
4 Geometrical imagery

4.1 The real axis

A point is punctated by a pick and a pang of the pencil. This is how it is grossly made

visible to the eye. To distinguish between points when referring to them they are distinctly

named and labeled, usually by a capital Roman letter. Two points determine one line, and

two intersecting lines have but one point in common.

Let O be one point of a line. The line is densely packed with points endlessly extending

to the left and to the right of this origin point O. Similarly, our system of real numbers is

also densely and endlessly packed downward and upward of zero.

It is a simple, yet one of the most fruitful ideas of mathematics, in that it convenes

analysis and geometry, relating numbers to graphs: to locate any point P of a line by its

distance to the left or to the right of origin point O.

The line with its myriad points is drawn by a deft uninterrupted draft of the pen. Then

origin point 0 is marked on it. Another point at a unit distance to the right of 0 is marked

1. With two labeled points on the line, symmetry is broken, we know to tell on it left from

right and the line becomes an axis. Positive real number r scores a point at distance r to

the right of 0, and negative -r to the left of 0, as in Fig.1a. By an assumption on the nature

of these things there corresponds to every real number one point on the line, and conversely,
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every point on the line is reached by some real number.

The preeminence of this modest plot is that it permits us to visualize relationships

between real numbers. Magnitude turns thereby into distance—big and small, many and

few become long and short— and sign turns thereby into sense—being to the right or to the

left of the origin.

(a) Fig. 4.1 (b)

The choice of a right positive direction is an arbitrary but universally accepted convention

for the real axis. Restricting ourselves to one dimension, a left axis can be made right through

reflection in the origin only.

Consider now a translation of the real axis relative to itself (see Fig. 1b) in which all

points of the axis move in unison as though on a sliding rigid ruler. To graphically represent

such a translation, every point of the axis is associated with an arrow or directed segment to

show the magnitude and direction (sense) of the movement. Since the directed segment is

not tied to any specific point it is termed free.

Obviously, a right axis cannot be made left by such sliding alone, but rotation in the

plane of the page will do it.

4.2 Translation of space

More interesting things happen in the plane than on a line as greater freedom fos-

ters greater geometrical possibilities. Analytic geometry is born with the seminal idea of

Descartes to unfold the plane with a coordinate system consisting of two perpendicular axes

intersecting at their common origin. For distinction one axis is labeled x1 and the other

x2. An ordered pair of real numbers a and b is geometrically represented as point P shown

in Fig. 2a. Different number pairs appear as distinct points, and the string of close points

P (x1, x2) generated from an analytic rule that relates coordinates x1 and x2 graphs a curve

in the plane for us to contemplate.
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There are other interesting and occasionally even more appropriate ways to numerically

locate a point in the plane than by Cartesian coordinates, but we shall not dwell on these

here.

(a) Fig. 4.2 (b)

We do not care to distinguish between a right and a left axis in the plane as any two

axes can be made to coincide by rotation and translation, but with the system of two axes

there are two distinctions. Cartesian coordinate system of Fig. 2b is different from that in

Fig. 2a in that the two cannot be made to coincide by planar rotation and translation alone.

A reflection is also needed.

Directed segment ~AB drawn in Fig. 2a shows a translation of the whole x1x2 plane

relative to itself displacing a distance equal to the length of segment AB, parallel to it, and

in the arrowed sense. All points of the plane are identical in this respect, directed segment

~AB is free, and can be put anywhere in the plane. We refer to the translation ~AB by a

single letter, say a, write a = ~AB, and see it as a result of two consecutive sliding a1 and a2

performed in any order, parallel to the x1 axis and then parallel to the x2 axis. A positive

a1 means movement to the right and a negative a1 movement to the left, and the same for

a2. The two perpendicular translations that affect ~AB are its components, and are ordered

columnwise in a = [a1 a2]T . To distinguish between the components of a translation and the

coordinates of point P we write the latter as P (a1, a2).

Some prefer to call translations [a1 0]T , [0 a2]T the components of translation a, rather
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than a1, a2.

