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1 Approximating area under curves and Riemann sums

Briggs–Cochran–Gillett §5.1, pp. 338–352

1.1 Area under the velocity curve
Example 1 (§5.1, Ex. 70). Consider the velocity of an object moving along a line:

(a) Describe the motion of the particle over the interval [0, 6].

(b) Use geometry to find the displacement of the object between t = 0 and t = 3.

(c) Use geometry to find the displacement of the object between t = 3 and t = 5.

(d) Assuming that the velocity remains 30 m/s for t ≥ 4, find the function that gives the
displacement between t = 0 and any t ≥ 5.
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1.2 Sigma notation
When working with Riemann sums, sigma notation can be used to express these sums in a
compact way.

For example, the sum
1 + 2 + 3 + · · · + 10

is written in sigma notation as
10∑

k=1
k.

Here are two useful properties of sigma notation:

• Constant multiple rule: Let c be a constant. Then
n∑

k=1
cak = c

n∑
k=1

ak.

• Addition rule:
n∑

k=1
(ak + bk) =

n∑
k=1

ak +
n∑

k=1
bk.

1.3 Sums of powers
The following formulas for sums of powers of integers are also very useful:

Theorem 2 (Sums of powers of integers). Let n be a positive integer and c a real number.

1.
n∑

k=1
c = cn

2.
n∑

k=1
k = n(n + 1)

2

3.
n∑

k=1
k2 = n(n + 1)(2n + 1)

6

4.
n∑

k=1
k3 = n2(n + 1)2

4

Example 3 (§5.1, Ex. 49). Evaluate the following expressions:

1.
10∑

k=1
k

2.
6∑

k=1
(2k + 1)

3.
5∑

p=1
(2p + p2)

4.
4∑

n=0
sin nπ

2
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1.4 Riemann sums using sigma notation
With sigma notation, a Riemann sum has the convenient compact form

f(x∗
1)∆x + f(x∗

2)∆x + · · · + f(x∗
n)∆x =

n∑
k=1

f(x∗
k)∆x.

We can use this to rewrite left, right, and midpoint Riemann sums:

Definition 4 (Left, right, and midpoint Riemann sums in sigma notation). Suppose f is
defined on an interval [a, b], which is divided into n subintervals of equal length ∆x. If x∗

k is
a point in the kth subinterval [xk−1, xk] for k = 1, 2, . . . , n, then the Riemann sum for f on

[a, b] is
n∑

k=1
f(x∗

k)∆x. Here are our three cases:

1. Left Riemann sum: x∗
k = a + (k − 1)∆x

2. Right Riemann sum: x∗
k = a + k∆x

3. Midpoint Riemann sum: x∗
k = a +

(
k − 1

2

)
∆x

Example 5 (§5.1, Ex. 52). Let f(x) = x2 + 1 on [−1, 1]. Letting n = 50, use sigma notation
to write the left, right, and midpoint Riemann sums.

2 Definite integrals

Briggs–Cochran–Gillett §5.2 pp. 353–367

2.1 Net area
So far, we have been considering functions f which are nonnegative on an interval [a, b]. Now
we will discover the geometric meaning of Riemann sums when f is negative on some or all
of [a, b].

Consider the function f(x) = 1 − x2 on the interval [1, 3] with n = 4. We compute a
midpoint Riemann sum. The length of each subinterval is ∆x = b−a

n
= 3−1

4 = 0.5. The grid
points are

x0 = 1, x1 = 1.5, x2 = 2, x3 = 2.5, x4 = 3.

We compute the midpoints of the subintervals:

x∗
1 = 1.25, x∗

2 = 1.75, x∗
3 = 2.25, x∗

4 = 2.75.

So the midpoint Riemann sum is

4∑
k=1

f(x∗
k)(0.5) = (f(1.25) + f(1.75) + f(2.25) + f(2.75))(0.5) = −6.625.

3



MA 123 (Calculus I) Lecture 32: November 17, 2021 Section A3

Note that all values of f(x∗
k) are negative, so the Riemann sum is also negative. Indeed,

the Riemann sum is an approximation to the negative of the area of the region bounded by
the curve and the x-axis.

More generally, if f is positive on only part of [a, b], we get positive contributions to the
Riemann sum where f is positive and negative contributions to the Riemann sum where f is
negative. In this case, Riemann sums approximate the area of the regions that lie above the
x-axis minus the area of the regions that lie below the x-axis. This difference between the
positive and negative contributions is called the net area. It can be positive, negative, or
zero.

Definition 6 (Net area). Consider the region R bounded by the graph of a continuous function
f and the x-axis between x = a and x = b. The net area of R is the sum of the areas of the
parts of R that lie above the x-axis minus the area of the parts of R that lie below the x-axis
on [a, b].

Geometrically:
The definite integral corresponds to the net area:
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We have
∫ b

a
f(x)dx = 12,

∫ c

b
f(x)dx = −10,

∫ d

a
f(x)dx = 10.

Below is a formal definition.

2.2 Definition of definite integral
Riemann sums for f on [a, b] approximate the net area of the region bounded by the graph
of f and the x-axis between x = a and x = b. How do we make these approximations exact?
If f is continuous on [a, b], it is reasonable to expect the Riemann sum approximations to
approach the exact value of the net area as the number of subintervals n → ∞ and as the
length of the subintervals ∆x → 0, giving net area = lim

n→∞

n∑
k=1

f(x∗
k)∆x. This brings us to the

notion of the definite integral:
Definition 7 (Definite integral). A function f defined on [a, b] is integrable on [a, b] if the

limit lim
∆→0

n∑
k=1

f(x∗
k)∆xk exists. This limit is the definite integral of f from a to b, which

we write ∫ b

a
f(x)dx = lim

∆→0

n∑
k=1

f(x∗
k)∆xk.

Example 8. Let us compute the definite integral
∫ 1

0
x2 dx using a right Riemann sum. We

will use a regular partition, so ∆xk = 1/n and xk = k/n. Since we are taking a right Riemann
sum, x∗

k = xk = k/n. So∫ 1

0
x2 dx = lim

∆→0

n∑
k=1

(x∗
k)2∆xk = lim

n→∞

n∑
k=1

x2
k · 1

n
= lim

n→∞

n∑
k=1

(
k

n

)2

· 1
n

= lim
n→∞

1
n3 ·

n∑
k=1

k2 = lim
n→∞

1
n3 · n(n + 1)(2n + 1)

6 = lim
n→∞

2n3 + 3n2 + n

6n3

= 2
6 = 1

3 .
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