Dr. Daniel Hast,drhast@bu.edu

Today's topics

1 Derivative tests 1
2 Review 2

1 Derivative tests

Briggs-Cochran-Gillett §4.3, pp. 257-270

Theorem 1 (Second Derivative Test for local extrema). Suppose that $f^{\prime \prime}$ is continuous on an open interval containing c with $f^{\prime}(c)=0$.

- If $f^{\prime \prime}(c)>0$, then f has a local minimum at c.
- If $f^{\prime \prime}(c)<0$, then f has a local maximum at c.
- If $f^{\prime \prime}(c)=0$, then the test is inconclusive; f may have a local maximum, local minimum, or neither at c.

Example 2 (§4.3, Ex. 78, 84). Locate the critical points of the following functions. Then use the Second Derivative Test to determine (if possible) whether they correspond to local maxima or local minima.

1. $f(x)=6 x^{2}-x^{3}$
2. $p(x)=\frac{e^{x}}{x+1}$

Solution. 1. The first derivative is $f^{\prime}(x)=12 x-3 x^{2}=3 x(4-x)$, so the critical points are at 0 and 4. The second derivative is $f^{\prime \prime}(x)=12-6 x$, so $f^{\prime \prime}(0)=12$ and $f^{\prime \prime}(4)=-12$, so f has a local minimum at 0 and a local maximum at 4 .
2. We have

$$
\begin{aligned}
p^{\prime}(x) & =\frac{e^{x}(x+1)-e^{x}}{(x+1)^{2}}=\frac{x e^{x}}{(x+1)^{2}}, \\
p^{\prime \prime}(x) & =\frac{\left(e^{x}+x e^{x}\right)(x+1)^{2}-2 x e^{x}(x+1)}{(x+1)^{4}}=\frac{\left(e^{x}+x e^{x}\right)(x+1)-2 x e^{x}}{(x+1)^{3}}=\frac{e^{x}\left(x^{2}+1\right)}{(x+1)^{3}} .
\end{aligned}
$$

So the only critical point of f is at 0 . (Note that f is not defined at -1 , so this is not a critical point.) Since $p^{\prime \prime}(0)=1$, this is a local minimum.

Here is a recap of derivative properties:

2 Review

Let's review an assortment of techniques and problems from the course so far.
Example 3 (Related rates). Two boats leave a dock at the same time. One boat travels south at $30 \mathrm{~km} / \mathrm{hr}$ and the other travels east at $40 \mathrm{~km} / \mathrm{hr}$. After half an hour, how fast is the distance between the boats increasing?

Solution. Let x be the distance the first boat has traveled south from the dock, let y be the distance the second boat has traveled east from the dock, and let D be the distance between the boats. By the Pythagorean theorem,

$$
x^{2}+y^{2}=D^{2}
$$

Differentiating, we obtain

$$
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=2 D \frac{d D}{d t} .
$$

We are given $d x / d t=30 \mathrm{~km} / \mathrm{hr}$ and $d y / d t=40 \mathrm{~km} / \mathrm{hr}$. After half an hour, we have $x=15 \mathrm{~km}$ and $y=20 \mathrm{~km}$; since $15^{2}+20^{2}=25^{2}$, we also have $D=25 \mathrm{~km}$. So, after half an hour, we have

$$
2(15 \mathrm{~km})(30 \mathrm{~km} / \mathrm{hr})+2(20 \mathrm{~km})(40 \mathrm{~km} / \mathrm{hr})=2(25 \mathrm{~km}) \frac{d D}{d t} .
$$

Solving for $d D / d t$ yields

$$
\frac{d D}{d t}=\frac{2 \cdot 15 \cdot 30+2 \cdot 20 \cdot 40}{2 \cdot 25} \mathrm{~km} / \mathrm{hr}=50 \mathrm{~km} / \mathrm{hr}
$$

Don't forget to check that this is a reasonable answer: the units are correct, the sign is correct, and the order of magnitude is plausible.

