Dr. Daniel Hast,drhast@bu.edu

Today's topics

1 L'Hôpital's rule 1
1.1 Summary of indeterminate forms . 1
1.2 Growth rates . 2

2 Antiderivatives 3
2.1 Definition and first examples . 3
2.2 Indefinite integrals to know . 4

1 L'Hôpital's rule

1.1 Summary of indeterminate forms

Here are all the indeterminate forms we've discussed:

$$
\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, \infty-\infty, 1^{\infty}, 0^{0}, \infty^{0}
$$

These fall into three classes:

- $0 / 0$ and ∞ / ∞ : We can directly apply l'Hôpital's rule to limits of this form.
- $0 \cdot \infty$ and $\infty-\infty$: We cannot directly apply l'Hôpital's rule, but often we can use algebra to rewrite the limit as a fraction of the form $0 / 0$ or ∞ / ∞.
- $1^{\infty}, 0^{0}$, and ∞^{0} : We cannot directly apply l'Hôpital's rule, but we can use the identity $f(x)^{g(x)}=e^{g(x) \ln f(x)}$ and then try to compute the limit of $g(x) \ln f(x)$.

Limits that are NOT indeterminate forms:

- $1 / \infty($ the limit is 0$)$
- $1 / 0$ (the limit doesn't exist, and may be $\pm \infty$)
- $0 / \infty$ (the limit is 0)
- $\infty / 0$ (the limit doesn't exist, and may be $\pm \infty$)
- 0^{∞} (the limit is 0$)$

1.2 Growth rates

Our goal now is to use what we know about limits, including l'Hôpital's rule, to obtain a ranking of the functions we know based on their growth rates.

Definition 1 (Growth Rates of functions as $x \rightarrow \infty$). Let f and g be functions such that $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=\infty$. Then

- f grows faster than g as $x \rightarrow \infty$ if

$$
\lim _{x \rightarrow \infty} \frac{g(x)}{f(x)}=0 \text { or, equivalently, } \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\infty
$$

We write $g(x) \ll f(x)$.

- f and g have comparable growth rates if

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=M
$$

with $M>0$.

We have:

$$
\ln x \ll x^{p} \ll e^{x} \quad \text { for all } p>0
$$

More generally,

$$
\ln ^{q} x \ll x^{p} \ll x^{p} \ln ^{r} x \ll e^{x},
$$

where $q, p, r>0$.

Example 2. Use limits to determine which of the following functions grows faster or state they have comparable growth rates:
(a) $x^{2} \ln x$ and $\ln ^{5} x$
(b) 100^{x} and x^{x}
(c) $\ln x$ and $\ln (\ln x)$
(d) $e^{x^{2}}$ and x^{x}

2 Antiderivatives

Briggs-Cochran-Gillett $\S 4.9$, pp. 321-327

2.1 Definition and first examples

The reverse process to differentiation is called antidifferentiation.
Definition 3. A function F is an antiderivative of f if $F^{\prime}(x)=f(x)$.
For example, $F(x)=x+5$ is an antiderivative of $f(x)=1$ because $F^{\prime}(x)=f(x)$. Likewise,

$$
\frac{d}{d x} e^{x}=e^{x}
$$

so $F(x)=e^{x}$ is an antiderivative of $f(x)=e^{x}$. Of course, we also have

$$
\frac{d}{d x}\left(e^{x}-2\right)=e^{x}
$$

so $F_{1}(x)=e^{x}-2$ is another antiderivative of $f(x)=e^{x}$. As we saw a few weeks ago, a consequence of the MVT is that

$$
\begin{gathered}
\text { a function } f(x) \text { differs from another function } g(x) \text { by a constant } \\
\text { if and only if } f^{\prime}(x)=g^{\prime}(x) .
\end{gathered}
$$

This proves the following theorem:
Theorem 4. Let F be an antiderivative of f on an interval I. Then all the antiderivatives of f on I have the form $F(x)+C$ where C is an arbitrary constant.
Remark 5. If the domain of f is not an interval, then there can be more antiderivatives - we can take a different constant on different contiguous pieces of the domain. For example, since $f(x)=1 / x$ is defined on $(-\infty, 0)$ and $(0, \infty)$, but not at 0 , one antiderivative of f is $\ln |x|$, but another antiderivative is

$$
F(x)= \begin{cases}\ln |x|+7 & \text { if } x>0 \\ \ln |x|-11 & \text { if } x<0\end{cases}
$$

Definition 6. Let F be an antiderivative of a function f on an interval I. We write

$$
\int f(x) d x=F(x)+C
$$

and say that $F(x)+C$ is the indefinite integral of f.
Example 7 (§4.9, Ex. 12, 14, (based on) 19, 20). Find all antiderivatives of the following functions. Check your work by taking derivatives.

1. $g(x)=11 x^{10}$
2. $g(x)=-4 \cos (4 x)$
3. $f(x)=2 e^{2 x}$
4. $h(y)=y^{-1}$

2.2 Indefinite integrals to know

It is useful to know some of the more common indefinite integrals:

- $\int K d x=K x+C$
- $\int x^{p} d x=\frac{x^{p+1}}{p+1}+C$, if $p \neq-1$
- $\int \frac{1}{x} d x=\ln |x|+C$
- $\int \cos (a x) d x=\frac{1}{a} \sin (a x)+C$
- $\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+C$
- $\int \sec ^{2}(a x) d x=\frac{1}{a} \tan (a x)+C$
- $\int \sec (a x) \tan (a x) d x=\frac{1}{a} \sec (a x)+C$
- $\int e^{a x} d x=\frac{1}{a} e^{a x}+C$
- $\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+C$
- $\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$
- $\int \frac{1}{x \sqrt{x^{2}-a^{2}}} d x=\frac{1}{a} \sec ^{-1}\left(\left|\frac{x}{a}\right|\right)+C$

Also, by the corresponding rules for differentiation, we have that

- $\int c f(x) d x=c \int f(x) d x$
- $\int f(x)+g(x) d x=\int f(x) d x+\int g(x) d x$

