1

Dr. Daniel Hast, drhast@bu.edu

Today's topics

1 Derivatives of Inverse Trigonometric Functions

1 Derivatives of Inverse Trigonometric Functions

Example 1 (§1.4, Ex. 61, 63, 83). Simplify the given expressions. Assume x > 0. (Hint: draw a relevant right triangle.)

(a) $\cos(\sin^{-1} x)$ (b) $\sin(\cos^{-1}(x/2))$ (c) $\cos(\tan^{-1} x)$

Solutions:

(a) Drawing a right triangle with hypotenuse 1, height x, and base $\cos(\sin^{-1} x)$, we see that

$$\cos(\sin^{-1}x) = \sqrt{1 - x^2}.$$

(b) Draw a right triangle with hypotenuse 1, base x/2, and height $\sin(\cos^{-1}(x/2))$:

$$\sin(\cos^{-1}(x/2)) = \sqrt{1 - (x/2)^2}.$$

(c) Draw a right triangle with hypotenuse 1, base $\cos(\tan^{-1} x)$ and height $x \cos(\tan^{-1} x)$ (to ensure that the ratio of the side lengths is x):

$$(x\cos(\tan^{-1}x))^2 + (\cos(\tan^{-1}x))^2 = 1,$$

 \mathbf{SO}

$$(x^{2}+1)\left(\cos(\tan^{-1}x)\right)^{2} = 1.$$

Thus

$$\cos(\tan^{-1}x) = \frac{1}{\sqrt{x^2 + 1}}.$$

Briggs–Cochran–Gillett §3.10, pp. 218–227

Let's use implicit differentiation to compute the derivative of $\sin^{-1} x$: If $y = \sin^{-1} x$, then $\sin(y) = x$, so

$$\frac{d}{dx}\sin y = \frac{d}{dx}x = 1.$$

We compute $\frac{d}{dx} \sin y$ using the chain rule:

$$\frac{d}{dx}\sin(y) = \cos(y) \cdot \frac{dy}{dx}.$$

By the Pythagorean theorem, if $\cos y \ge 0$, then

$$\cos y = \sqrt{1 - \sin^2 y}.$$

Since $y = \sin^{-1} x$ is in the interval $[-\pi/2, \pi/2]$, we do indeed have $\cos y \ge 0$. So

$$\frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}}.$$

Similarly, for the other inverse trigonometric functions, using implicit differentiation and trigonometric identities we get:

Derivatives of Inverse Trigonometric Functions

$$\frac{d}{dx} (\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx} (\cos^{-1} x) = -\frac{1}{\sqrt{1 - x^2}}, \text{ for } -1 < x < 1$$

$$\frac{d}{dx} (\tan^{-1} x) = \frac{1}{1 + x^2} \qquad \frac{d}{dx} (\cot^{-1} x) = -\frac{1}{1 + x^2}, \text{ for } -\infty < x < \infty$$

$$\frac{d}{dx} (\sec^{-1} x) = \frac{1}{|x|\sqrt{x^2 - 1}} \qquad \frac{d}{dx} (\csc^{-1} x) = -\frac{1}{|x|\sqrt{x^2 - 1}}, \text{ for } |x| > 1$$

Example 2 (§3.10, Ex. 14, 22, 24, 30, 39). Evaluate the derivatives of the following functions.

1. $f(x) = x \sin^{-1} x$

$$\frac{df}{dx} = \sin^{-1}x + x \cdot \frac{1}{\sqrt{1 - x^2}}.$$

2. $g(z) = \tan^{-1}(1/z)$ $\frac{dg}{dz} = \frac{1}{1 + (1/z)^2} \cdot \frac{-1}{z^2} = \frac{-1}{z^2 + 1}.$

Note that g has the same derivative as the inverse cotangent. This is because $\cot^{-1}(x) = \tan^{-1}(1/x)$ for all x, so in fact g is the inverse cotangent function.