The three-dimensional Cartesian coordinate system consists of three perpendicular axes

labeled x1, x2, x3 intersecting at a common origin 0. An ordered triplet P (a, b, c) is marked

as point P in space in the manner shown in Fig. 3a.

Fig. 4.3: top (a)

(b) (c) (d)

The coordinate system of Fig. 3a is a right-hand system. Reversal of one axis turns it

into a left-hand system as in Fig. 3b. A left-hand system cannot be made to coincide with

a right-hand system by space rotation and translation alone; a reflection is also needed.

Reversal of two axes as in Fig. 3c leaves the system in its kind, while reversal of all axes

produces a left-hand system as in Fig. 3d. We shall use the right-hand coordinate system

exclusively.

Free directed segment ~AB graphically represents the translation of the whole space rela-
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tive to itself, a translation that we consider the result of three consecutive sliding a1, a2, a3,

performed in any order along x1, x2, x3, respectively. Again we designate translation ~AB by

a single letter and write a = [a1 a2 a3]T = ~AB to analytically describe the translation in

terms of its three perpendicular movements.

Translation is the most plausible geometrical explanation as to why a directed segment

is free. But once we accept this interpretation, we need not be bound by the representation

and may consider the directed segment as a geometrical (even ideal physical) entity in its

own right. Directed segments that have the same length, the same inclination relative to the

coordinate axes, and the same sense represent the same translations and are by themselves

the same or equal. In this sense the ordered list a = [a1 a2 a3]T uniquely determines directed

segment ~AB, wherever point A is. Conversely, given (geometrically) directed segment ~AB

and Cartesian coordinate system 0x1x2x3, a = [a1 a2 a3]T is unequivocally measured and

written for it. An equivalence is thus established between the ordered list, or vector, a =

[a1 a2 a3]T and the free directed segment ~AB.

Exercises

4.2.1. A Cartesian coordinate system with two orthogonal reference axes is impractical in

large scale earth measurements and navigation. Explain how point P of the plane can be

located relative to the two fixed points A and B. Also, how point P of space can be located

relative to the three fixed points A, B and C.

4.3 Vector geometry

In the previous section we considered the equivalence of an ordered triplet of real numbers

and a free directed segment. We formalize the conclusion in

Theorem 4.1. Vectors a = [a1 a2 a3]T and b = [b1 b2 b3]T represent equal directed

segments if and only if a = b, if and only if a1 = b1, a2 = b2, a3 = b3.

In the previous chapters we upheld the convention of writing vectors columnwise, attest-

ing to their origin in systems of linear equations where it is natural to write them in this

manner. Geometers prefer to write vectors in the typographically more sensible row form
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a = (a1, a2, a3) and are indifferent to transposition. We shall, however, remain faithful to

our accepted matrix usage and consistently add the superscript T .

Vector geometry is created in discovering the geometrical meaning of the basic vector

operations of:

1. Multiplication of vector a by scalar α, b = αa.

2. Addition of vectors a and b into vector c, c = a+ b.

3. Multiplication of vector a by matrix A, b = Aa.

4. The scalar product of a and b, α = aT b = bTa.

The zero vector o = [0 0 0]T represents immobility; it is directed segment ~AA of zero length

but no direction to speak of.

For a geometrical interpretation of

b = αa = [αa1 αa2 αa3]
T (4.1)

refer to Fig. 4. Translation a = ~AB of space consists of translation a0 = [a1 a2 0]T in the

x1x2 plane followed by sliding a3 along x3. Translation b = ~BC consists of translation

b0 = [αa1 αa2 0]T in the x1x2 plane followed by sliding αa3 along x3. Triangles AB
00
B0 and

B0C
00
C 0 of Fig. 4a are similar, and directed segments a0 = ~AB0 and b0 = ~B0C 0 are parallel,

or colinear. Points A,B0, C 0 are on one line, or colinear, and they are so only if b0 = αa0.

