Dr. Daniel Hast, drhast@bu.edu

Today's topics

1	Defi	nite integrals	1
	1.1	Evaluating definite integrals	1
	1.2	Properties of definite integrals	3

1 Definite integrals

Briggs-Cochran-Gillett §5.2 pp. 353–367

1.1 Evaluating definite integrals

Example 1 (§5.2 Ex. 59, 60, 61, 62). The figure shows the areas of regions bounded by the graph of f and the x-axis. Evaluate the following integrals.

 $1. \int_0^a f(x)dx$

 $3. \int_{a}^{c} f(x)dx$

 $2. \int_0^b f(x)dx$

4. $\int_0^c f(x)dx$

We can use familiar area formulas from geometry to evaluate certain definite integrals.

Example 2. Use geometry (not Riemann sums) to evaluate the definite integral

$$\int_{-1}^{3} \sqrt{4 - (x - 1)^2} dx.$$

Sketch a graph of the integrand, show the region in question, and interpret your result.

(Hint: Observe that the graph is the upper half of a circle of radius 2 centered on (1,0).)

We can also write down Riemann sums, take the limit as $n \to \infty$, and use the formulas for sums of powers of integers to compute certain definite integrals.

Example 3 (§5.2 Ex. 80, 82). Use the definition of the definite integral to evaluate the following definite integrals. Use right Riemann sums and results on sums of powers of integers.

1.
$$\int_{1}^{5} (1-x)dx$$

2.
$$\int_0^2 (x^2 - 1) dx$$

1.2 Properties of definite integrals

We first establish some criteria for a function to be integrable:

Theorem 4 (Integrable functions). If f is continuous on [a,b] or bounded on [a,b] with a finite number of discontinuities, then f is integrable on [a,b].

Here are some very important properties of definite integrals:

Let f and g be integrable functions on an interval that contains a, b, and p.

1.
$$\int_a^a f(x) dx = 0$$
 Definition

2.
$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$
 Definition

3.
$$\int_a^b (f(x) + g(x)) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$

4.
$$\int_a^b c f(x) dx = c \int_a^b f(x) dx$$
 For any constant c

5.
$$\int_{a}^{b} f(x) dx = \int_{a}^{p} f(x) dx + \int_{p}^{b} f(x) dx$$

6. The function |f| is integrable on [a, b] and $\int_a^b |f(x)| dx$ is the sum of the areas of the regions bounded by the graph of f and the x-axis on [a, b].

Example 5 (§5.2 Ex. 52). Suppose $\int_1^4 f(x)dx = 8$ and $\int_1^6 f(x)dx = 5$. Evaluate the following integrals.

1.
$$\int_{1}^{4} (-3f(x))dx$$

$$3. \int_6^4 12f(x)dx$$

$$2. \int_1^4 3f(x)dx$$

$$4. \int_4^6 3f(x)dx$$

Example 6 (§5.2 Ex. 54). Suppose $f(x) \ge 0$ on [0, 2], $f(x) \le 0$ on [2, 5], $\int_0^2 f(x) dx = 6$, and $\int_2^5 f(x) dx = -8$. Evaluate the following integrals.

$$1. \int_0^5 f(x)dx$$

3.
$$\int_{2}^{5} 4|f(x)|dx$$

2.
$$\int_0^5 |f(x)| dx$$

4.
$$\int_0^5 (f(x) + |f(x)|) dx$$