Dr. Daniel Hast,drhast@bu.edu

Today's topics

1 Maxima and minima 1
2 Mean Value Theorem 3
2.1 Rolle's Theorem . 3
2.2 The Mean Value Theorem (MVT)'s statement 5

1 Maxima and minima

Briggs-Cochran-Gillett §4.1, pp. 241-250

Example 1. Find the critical points of the functions below on the given intervals. Determine the absolute extreme values of f on the given interval when they exist. Use a graphing utility to confirm your conclusions.

1. $f(x)=\frac{x}{\left(x^{2}+3\right)^{2}}$ on $[-2,2]$
2. $f(x)=\left|2 x-x^{2}\right|$ on $[-2,3]$

Solution. 1. We compute the derivative:

$$
f^{\prime}(x)=\frac{\left(x^{2}+3\right)^{2}-x \cdot 2\left(x^{2}+3\right) \cdot 2 x}{\left(x^{2}+3\right)^{4}}=\frac{\left(x^{2}+3\right)-4 x^{2}}{\left(x^{2}+3\right)^{3}}=\frac{-3 x^{2}+3}{\left(x^{2}+3\right)^{3}}
$$

Since $x^{2}+3$ is always positive, this is defined everywhere on $[-2,2]$, so the critical points are exactly where $f^{\prime}(x)=0$. Setting the numerator equal to zero, we need to solve $-3 x^{2}+3=0$, or equivalently, $x^{2}=1$. So the critical points are at $x= \pm 1$.

To determine the absolute extreme values, we need to evaluate f at the critical points and at the endpoints:

$$
f(-2)=\frac{-2}{49}, \quad f(-1)=\frac{-1}{16}, \quad f(1)=\frac{1}{16}, \quad f(2)=\frac{2}{49}
$$

Since $1 / 16>2 / 49$, the absolute maximum is $1 / 16$ (at $x=1$) and the absolute minimum is $-1 / 16($ at $x=-1)$.
2. Observe that $2 x-x^{2}=x(2-x)$ is negative when $x<0$, positive when $0<x<2$, and negative when $2<x$. So

$$
f^{\prime}(x)= \begin{cases}2-2 x & \text { if } 0<x<2 \\ 2 x-2 & \text { if } x<0 \text { or } 2<x\end{cases}
$$

The derivative is undefined at 0 and 2. Also, $f^{\prime}(x)=0$ if and only if $x=1$. So the critical points are 0,1 , and 2 . Evaluating the function at critical points and endpoints:

$$
f(-2)=8, \quad f(0)=0, \quad f(1)=1, \quad f(2)=0, \quad f(3)=3
$$

So the absolute maximum value is 8 (at $x=-2$), and the absolute minimum value is 0 (at both $x=0$ and $x=2$).

In the following example, we locate absolute max/min on an open interval by inspection of the graph of the function.

Example 2. All rectangles with an area of $A>0$ have a perimeter given by $P(x)=2 x+2 A / x$, where x is the length of one side of the rectangle. Find the absolute minimum value for the perimeter function on the interval $(0, \infty)$. What are the dimensions of the rectangle with minimum perimeter?

Solution. The derivative of the perimeter function is

$$
P^{\prime}(x)=2-\frac{2 A}{x^{2}}
$$

This is defined everywhere on $(0, \infty)$, so the critical points are exactly where $P^{\prime}(x)=0$, that is, where $2=2 A / x^{2}$. This is equivalent to $x^{2}=A$, which has solutions $x=\sqrt{A}$ and $x=-\sqrt{A}$. However, the domain we are considering is $(0, \infty)$, so we discard the negative solution and are left with $x=\sqrt{A}$.

The perimeter at $x=\sqrt{A}$ is $P(\sqrt{A})=2 \sqrt{A}+2 A / \sqrt{A}=4 \sqrt{A}$. In other words, we've verified that the rectangle of area A with the smallest perimeter is a square.

2 Mean Value Theorem

Briggs-Cochran-Gillett §4.2, pp. 250-257

Today we will look at one of the central results in calculus: the Mean Value Theorem (MVT). Some of the theorems we have already seen about derivatives are a consequence of this theorem. We start by looking at a preliminary result, which is a particular case of the MVT: Rolle's theorem.

