator $400^{2}+x^{2}$ is as small as possible, i.e., when $x=0$. In other words, the angle is changing fastest when the plane is directly overhead.

