Dr. Daniel Hast,drhast@bu.edu

Today's topics

1 The Fundamental Theorem of Calculus 1

1 The Fundamental Theorem of Calculus

Briggs-Cochran-Gillett §5.3, pp. 367-381

Recall the notion of a net area function:
Definition 1. Let f be a continuous function, for $t \geq a$. The net area function for \mathbf{f} with left endpoint a is

$$
N(x)=\int_{a}^{x} f(t) d t
$$

where $x \geq a$.
Example 2. For each of the functions below, consider the function f given by its graph.
(a) Estimate the zeros of the net area function $N(x)=\int_{0}^{x} f(t) d t$ for $0 \leq x \leq 10$.
(b) Estimate the points (if any) at which N has a local maximum or minimum.
(c) Sketch a graph of N for $0 \leq x \leq 10$ (without a scale on the y-axis).
1.

2.

Theorem 3 (Fundamental Theorem of Calculus (FTC)). Let f be a continuous function on $[a, b]$.

1. The net area function $N(x)=\int_{a}^{x} f(t) d t$ for $a \leq x \leq b$ is continuous on $[a, b]$ and differentiable on (a, b) and we have

$$
N^{\prime}(x)=\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

which means the net area function of f is an antiderivative of f on $[a, b]$.
2. If F is any antiderivative of f on $[a, b]$ then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)=\left.F(x)\right|_{a} ^{b} .
$$

Part 2 of the FTC is a powerful method for evaluating definite integrals and it is a direct consequence of part 1 (see p. 366 in the textbook).

Hence we have a new method to compute definite integrals $\int_{a}^{b} f(x) d x$:

- find any antiderivative of f; call it F;
- compute $F(b)-F(a)$.

Remark 4. This method only works when we can find a formula for an antiderivative for f. This is only the case for a relatively small group of functions! The definition of integral is still the limit of Riemann sums and geometrically is given by the net area between the graph and the x-axis in the given interval. You should always remember this! (For example, functions like $\sin \left(x^{2}\right)$ and $e^{x^{2}}$ do not have antiderivatives given by closed-form formulas, but they are continuous and hence integrable in any closed interval.)

Example 5. Simplify the following expressions.
(a) $\frac{d}{d x} \int_{x^{2}}^{10} \frac{1}{z^{2}+1} d z$
(b) $\frac{d}{d x} \int_{-x}^{x} \sqrt{1+t^{2}} d t$
(c) $\frac{d}{d x} \int_{e^{x}}^{e^{2 x}} \ln \left(t^{2}\right) d t$

Solution. (a) Let F be any antiderivative of $\frac{1}{z^{2}+1}$. By FTC,

$$
\begin{aligned}
\frac{d}{d x} \int_{x^{2}}^{10} \frac{1}{z^{2}+1} d z & =\frac{d}{d x}\left(F(10)-F\left(x^{2}\right)\right)=\frac{d}{d x} F(10)-\frac{d}{d x} F\left(x^{2}\right) \\
& =0-F^{\prime}\left(x^{2}\right) \cdot 2 x=-\frac{1}{\left(x^{2}\right)^{2}+1} \cdot 2 x=\frac{-2 x}{x^{4}+1}
\end{aligned}
$$

(b) Let F be any antiderivative of $\sqrt{1+t^{2}}$. By FTC,

$$
\begin{aligned}
\frac{d}{d x} \int_{-x}^{x} \sqrt{1+t^{2}} d t & =\frac{d}{d x}(F(x)-F(-x))=F^{\prime}(x)-F^{\prime}(-x) \cdot(-1) \\
& =\sqrt{1+x^{2}}+\sqrt{1+(-x)^{2}}=2 \sqrt{1+x^{2}}
\end{aligned}
$$

(c) Let F be any antiderivative of $\ln \left(t^{2}\right)$. By FTC,

$$
\begin{aligned}
\frac{d}{d x} \int_{e^{x}}^{e^{2 x}} \ln \left(t^{2}\right) d t & =\frac{d}{d x}\left(F\left(e^{2 x}\right)-F\left(e^{x}\right)\right)=F^{\prime}\left(e^{2 x}\right) \cdot 2 e^{2 x}-F^{\prime}\left(e^{x}\right) \cdot e^{x} \\
& =2 e^{2 x} \ln \left(\left(e^{2 x}\right)^{2}\right)-e^{x} \ln \left(\left(e^{x}\right)^{2}\right)=8 x e^{2 x}-2 x e^{x}
\end{aligned}
$$

Example 6. Evaluate the following integrals using the Fundamental Theorem of Calculus.
(a) $\int_{4}^{9} \frac{2+\sqrt{t}}{t} d t=\int_{4}^{9}\left(2 t^{-1}+t^{-1 / 2}\right) d t=\left.\left(2 \ln |t|+2 t^{1 / 2}\right)\right|_{4} ^{9}=2 \ln (9)+2 \sqrt{9}-2 \ln (4)-2 \sqrt{4}$
(b) $\int_{0}^{1 / 2} \frac{d x}{\sqrt{1-x^{2}}}=\left.\sin ^{-1}(x)\right|_{0} ^{1 / 2}=\sin ^{-1}(1 / 2)-\sin ^{-1}(0)=\frac{\pi}{6}-0=\frac{\pi}{6}$
(c) $\int_{0}^{\pi}(1-\sin x) d x=x+\left.\cos x\right|_{0} ^{\pi}=\pi+\cos \pi-0-\cos 0=\pi-2$
(d) $\int_{\pi / 16}^{\pi / 8} 8 \csc ^{2}(4 x) d x=-\left.2 \cot (4 x)\right|_{\pi / 16} ^{\pi / 8}=-2 \cot \frac{\pi}{2}+2 \cot \frac{\pi}{4}=0+2=2$
(e) $\int_{0}^{\pi / 8} \cos (2 x) d x=\left.\frac{1}{2} \sin (2 x)\right|_{0} ^{\pi / 8}=\frac{1}{2} \sin \frac{\pi}{4}-\frac{1}{2} \sin 0=\frac{1}{2} \cdot \frac{\sqrt{2}}{2}-0=\frac{\sqrt{2}}{4}$

