Dr. Daniel Hast, drhast@bu.edu

Today's topics

1	Woi	king with integrals	1
	1.1	Even and odd functions	1
	1.2	Average value of a function	3
	1.3	Mean Value Theorem for integrals	4

1 Working with integrals

Briggs-Cochran-Gillett §5.4, pp. 381-387

1.1 Even and odd functions

Definition 1 (Even and odd functions).

- 1. An even function f is a function that satisfies f(-x) = f(x). This means its graph is symmetric about the y-axis. Ex: $\cos(x)$, x^2 , x^4 .
- 2. An odd function f is a function that satisfies f(-x) = -f(x). This means its graph is symmetric about the origin. Ex: $\sin(x)$, x, x^3 .

Theorem 2. Let a be a positive number and let f be an integrable function on the interval [-a, a]. Then

1. if f is even,
$$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$$
;
2. if f is odd, $\int_{-a}^{a} f(x)dx = 0$.

Example 3 (§5.4, Ex. 20). Use symmetry to evaluate the following integral

$$\int_{-1}^{1} (1 - |x|) dx.$$

Solution. Observe that

$$1 - |-x| = 1 - |x|,$$

so the integrand is an even function. Thus, by the above theorem,

$$\int_{-1}^{1} (1-|x|)dx = 2\int_{0}^{1} (1-|x|)dx = 2\int_{0}^{1} (1-x)dx = 2\left(x-\frac{1}{2}x^{2}\right)\Big|_{0}^{1} = 2\left(1-\frac{1}{2}-(0-0)\right) = 1.$$

Example 4 (§5.4, Ex. 4). Suppose f is an odd function, $\int_0^4 f(x)dx = 3$, and $\int_0^8 f(x)dx = 9$. Evaluate

- 1. $\int_{-4}^{8} f(x) dx$
- 2. $\int_{-8}^{4} f(x) dx$

Solution. Using properties of integration and the above theorem, we have

$$\int_{-4}^{8} f(x)dx = \int_{-4}^{0} f(x)dx + \int_{0}^{8} f(x)dx = -\int_{0}^{4} f(x)dx + \int_{0}^{8} f(x)dx = -3 + 9 = 6$$

For the second part, we can use this computation and the fact that f is odd to compute

$$\int_{-8}^{4} f(x)dx = -\int_{-4}^{8} f(x)dx = -6.$$

(Alternatively, we could do the second computation using the same method as the first.)

1.2 Average value of a function

Definition 5 (Average value of a function). The average value of an integrable function on the interval [a, b] is

$$\bar{f} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Example 6 (§5.4, Ex. 29). Find the average value of $f(x) = \cos x$ on $[-\pi/2, \pi/2]$. Draw a graph of the function and indicate the average value.

Solution. The average value of the function is

$$\frac{1}{\pi/2 - (-\pi/2)} \int_{-\pi/2}^{\pi/2} \cos(x) dx = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \cos(x) dx$$
$$= \frac{1}{\pi} \sin(x) \Big|_{-\pi/2}^{\pi/2}$$
$$= \frac{1}{\pi} (\sin(\pi/2) - \sin(-\pi/2))$$
$$= \frac{1}{\pi} (1 - (-1))$$
$$= \frac{2}{\pi}.$$

1.3 Mean Value Theorem for integrals

Theorem 7. Let f be continuous on the interval [a, b]. There exists a point c in (a, b) such that

$$f(c) = \bar{f} = \frac{1}{b-a} \int_a^b f(x) dx$$

Example 8 (§5.4, Ex. 43). Find or approximate all points at which the function f(x) = 1 - |x| equals its average value on the interval [-1, 1].

Solution. The average value of the function f on the interval [-1, 1] is

$$\frac{1}{1-(-1)}\int_{-1}^{1}(1-|x|)dx = \frac{1}{2}\cdot 1 = \frac{1}{2}.$$

(We computed this integral earlier today.)

So we want to find solutions with -1 < c < 1 to the equation

$$\frac{1}{2} = f(c) = 1 - |c|.$$

Thus we obtain |c| = 1/2, so there are two solutions: c = 1/2 and c = -1/2.