2.1 Rolle's Theorem

Theorem 3 (Rolle's Theorem). Let f be a continuous function on a closed interval $[a, b]$ and differentiable on (a, b) with $f(a)=f(b)$. Then there is at least one point c in (a, b) such that $f^{\prime}(c)=0$.

The continuity and differentiability conditions are essential, otherwise the statement is not true!

Also note that there might be more than one c that satisfies the theorem:

Example 4 (§4.2, Ex. 16). Determine whether Rolle's theorem applies to the function $f(x)=x^{3}-2 x^{2}-8 x$ on the interval $[-2,4]$. If so, find the point(s) that are guaranteed to exist by Rolle's Theorem.

Solution. Since f is a polynomial function, f is continuous and differentiable everywhere. We also have $f(-2)=0$ and $f(4)=0$, so $f(-2)=f(4)$. Thus Rolle's theorem does apply to f.

We want to find points x in $(-2,4)$ such that $f^{\prime}(x)=0$. We have

$$
f^{\prime}(x)=3 x^{2}-4 x-8
$$

By the quadratic formula, the roots of this quadratic function are

$$
x=\frac{4 \pm \sqrt{16-4 \cdot 3 \cdot(-8)}}{2 \cdot 3}=\frac{4 \pm 4 \sqrt{7}}{6}=\frac{2 \pm 2 \sqrt{7}}{3} .
$$

These are both in the interval $(-2,4)$ (they are approximately -1.1 and 2.4), so these are the points guaranteed to exist by Rolle's theorem.

2.2 The Mean Value Theorem (MVT)'s statement

Theorem 5 (Mean Value Theorem). Let f be a continuous function on a closed interval $[a, b]$ and differentiable on (a, b). Then there is at least one point c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Note that, just like in the case of Rolle's Theorem, there might be more than one c that satisfies the MVT:

Example 6 (§4.2, Ex. 26, 31).
(a) Determine whether the MVT applies to the following functions on the given interval $[a, b]$. Explain why or why not.
(b) If so, find the point(s) that are guaranteed to exist by the MVT and sketch the function and the line that passes through $(a, f(a))$ and $(b, f(b))$. Mark the points P at which the slope of the function equals the slope of the secant line and sketch the tangent line at P.

1. $f(x)=\ln (2 x),[1, e]$
2. $f(x)=2 x^{1 / 3},[-8,8]$

Solution. 1. (a) The function $f(x)=\ln (2 x)$ is continuous and differentiable on $(0, \infty)$, so the MVT applies.
(b) The MVT says there exists c in $(1, e)$ such that

$$
f^{\prime}(c)=\frac{f(e)-f(1)}{e-1}=\frac{\ln (2 e)-\ln (2)}{e-1}=\frac{\ln (2)+\ln (e)-\ln (2)}{e-1}=\frac{1}{e-1} .
$$

For all c in $(0, \infty)$, we have

$$
f^{\prime}(c)=\frac{2}{2 c}=\frac{1}{c}
$$

So we want to solve the equation

$$
\frac{1}{c}=\frac{1}{e-1} .
$$

This has the solution $c=e-1$, which is indeed in the interval $(1, e)$.
2. The function $f(x)=2 x^{1 / 3}$ is not differentiable at $x=0$, so the MVT does not apply. Let's try to solve for points with that property anyway:

$$
f^{\prime}(x)=\frac{2}{3 x^{2 / 3}},
$$

and we have $f(-8)=-4$ and $f(8)=4$, so we're looking for points c such that

$$
f^{\prime}(c)=\frac{f(8)-f(-8)}{8-(-8)}=\frac{4+4}{8+8}=\frac{1}{2} .
$$

In other words, we want $\frac{2}{3} x^{-2 / 3}=\frac{1}{2}$, or equivalently,

$$
x^{2 / 3}=\frac{4}{3},
$$

which has solutions $x= \pm \frac{8}{\sqrt{27}}$. So, in this particular case, points satisfying the conclusion of the MVT exist anyway; however, this is not a consequence of the MVT, since the differentiability hypothesis is not satisfied.