Example 4 (Inverse trig functions). Find an equation for the line tangent to the graph of the function $f(x)=\cos ^{-1}\left(x^{2}\right)$ at the point $(1 / \sqrt{2}, \pi / 3)$.

Solution. We compute the derivative:

$$
f^{\prime}(x)=\frac{-1}{\sqrt{1-x^{2}}} \cdot 2 x=\frac{-2 x}{\sqrt{1-x^{2}}}
$$

Now we evaluate at the chosen point:

$$
f^{\prime}(1 / \sqrt{2})=\frac{-2 / \sqrt{2}}{\sqrt{1-(1 / \sqrt{2})^{2}}}=\frac{-\sqrt{2}}{\sqrt{1-1 / 2}}=\frac{-\sqrt{2}}{1 / \sqrt{2}}=-2
$$

So the tangent line has slope -2 and passes through the point $(1 / \sqrt{2}, \pi / 3)$. An equation for this line if

$$
y-\frac{\pi}{3}=-2\left(x-\frac{1}{\sqrt{2}}\right)
$$

If you prefer slope-intercept form:

$$
y=-2 x+\frac{2}{\sqrt{2}}+\frac{\pi}{3}=-2 x+\sqrt{2}+\frac{\pi}{3} .
$$

Example 5 (Logarithmic and exponential functions). Compute the derivative of the function $f(x)=\left(1+\frac{1}{x}\right)^{x}$ on the domain $(0, \infty)$.

Solution. Note that $f(x)>0$ for all $x>0$. We express the function as an exponential with natural base:

$$
f(x)=e^{\ln f(x)}=e^{x \ln \left(1+\frac{1}{x}\right)} .
$$

Now we take the derivative using the chain rule:

$$
\begin{aligned}
f^{\prime}(x) & =e^{x \ln \left(1+\frac{1}{x}\right)} \cdot\left(\ln \left(1+\frac{1}{x}\right)+x \cdot \frac{1}{1+\frac{1}{x}} \cdot\left(-x^{-2}\right)\right) \\
& =e^{x \ln \left(1+\frac{1}{x}\right)} \cdot\left(\ln \left(1+\frac{1}{x}\right)-\frac{1}{x+1}\right)
\end{aligned}
$$

Example 6 (Implicit differentiation). Find an equation for the line tangent to the curve $\sin y+5 x=y^{2}$ at the point $(0,0)$.

Solution. We use implicit differentiation and take the derivative with respect to x on both sides of the equation:

$$
(\cos y) \frac{d y}{d x}+5=2 y \frac{d y}{d x}
$$

When $x=0$ and $y=0$, this becomes

$$
(\cos 0) \frac{d y}{d x}+5=0
$$

and since $\cos 0=1$, we obtain $d y / d x=-5$. So the tangent line has slope -5 and passes through the point $(0,0)$; an equation for this line is $y=-5 x$.
Example 7 (Chain rule). Suppose $f(2)=2$ and $f^{\prime}(2)=3$. Compute the derivative of $f(f(f(x)))$ at $x=2$.
Solution. By the chain rule,

$$
\frac{d}{d x} f(f(f(x)))=f^{\prime}(f(f(x))) \cdot f^{\prime}(f(x)) \cdot f^{\prime}(x)
$$

Evaluating at $x=2$, we obtain

$$
f^{\prime}(f(f(2))) \cdot f^{\prime}(f(2)) \cdot f^{\prime}(2)=f^{\prime}(2) \cdot f^{\prime}(2) \cdot f^{\prime}(2)=3 \cdot 3 \cdot 3=27 .
$$

Example 8 (Continuity). Determine whether the following function is continuous from the left, from the right, both, or neither at $x=1$:

$$
f(x)= \begin{cases}2 x & \text { if } x<1 \\ x^{2}+3 x & \text { if } x>1 \\ 4 & \text { if } x=1\end{cases}
$$

