Dr. Daniel Hast,drhast@bu.edu

Today's topics

1 Working with integrals 1
1.1 Even and odd functions . 1
1.2 Average value of a function . 3
1.3 Mean Value Theorem for integrals . 4

1 Working with integrals

Briggs-Cochran-Gillett §5.4, pp. 381-387

1.1 Even and odd functions

Definition 1 (Even and odd functions).

1. An even function f is a function that satisfies $f(-x)=f(x)$. This means its graph is symmetric about the y-axis. Ex: $\cos (x), x^{2}, x^{4}$.
2. An odd function f is a function that satisfies $f(-x)=-f(x)$. This means its graph is symmetric about the origin. Ex: $\sin (x), x, x^{3}$.

Theorem 2. Let a be a positive number and let f be an integrable function on the interval $[-a, a]$. Then

1. if f is even, $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$;
2. if f is odd, $\int_{-a}^{a} f(x) d x=0$.

Example 3 (§5.4, Ex. 20). Use symmetry to evaluate the following integral

$$
\int_{-1}^{1}(1-|x|) d x
$$

Solution. Observe that

$$
1-|-x|=1-|x|,
$$

so the integrand is an even function. Thus, by the above theorem,

$$
\int_{-1}^{1}(1-|x|) d x=2 \int_{0}^{1}(1-|x|) d x=2 \int_{0}^{1}(1-x) d x=\left.2\left(x-\frac{1}{2} x^{2}\right)\right|_{0} ^{1}=2\left(1-\frac{1}{2}-(0-0)\right)=1 .
$$

Example 4 (§5.4, Ex. 4). Suppose f is an odd function, $\int_{0}^{4} f(x) d x=3$, and $\int_{0}^{8} f(x) d x=9$. Evaluate

1. $\int_{-4}^{8} f(x) d x$
2. $\int_{-8}^{4} f(x) d x$

Solution. Using properties of integration and the above theorem, we have

$$
\int_{-4}^{8} f(x) d x=\int_{-4}^{0} f(x) d x+\int_{0}^{8} f(x) d x=-\int_{0}^{4} f(x) d x+\int_{0}^{8} f(x) d x=-3+9=6 .
$$

For the second part, we can use this computation and the fact that f is odd to compute

$$
\int_{-8}^{4} f(x) d x=-\int_{-4}^{8} f(x) d x=-6 .
$$

(Alternatively, we could do the second computation using the same method as the first.)

1.2 Average value of a function

Definition 5 (Average value of a function). The average value of an integrable function on the interval $[a, b]$ is

$$
\bar{f}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Example 6 (§5.4, Ex. 29). Find the average value of $f(x)=\cos x$ on $[-\pi / 2, \pi / 2]$. Draw a graph of the function and indicate the average value.

Solution. The average value of the function is

$$
\begin{aligned}
\frac{1}{\pi / 2-(-\pi / 2)} \int_{-\pi / 2}^{\pi / 2} \cos (x) d x & =\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} \cos (x) d x \\
& =\left.\frac{1}{\pi} \sin (x)\right|_{-\pi / 2} ^{\pi / 2} \\
& =\frac{1}{\pi}(\sin (\pi / 2)-\sin (-\pi / 2)) \\
& =\frac{1}{\pi}(1-(-1)) \\
& =\frac{2}{\pi}
\end{aligned}
$$

1.3 Mean Value Theorem for integrals

Theorem 7. Let f be continuous on the interval $[a, b]$. There exists a point c in (a, b) such that

$$
f(c)=\bar{f}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Example 8 (§5.4, Ex. 43). Find or approximate all points at which the function $f(x)=1-|x|$ equals its average value on the interval $[-1,1]$.

Solution. The average value of the function f on the interval $[-1,1]$ is

$$
\frac{1}{1-(-1)} \int_{-1}^{1}(1-|x|) d x=\frac{1}{2} \cdot 1=\frac{1}{2} .
$$

(We computed this integral earlier today.)
So we want to find solutions with $-1<c<1$ to the equation

$$
\frac{1}{2}=f(c)=1-|c|
$$

Thus we obtain $|c|=1 / 2$, so there are two solutions: $c=1 / 2$ and $c=-1 / 2$.