(a) Fig. 4.4 (b)

Plane º of Fig. 4b contains points A,B0, C 0 and the x3 axis. Directed segments a and b

are on º. Triangles AB0B and BC
000
C are similar, and a = ~AB and b = ~BC are parallel, or
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colinear. Points A,B,C are on one line, or colinear, and they are so only if b = αa. Directed

segments a and αa have the same inclination relative to the coordinate axes but are not

necessarily of the same length and sense.

When α = −1, (−1) a is shortened to −a. If a = ~AB then −a = ~BA. Multiplication by

a negative α reverses the sense of the corresponding directed segment as shown schematically

in Fig. 4.5.

Fig. 4.5

Equivalence or isomorphism between different branches of mathematics is always a happy

discovery. It allows us to go back and forth between the fields whenever circumstances

warrant it. We started with vectors as ordered lists of numbers and found a geometrical

image for the triplet. Now we carry a geometrical physical concept back to numbers. Length

is a purely geometrical concept, but we introduce the

Definition. Magnitude kak of vector a = [a1 a2 a3]T is the length of the directed segment it

represents. Vector u is said to be a unit vector if kuk = 1.

Inasmuch as the components of a are perpendicular translations

kak =
q
a2
1 + a2

2 + a2
3 (4.2)

and

kαak =
q
α2a2

1 + α2a2
2 + α2a2

3 =
q
α2(a2

1 + a2
2 + a2

3) = |α|kak. (4.3)
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Two distinct points A and B fix a line in space, but vector a = ~AB determines only

its inclination: it fixes the line up to an arbitrary translation of all its points. We shall say

that vector a generates the line. For any choice of α, vector αa = α ~AB is parallel to the

line through A and B. The totality of vectors formed by αa with a given a and an arbitrary

α, namely all vectors parallel to the line through A and B, constitutes a one-dimensional

vector space spanned by a. Vector b = αa, that is parallel to the line through A and B, is

said to be an element of this vector space.

Vector summation

a+ b = [a1 + b1 a2 + b2 a3 + b3]
T (4.4)

is geometrically interpreted as the compound translation of a followed by b, or b followed by

a. Figure 6a shows the projection of a and b on the x1x2 plane and the resultant translation

a0 + b0 = [a1 a2 0]T + [b1 b2 0]T = [a1 + b1 a2 + b2 0]T . (4.5)

(a) Fig. 4.6 (b)

Plane º of Fig. 6b contains points A,B0, B and the x3 axis. Vectors a
00

and b
00

are the

projections of a and b, respectively, on º. Translation a + b is completed with the sliding

a3 + b3 along x3, and a, b, a+ b close a triangle in space. Writing a+ b = −c we are ready

to announce

Theorem 4.2. The vector sum of a, b, c is zero if and only if the corresponding directed

segments close a triangle.
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Recall that vectors a, b, c are free and they close a triangle after translation. See Fig. 7.

For four vectors, a+ b+ c+ d = o if and only if the directed segments close a skew (not

necessarily planar) quadrilateral in space. It is easily shown by adding first a and b, and

then forming (a+ b) + c+ d = o.

Fig. 4.7

We collapse the triangle and return to parallel vectors.

Theorem 4.3. Two vectors a = [a1 a2 a3]T and b = [b1 b2 b3]T are colinear; they

represent parallel directed segments, if and only if two scalars α,β, not both zero, exist so

that

αa+ βb = o. (4.6)

Proof. It is a symmetric statement of the geometrical interpretation of vector by scalar

multiplication to include the border case of zero vectors. If in eq. (4.6) b = o and a =/ o, then

α = 0 β =/ 0 satisfy the equation and a and b are colinear. The zero vector is taken thereby

to have an arbitrary direction and is colinear with any vector. Writing b = αa would have

excluded the colinearity of a = o, b =/ o; while a = βb would have excluded the colinearity

of b = o, a =/ o. End of proof.

Two vectors in the same one-dimensional vector space are colinear. Theorem 4.3 states

that the two vectors are colinear and stand for parallel directed segments if and only if

homogeneous system (4.6) of three equations in two unknowns has a nontrivial solution.

