Dr. Daniel Hast, drhast@bu.edu

Today's topics

1 Approximating area under curves and Riemann sums 1
1.1 Area under the velocity curve 1
1.2 Sigma notation 2
1.3 Sums of powers 2
1.4 Riemann sums using sigma notation 3
2 Definite integrals 3
2.1 Net area 3
2.2 Definition of definite integral 5

1 Approximating area under curves and Riemann sums

Briggs-Cochran-Gillett §5.1, pp. 338-352

1.1 Area under the velocity curve

Example 1 (§5.1, Ex. 70). Consider the velocity of an object moving along a line:

(a) Describe the motion of the particle over the interval $[0,6]$.
(b) Use geometry to find the displacement of the object between $t=0$ and $t=3$.
(c) Use geometry to find the displacement of the object between $t=3$ and $t=5$.
(d) Assuming that the velocity remains $30 \mathrm{~m} / \mathrm{s}$ for $t \geq 4$, find the function that gives the displacement between $t=0$ and any $t \geq 5$.

1.2 Sigma notation

When working with Riemann sums, sigma notation can be used to express these sums in a compact way.

For example, the sum

$$
1+2+3+\cdots+10
$$

is written in sigma notation as

$$
\sum_{k=1}^{10} k
$$

Here are two useful properties of sigma notation:

- Constant multiple rule: Let c be a constant. Then $\sum_{k=1}^{n} c a_{k}=c \sum_{k=1}^{n} a_{k}$.
- Addition rule: $\sum_{k=1}^{n}\left(a_{k}+b_{k}\right)=\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k}$.

1.3 Sums of powers

The following formulas for sums of powers of integers are also very useful:
Theorem 2 (Sums of powers of integers). Let n be a positive integer and c a real number.

1. $\sum_{k=1}^{n} c=c n$
2. $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
3. $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
4. $\sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}$

Example 3 (§5.1, Ex. 49). Evaluate the following expressions:

1. $\sum_{k=1}^{10} k$
2. $\sum_{k=1}^{6}(2 k+1)$
3. $\sum_{p=1}^{5}\left(2 p+p^{2}\right)$
4. $\sum_{n=0}^{4} \sin \frac{n \pi}{2}$

1.4 Riemann sums using sigma notation

With sigma notation, a Riemann sum has the convenient compact form

$$
f\left(x_{1}^{*}\right) \Delta x+f\left(x_{2}^{*}\right) \Delta x+\cdots+f\left(x_{n}^{*}\right) \Delta x=\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x .
$$

We can use this to rewrite left, right, and midpoint Riemann sums:
Definition 4 (Left, right, and midpoint Riemann sums in sigma notation). Suppose f is defined on an interval $[a, b]$, which is divided into n subintervals of equal length Δx. If x_{k}^{*} is a point in the k th subinterval $\left[x_{k-1}, x_{k}\right]$ for $k=1,2, \ldots, n$, then the Riemann sum for f on $[a, b]$ is $\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x$. Here are our three cases:

1. Left Riemann sum: $x_{k}^{*}=a+(k-1) \Delta x$
2. Right Riemann sum: $x_{k}^{*}=a+k \Delta x$
3. Midpoint Riemann sum: $x_{k}^{*}=a+\left(k-\frac{1}{2}\right) \Delta x$

Example 5 (§5.1, Ex. 52). Let $f(x)=x^{2}+1$ on $[-1,1]$. Letting $n=50$, use sigma notation to write the left, right, and midpoint Riemann sums.

2 Definite integrals

Briggs-Cochran-Gillett $\S 5.2$ pp. 353-367

2.1 Net area

So far, we have been considering functions f which are nonnegative on an interval $[a, b]$. Now we will discover the geometric meaning of Riemann sums when f is negative on some or all of $[a, b]$.

Consider the function $f(x)=1-x^{2}$ on the interval $[1,3]$ with $n=4$. We compute a midpoint Riemann sum. The length of each subinterval is $\Delta x=\frac{b-a}{n}=\frac{3-1}{4}=0.5$. The grid points are

$$
x_{0}=1, x_{1}=1.5, x_{2}=2, x_{3}=2.5, x_{4}=3
$$

We compute the midpoints of the subintervals:

$$
x_{1}^{*}=1.25, x_{2}^{*}=1.75, x_{3}^{*}=2.25, x_{4}^{*}=2.75
$$

So the midpoint Riemann sum is

$$
\sum_{k=1}^{4} f\left(x_{k}^{*}\right)(0.5)=(f(1.25)+f(1.75)+f(2.25)+f(2.75))(0.5)=-6.625
$$

Note that all values of $f\left(x_{k}^{*}\right)$ are negative, so the Riemann sum is also negative. Indeed, the Riemann sum is an approximation to the negative of the area of the region bounded by the curve and the x-axis.

More generally, if f is positive on only part of $[a, b]$, we get positive contributions to the Riemann sum where f is positive and negative contributions to the Riemann sum where f is negative. In this case, Riemann sums approximate the area of the regions that lie above the x-axis minus the area of the regions that lie below the x-axis. This difference between the positive and negative contributions is called the net area. It can be positive, negative, or zero.

Definition 6 (Net area). Consider the region R bounded by the graph of a continuous function f and the x-axis between $x=a$ and $x=b$. The net area of R is the sum of the areas of the parts of R that lie above the x-axis minus the area of the parts of R that lie below the x-axis on $[a, b]$.

Geometrically:

The definite integral corresponds to the net area:

We have $\int_{a}^{b} f(x) d x=12, \int_{b}^{c} f(x) d x=-10, \int_{a}^{d} f(x) d x=10$.
Below is a formal definition.

2.2 Definition of definite integral

Riemann sums for f on $[a, b]$ approximate the net area of the region bounded by the graph of f and the x-axis between $x=a$ and $x=b$. How do we make these approximations exact? If f is continuous on $[a, b]$, it is reasonable to expect the Riemann sum approximations to approach the exact value of the net area as the number of subintervals $n \rightarrow \infty$ and as the length of the subintervals $\Delta x \rightarrow 0$, giving net area $=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x$. This brings us to the notion of the definite integral:
Definition 7 (Definite integral). A function f defined on $[a, b]$ is integrable on $[a, b]$ if the limit $\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}$ exists. This limit is the definite integral of f from a to b, which we write

$$
\int_{a}^{b} f(x) d x=\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}
$$

Example 8. Let us compute the definite integral $\int_{0}^{1} x^{2} d x$ using a right Riemann sum. We will use a regular partition, so $\Delta x_{k}=1 / n$ and $x_{k}=k / n$. Since we are taking a right Riemann sum, $x_{k}^{*}=x_{k}=k / n$. So

$$
\begin{aligned}
\int_{0}^{1} x^{2} d x & =\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n}\left(x_{k}^{*}\right)^{2} \Delta x_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} x_{k}^{2} \cdot \frac{1}{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{k}{n}\right)^{2} \cdot \frac{1}{n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n^{3}} \cdot \sum_{k=1}^{n} k^{2}=\lim _{n \rightarrow \infty} \frac{1}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{6}=\lim _{n \rightarrow \infty} \frac{2 n^{3}+3 n^{2}+n}{6 n^{3}} \\
& =\frac{2}{6}=\frac{1}{3}
\end{aligned}
$$