Solution. We have $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 2 x=2$ and $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(x^{2}+3 x\right)=4$. Since $f(1)=4$, this means that f is continuous from the right at 1 , and not continuous from the left at 1 . This also means that f is not continuous at 1 .
Example 9 (Limits at infinity). Compute the limit $\lim _{x \rightarrow \infty} \frac{40 x^{4}+x^{2}+5 x}{\sqrt{64 x^{8}+x^{6}}}$.
Solution. We start by multiplying the numerator and denominator by x^{-4} :

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{40 x^{4}+x^{2}+5 x}{\sqrt{64 x^{8}+x^{6}}} & =\lim _{x \rightarrow \infty} \frac{x^{-4}\left(40 x^{4}+x^{2}+5 x\right)}{x^{-4} \sqrt{64 x^{8}+x^{6}}} \\
& =\lim _{x \rightarrow \infty} \frac{40+x^{-2}+5 x^{-3}}{\sqrt{x^{-8}} \sqrt{64 x^{8}+x^{6}}} \\
& =\lim _{x \rightarrow \infty} \frac{40+x^{-2}+5 x^{-3}}{\sqrt{x^{-8}\left(64 x^{8}+x^{6}\right)}} \\
& =\lim _{x \rightarrow \infty} \frac{40+x^{-2}+5 x^{-3}}{\sqrt{64+x^{-2}}} \\
& =\frac{\lim _{x \rightarrow \infty}\left(40+x^{-2}+5 x^{-3}\right)}{\lim _{x \rightarrow \infty}\left(\sqrt{64+x^{-2}}\right)} \\
& =\frac{40}{\sqrt{64}}=\frac{40}{8}=5
\end{aligned}
$$

Example 10 (Vertical asymptotes). Find all vertical asymptotes of the function $f(x)=$ $\frac{8 x-x^{2}}{x^{3}-10 x^{2}+16 x}$. For each vertical asymptote a, determine $\lim _{x \rightarrow a^{+}} f(x), \lim _{x \rightarrow a^{-}} f(x)$, and $\lim _{x \rightarrow a} f(x)$.

Solution. We factor the numerator and denominator:

$$
f(x)=\frac{x(8-x)}{x\left(x^{2}-10 x+16\right)}=\frac{x(8-x)}{x(x-2)(x-8)}=\frac{1}{2-x}
$$

for all real numbers x not equal to 0,2 , or 8 . The only vertical asymptote is at $x=2$; at 0 and 8 , there is a removable singularity, not an asymptote. Indeed,

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{1}{2-x}=\frac{1}{2}, \quad \lim _{x \rightarrow 8} f(x)=\lim _{x \rightarrow 8} \frac{1}{2-x}=-\frac{1}{6}
$$

As for the vertical asymptote at 2 , note that $1 /(2-x)>0$ for $x<2$ (and gets arbitrarily large as x approaches 2), and $1 /(2-x)<0$ for $x<2$ (and gets arbitrarily large in magnitude as x approaches 2). So

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} \frac{1}{2-x}=\infty, \quad \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} \frac{1}{2-x}=-\infty
$$

Since these two (infinite) limits do not have the same sign, $\lim _{x \rightarrow 2} f(x)$ does not exist and is not infinite.

Example 11 (Computing limits). Let c be a positive real number. Compute

$$
\lim _{x \rightarrow c} \frac{x^{2}-c^{2}}{\sqrt{x}-\sqrt{c}}
$$

Solution. Using the difference of squares identity twice, we have

$$
x^{2}-c^{2}=(x-c)(x+c)=(\sqrt{x}-\sqrt{c})(\sqrt{x}+\sqrt{c})(x+c) .
$$

So

$$
\begin{aligned}
\lim _{x \rightarrow c} \frac{x^{2}-c^{2}}{\sqrt{x}-\sqrt{c}} & =\lim _{x \rightarrow c} \frac{(\sqrt{x}-\sqrt{c})(\sqrt{x}+\sqrt{c})(x+c)}{\sqrt{x}-\sqrt{c}} \\
& =\lim _{x \rightarrow c}(\sqrt{x}+\sqrt{c})(x+c) \\
& =(\sqrt{c}+\sqrt{c})(c+c)=4 c \sqrt{c} .
\end{aligned}
$$