If the only solution to αa + βb = o is the trivial α = β = 0, then the directed segments

represented by a and b are not parallel. It is a useful formality to consider immovability as

being parallel to any translation.
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Three noncolinear points, A,B,C, that is, three points not on one line, uniquely fix a

plane in space. But the two noncolinear vectors a = ~AB, b = ~AC, are free and fix the

plane only up to an arbitrary space translation of all its points. We shall say that the two

noncolinear vectors a and b generate the plane. Conversely, any two vectors are coplanar. To

be additionally colinear the two vectors must satisfy the restriction of Theorem 4.3. Notice

that the noncolinearity of a and b implies that they are both nonzero.

Four points A,B,C,D are coplanar only conditionally and so are the three directed

segments a = ~AB, b = ~AC, c = ~AD.

Fig. 4.8

Theorem 4.4. Three vectors a = [a1 a2 a3]T , b = [b1 b2 b3]T , c = [c1 c2 c3]T are coplanar

if and only if three scalars α,β, ∞ not all zero, exist so that

αa+ βb+ ∞c = o. (4.7)

Proof. Refer to Fig. 8 and assume that no two of the vectors are colinear. If a, b, c are

coplanar, then three coplanar nonconcurrent lines drawn parallel to them enclose a triangle

and, non-unique, α,β, ∞ are found so that αa+ βb+ ∞c = o.

If a, b, c are not coplanar, then αa,βb, ∞c cannot be made to close a space triangle with

any α,β, ∞.

If two vectors, say a and b, are colinear we set in eq. (4.7) ∞ = 0 and are assured by

Theorem 4.3 that α and β are not both zero. End of proof.
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Vectors a, b, o are coplanar, but three noncoplanar vectors are all nonzero.

The condition of coplanarity for a, b, c, namely that the homogeneous vector equation

αa+βb+∞c = o have a nontrivial solution is elegantly expressed in determinant notation as

ØØØØØØØ

a1 b1 c1
a2 b2 c2
a3 b3 c3

ØØØØØØØ
= 0. (4.8)

Corollary 4.5. If vectors a, b, c are coplanar, and a, b noncolinear, then unique scalars

α0 and β0 exist so that

c = α0a+ β0b. (4.9)

In other words vector c can be written as a unique linear combination of a and b.

Proof. Since a, b, c are coplanar there exists a nontrivial solution to αa + βb + ∞c = o.

Since a, b are noncolinear ∞ is nonzero, for otherwise αa + βb = o with nonzero α or β

contradicts the noncolinearity assumption on the vector pair a, b. Division by ∞ and some

rewriting leads to

c = −α

∞
a− β

∞
b (4.10)

which with α0 = −α/∞, β0 = −β/∞ produces eq. (4.9).

Linear combination (4.9) is unique. Suppose that there are two such combinations c =

α0a+ β0b and c = α
00
a+ β

00
b. Subtraction yields

(α0 − α
00
)a+ (β0 − β

00
)b = o (4.11)

and α0 = α
00

and β0 = β
00

by virtue of a and b being noncolinear. End of proof.

Two noncolinear vectors generate a plane in space. The totality of vectors in this plane

constitutes a two-dimensional vector space spanned by a and b. Vector c that has the

property of being in (or rather parallel to) the plane is said to be an element of the vector

space and can be uniquely expressed as c = αa + βb. A vector space is designated by one

single capital Roman letter, say V , and to state concisely the fact that c is in V we write

c ∈ V . Any nonzero vector in the plane, i.e. in V , spans a one-dimensional vector space, say
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Fig. 4.9

W . Vector space W is a subspace of V since if a ∈ W then also a ∈ V . The converse is of

course not true.

Corollary 4.6. If a, b, c are three noncoplanar vectors, and d a given vector, then unique

scalars α,β, ∞ exist so that

d = αa+ βb+ ∞c. (4.12)

Proof. Vectors a, b, c are all nonzero. If d is colinear with one of the three given vectors,

or if it is coplanar with two of them, then we revert to colinearity and coplanarity discussed

earlier. We assume therefore that d is noncoplanar with any pair of the three vectors a, b, c.

