Dr. Daniel Hast,drhast@bu.edu

Today's topics

1 Net area functions and the Fundamental Theorem of Calculus 1
1.1 Net area functions . 1
1.2 The Fundamental Theorem of Calculus (FTC) 3

1 Net area functions and the Fundamental Theorem of Calculus

Briggs-Cochran-Gillett §5.3, pp. 367-381

1.1 Net area functions

The concept of net area is essential in understanding the relationship between derivatives and integrals. If instead of finding the net area of a continuous function over a fixed interval $[a, b]$, we allow the right boundary point to move and calculate the net area over the intervals $[a, x]$, the net area for the different values of f define a function:

Definition 1. Let f be a continuous function, for $t \geq a$. The net area function for \mathbf{f} with left endpoint a is

$$
N(x)=\int_{a}^{x} f(t) d t
$$

where $x \geq a$.
Remark 2. In the textbook, "net area" functions are called "area functions." We call them net area functions to make it clear that they calculate a net area and not an area!

Example 3 (§5.3, Ex. 14).

The graph of f is shown in the figure. Let $N(x)=\int_{0}^{x} f(t) d t$ and $F(x)=\int_{2}^{x} f(t) d t$ be two net area functions for f. Evaluate

1. $N(2)$
2. $F(5)$
3. $N(0)$
4. $F(8)$
5. $N(8)$
6. $N(5)$
7. $F(2)$

Example 4 (§5.3 Ex. 88, 90). For each of the functions below, consider the function f given by its graph.
(a) Estimate the zeros of the net area function $N(x)=\int_{0}^{x} f(t) d t$ for $0 \leq x \leq 10$.
(b) Estimate the points (if any) at which N has a local maximum or minimum.
(c) Sketch a graph of N for $0 \leq x \leq 10$ (without a scale on the y-axis).
1.

2.

1.2 The Fundamental Theorem of Calculus (FTC)

Let's look at the following example of different net area functions for a linear function:
Example 5 (§5.3, Ex. 17). Let $f(t)=t$ and consider the two net area functions $N(x)=$ $\int_{0}^{x} f(t) d t$ and $F(x)=\int_{2}^{x} f(t) d t$.
(a) Evaluate $N(2)$ and $N(4)$. Then use geometry to find an expression for $N(x), x \geq 0$.
(b) Evaluate $F(4)$ and $F(6)$. Then use geometry to find an expression for $F(x), x \geq 0$.
(c) Show that $N(x)-F(x)$ is a constant and that $N^{\prime}(x)=F^{\prime}(x)=f(x)$.

This example suggests that the net area function $N(x)$ is an antiderivative of f. In fact, this holds for more general functions:

Theorem 6 (Fundamental Theorem of Calculus (FTC)). Let f be a continuous function on $[a, b]$.

1. The net area function $N(x)=\int_{a}^{x} f(t) d t$ for $a \leq x \leq b$ is continuous on $[a, b]$ and differentiable on (a, b) and we have

$$
N^{\prime}(x)=\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

which means the net area function of f is an antiderivative of f on $[a, b]$.
2. If F is any antiderivative of f on $[a, b]$ then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)=\left.F(x)\right|_{a} ^{b}
$$

Part 2 of the FTC is a powerful method for evaluating definite integrals and it is a direct consequence of part 1 (see p. 366 in the textbook).

Hence we have a new method to compute definite integrals $\int_{a}^{b} f(x) d x$:

- find any antiderivative of f; call it F;
- compute $F(b)-F(a)$.

Remark 7. This method only works when we can find a formula for an antiderivative for f. This is only the case for a relatively small group of functions! The definition of integral is still the limit of Riemann sums and geometrically is given by the net area between the graph and the x -axis in the given interval. You should always remember this! (For example, functions like $\sin \left(x^{2}\right)$ and $e^{x^{2}}$ do not have antiderivatives given by closed-form formulas, but they are continuous and hence integrable in any closed interval.)

Example 8. Simplify the following expressions.
a) $\frac{d}{d x} \int_{x^{2}}^{10} \frac{1}{z^{2}+1} d z$
b) $\frac{d}{d x} \int_{-x}^{x} \sqrt{1+t^{2}} d t$
c) $\frac{d}{d x} \int_{e^{x}}^{e^{2 x}} \ln \left(t^{2}\right) d t$

Example 9. Evaluate the following integrals using the Fundamental Theorem of Calculus.

1. $\int_{0}^{2}\left(3 x^{2}+2 x\right) d x$
2. $\int_{4}^{9} \frac{2+\sqrt{t}}{t} d t$
3. $\int_{0}^{1 / 2} \frac{d x}{\sqrt{1-x^{2}}}$
4. $\int_{0}^{\pi}(1-\sin x) d x$
5. $\int_{\pi / 16}^{\pi / 8} 8 \csc ^{2} 4 x d x$
6. $\int_{0}^{\pi / 8} \cos 2 x d x$