3. $f(x) = \sec^{-1} \sqrt{x}$: For all x > 1 (the domain of f), we have:

$$f'(x) = \frac{1}{|\sqrt{x}|\sqrt{\sqrt{x^2} - 1}} \cdot \frac{1}{2\sqrt{x}} = \frac{1}{2x\sqrt{x - 1}}.$$

4. $f(t) = (\cos^{-1} t)^2$ $f'(t) = 2(\cos^{-1} t) \cdot \frac{-1}{\sqrt{1 - x^2}} = \frac{-2 \cot^{-1} t}{\sqrt{1 - x^2}}.$ 5. $f(s) = \cot^{-1}(e^s)$ $\frac{df}{ds} = \frac{-1}{1 + (e^s)^2} \cdot e^s = \frac{-e^s}{1 + e^{2s}}.$

Example 3 (§3.10, Ex. 34, 38). Evaluate the derivatives of the following functions.

1.
$$f(w) = \sin(\sec^{-1}(2w))$$

$$\frac{df}{dw} = \cos(\sec^{-1}(2w)) \cdot \frac{1}{|2w|\sqrt{(2w)^2 - 1}} \cdot 2 = \frac{1}{2w} \cdot \frac{2}{|2w|\sqrt{(2w)^2 - 1}},$$

using the fact that $\cos(\sec^{-1} x) = \cos(\cos^{-1}(1/x)) = 1/x$ for all x with |x| > 1.

2.
$$f(x) = \sin(\tan^{-1}(\ln x))$$

$$\frac{df}{dx} = \cos(\tan^{-1}(\ln x)) \cdot \frac{1}{1 + (\ln x)^2} \cdot \frac{1}{x} = \frac{1}{\sqrt{(\ln x)^2 + 1}} \cdot \frac{1}{1 + (\ln x)^2} \cdot \frac{1}{x}$$
$$= \frac{1}{x \left((\ln x)^2 + 1\right)^{3/2}}.$$

Example 4 (§3.10, Ex. 44). Find an equation of the line tangent to the graph of $f(x) = \sec^{-1}(e^x)$ at the point $(\ln 2, \pi/3)$.

The derivative is

$$f'(x) = \frac{1}{|e^x|\sqrt{(e^x)^2 - 1}} \cdot e^x = \frac{1}{\sqrt{e^{2x} - 1}}$$

Since $e^{2\ln 2} = e^{\ln(2^2)} = 4$, we have $f'(\ln 2) = 1/\sqrt{3}$, so an equation of the tangent line is

$$y - \frac{\pi}{3} = \frac{1}{\sqrt{3}}(x - \ln 2).$$

1.1 Application

Example 5 (§3.10, Ex. 46). A small plane, moving at 70 m/s, flies horizontally on a line 400 m directly above an observer. Let θ be the angle of elevation of the plane (see figure).

- (a) What is the rate of change of the angle of elevation $\frac{d\theta}{dx}$ when the plane is x = 500 m past the observer?
- (b) Graph $\frac{d\theta}{dx}$ as a function of x and determine the point at which θ changes most rapidly.

Observe that $\cot \theta = x/400$. So

$$\theta = \cot^{-1} \frac{x}{400}.$$

Taking the derivative, we have

$$\frac{d\theta}{dx} = \frac{-1}{1 + (x/400)^2} \cdot \frac{1}{400} = \frac{-400}{400^2 + x^2}.$$

(Note that $d\theta/dx$ does not depend on the speed of the plane, because we are looking at the change with respect to x, not with respect to time!)

In particular, when x is 500 meters, we get

$$\frac{d\theta}{dx} = \frac{-400}{400^2 + 500^2} \approx -0.000976,$$

which is in units of radians per meter.

The angle θ is changing the most rapidly when $|d\theta/dt|$ is as large as possible. By the chain rule, we have

$$\frac{d\theta}{dt} = \frac{d\theta}{dx} \cdot \frac{dx}{dt} = \frac{d\theta}{dx} \cdot 70 \text{ m/s.}$$

We have

$$\left|\frac{d\theta}{dx}\right| = \frac{400}{400^2 + x^2},$$

and this is as large as possible when the denominator $400^2 + x^2$ is as small as possible, i.e., when x = 0. In other words, the angle is changing fastest when the plane is directly overhead.