With reference to Fig. 9 let º be the plane generated by a and b, and º0 the plane generated

by c and d. One must use one’s imagination when looking at Fig. 9 since it depicts a three

dimensional situation projected on a plane —this page. By the assumption that the four

vectors a, b, c, d are not coplanar, planes º and º0 are not parallel and intersect at line ∏.

Line ∏ is at once in º and º0. Let v be a vector parallel to ∏. According to Corollary 4.5

there are unique scalars α0 and β0 such that v = α0a+β0b, and also unique α
00

and β
00

so that

d = α
00
c+β

00
v. Hence d = α

00
c+β

00
(α0a+β0b) = α

00
c+β

00
α0a+β

00
β0b and unique expression

(4.12) is recovered. End of proof.

Three noncoplanar vectors span the three-dimensional space we stand in. This vector

space — our whole wide, wonderful and mysterious universe — is designated by R3. All

vectors with three real components are in R3. All vectors parallel to a plane are in a two-
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dimensional subspace of R3, while all vectors parallel to a line are in a one-dimensional

subspace of R3.

All vectors on two intersecting planes º and º0 constitute two different two-dimensional

vector subspaces V and V 0 of R3. All vectors parallel to intersection line ∏ constitute a

one-dimensional subspace L of R3 which is the intersection of spaces V and V 0, L = V ∩V 0.

On the other hand, the union of all vectors in V and V 0 is not vector space R3. In fact

the union is not a vector space at all.

Speaking of translations, eq. (4.12) implies that arbitrary translation d of R3 can be

uniquely decomposed into a sequence of three slides parallel to the three noncoplanar vectors

a, b, c. The magnitudes of these three partial translations are |α|kak, |β|kbk, |∞|kck. Factors

α,β, ∞ are the components of the translation along span vectors a, b, c, respectively. Some

prefer to call α,β, ∞ the components of the translation only if kak = kbk = kck = 1. Others

prefer to call αa,βb, ∞c the components of d.

We are now in the position to produce a geometrical interpretation of Ax, and more

interestingly the solution of Ax = f ,



A11 A12 A13

A21 A22 A23

A31 A32 A33








x1

x2

x3



 =




f1

f2

f3



 . (4.13)

Let a1, a2, a3 denote the three columns of A in eq. (4.11). Then

Ax = x1




A11

A21

A31



+ x2




A12

A22

A32



+ x3




A13

A23

A33



 = f (4.14)

is abbreviated as

Ax = x1a1 + x2a2 + x3a3 = f. (4.15)

Left-hand side vector x1a1 + x2a2 + x3a3 of eq.(4.15) means translation of space by

three consecutive sliding parallel to a1, a2, , a3 with components x1, x2, x3. Solution of the

vector equation amounts then to finding the three factors x1, x2, x3 of the translation so that

x1a1 + x2a2 + x3a3 adds up to given translation f .

If a1, a2, a3 in eq. (4.15) are noncoplanar, then there is a unique solution to translation

problem (4.15) for any f . If a1, a2, a3 are coplanar then there are solutions to the translation
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problem if and only if f is coplanar with them. The non-uniqueness of the solution, when it

exists, stems from the redundancy in the components. If a1, a2, a3 are coplanar or colinear,

and f is not coplanar with them or, respectively, not colinear with them, then translation

problem (4.15) has no solution.

In the language of vector spaces we describe the solution of Ax = f this way: Vectors

a1, a2, a3 —the three columns of A — span subspace V of R3, possibly even R3 itself. If

f ∈ V then Ax = f is soluble but if f is not an element of V , then Ax = f is insoluble.

The rank of matrix A is the dimension of the space spanned by its columns. Matrix

A = A(3 × 3) is nonsingular if and only if its columns span R3 —if and only if they are

noncoplanar, for if the columns of A are coplanar, then vector x = [x1 x2 x3]T =/ o is found

so that Ax = x1a1 + x2a2 + x3a3 = o. On the other hand, if they are not coplanar, then

Ax =/ o whenever x =/ o.

It remains for us to do a geometrical interpretation of the scalar product, which we

accomplish in the next section.

Exercises

4.3.1. Find α so that the length of a = α[1 − 2 1]T + [1 0 − 1]T is
√

8.

4.3.2. If points A,B,C are colinear, and point M is the midpoint of segment AB, show that

~CM = 1
2( ~CA+ ~CB).

4.3.3. Are the vectors a = [1 − 2 1]T , b = [1 0 − 1]T and c = [1 1 1]T coplanar? If yes

produce α,β, ∞, not all zero, so that αa+ βb+ ∞c = o.

4.3.4. Are the vectors a = [1 − 1 2]T , b = [−2 1 − 3]T and c = [4 − 1 5]T coplanar? If yes

produce α,β, ∞, not all zero, so that αa+ βb+ ∞c = o.

4.3.5. Find α so that a = [1 − 1 − 1]T , b = [1 1 2]T , c = [α 1 α]T are coplanar.

4.5.6. Is vector c = [−1 −4 7]T an element of the vector space spanned by the two noncolinear

vectors a = [−2 1 − 1]T and b = [1 − 2 3]T ? If yes find components α and β of c so that

c = αa+ βb.
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4.4 The scalar dot product

What is written in the coherent matrix notation as aT b = bTa is also often more simply

written in geometrical circumstances as a ·b = b ·a, and is accordingly termed the dot product

of a and b. We know it to be a very basic binary operation in linear algebra and it has an

interesting and important geometrical interpretation.

In terms of their components,

aT b = bTa = a1b1 + a2b2 + a3b3 (4.16)

so that

kak2 = aTa (4.17)

and kak = 0 only if a = o.

Let a and b be nonzero vectors, drawn in Fig. 10 with angle (measure) φ between their

positive directions.Factor α is chosen so that directed segment αa is perpendicular to b−αa.

In Fig. 10a α ≥ 0, while in Fig. 10b α ≤ 0. Evidently α = 0 only if directed segments a and

b are mutually perpendicular.

(a) Fig. 4.10 (b)

Because cos(180− φ) = − cosφ and by the definition of the cosine

αkak = kbk cosφ. (4.18)

Pythagoras assures us that

α2aTa+ (b− αa)T (b− αa) = bT b (4.19)
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and

α(αaTa− aT b) = 0. (4.20)

If α =/ 0, then

aT b = αaTa (4.21)

becoming, with α from eq. (4.18)

aT b = kakkbk cosφ (4.22)

which is the geometrical interpretation of aT b. Equations (4.21) and (4.22) imply that when

α =/ 0, when the directed segments are not perpendicular, aT b =/ 0.

Fig. 4.11

The case α = 0, or a and b orthogonal, is resolved with reference to Fig. 11. From

Pythagoras we have that

aTa+ bT b = (b− a)T (b− a) = bT b+ aTa− 2aT b (4.23)

and if α = 0, then aT b = 0. The outcome of all this is

Theorem 4.7. Directed segments a and b are perpendicular or orthogonal if and only if

aT b = 0.
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Being done with this, we write

(a− b)T (a− b) = aTa+ bT b− 2aT b (4.24)

and with eq. (4.22) elicit from it the expression

ka− bk2 = kak2 + kbk2 − 2kak kbk cosφ (4.25)

which is the generalization of Pythagoras’ theorem known in trigonometry as the law of

cosines.

The Cauchy-Schwarz inequality

|aT b| ≤ kak kbk (4.26)

also ensues immediately from eq. (4.20). Since the inequality is obtained by setting 1 for

| cosφ|, it follows that equality holds if and only if φ = 0o or φ = 180o; that is when a and b

are colinear.

Let V and W be two vector subspaces of R3. If for every v ∈ V and every w ∈

W, vTw = 0, then the two subspaces are orthogonal. The vectors parallel to two orthogonal

lines constitute such subspaces, as do the vectors parallel to a plane and parallel to a line

that is orthogonal to the plane. Vectors parallel to two orthogonal planes do not constitute

two orthogonal subspaces of R3.

Exercises

4.4.1. Write all vectors that are orthogonal to a = [1 − 1]T .

4.4.2. Write all unit vectors orthogonal to a = [1 − 1]T .

4.4.3. Write all vectors orthogonal to both a = [1 1]T and b = [1 2].

4.4.4. Write all vectors orthogonal to a = [1 − 1 2]T .

4.4.5. Write all vectors orthogonal to both a = [1 0 1]T and b = [1 − 2 1]T .

4.4.6. Compute the angle between vectors a = [1 0 1]T and b = [−1 1 − 1]T .
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4.4.7. Write all vectors x in the plane of a = [1 1 1]T , b = [1 2 − 1]T that are orthogonal to

c = [−1 3 1]T .

4.4.8. Write vectors x in the plane of a = [1 − 1 2]T and b = [−2 0 1]T that make 60o with

c = [1 − 2 2]T . What are the conditions for the existence of such vectors?

4.4.9. Let noncoplanar vectors a, b, c be such that aT b = 0. Find in the plane of a, b vector

x that makes minimum angle with c. Show that the plane generated by the optimal x and

c is orthogonal to the plane of a, b. What vector x makes widest angle with c?

4.5 Application to plane and solid geometry

One cannot fully appreciate the ingenuity of the calculus of directed segments until one

has witnessed the astonishing spectacle of algebra solving geometrical problems. Vectors

are used in this section to prove an assortment of plane and solid geometry theorems on

incidence of points and lines, colinearity, coplanarity, proportions, and orthogonality.

Let A,M,B be three points fixed in a Cartesian coordinate system with origin O, as in

Fig. 12. Directed segment ~OA is called the position vector of point A, and we shall denote it

Fig. 4.12

by a. Correspondingly, m = ~OM and b = ~OB. The convenience of this notation lies in the

fact that the components of vector a, and the coordinates of point A are the same numbers.

In this notation ~AB = b− a.

Theorem 4.8. If points A,B are distinct, then a necessary and sufficient condition that

point M be colinear with them is the existence of scalar ∏ so that

m = (1− ∏)a+ ∏b. (4.27)
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Proof. Points A,M,B are colinear if and only if ∏ exists so that ~AM = ∏ ~AB. In terms

of position vectors a,m, b

m− a = ∏(b− a) (4.28)

and eq. (4.27) results. End of proof.

Equation (4.27) is the parametric equation of the line fixed by A,B in space.

The variation of parameter ∏ along the line through points A and B is shown in Fig. 13.

Fig. 4.13

Equation (4.27) may be written symmetrically as

m = αa+ βb α + β = 1 (4.29)

in which case α,β are called the barycentric coordinates of M . Or even

αa+ βb+ µm = o α + β + µ = 0 (4.30)

with at least one nonzero among α,β, µ. For equation (4.30) the restriction that points are

distinct may be removed. For example, if a = b, then µ = 0, α+ β = 0, satisfy the equation

for any α.

Theorem 4.9. If in triangle ABC, P and Q are midpoints, then PQkAB and PQ =

1
2AB.

Proof. Refer to Fig. 14. The triangle can be considered given by vertices or by edges.

(a) Fig. 4.14 (b)
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We shall first take it given by edges and put directed segments along the sides as in Fig. 14b.

Vector equations can now be written for closed polygons. Around the larger triangle a +

2b + 2c = o, and around the smaller b + c + x = o. Elimination of b + c between the two

leaves us with a = 2x, proving that vectors a and x are parallel and that kxk = 1
2kak. End

of proof.

Components did not enter in the above proof for an intrinsic property of the triangle,

hence the remarkable compactness of the algebra.

Consideration of the triangle given by vertices suggests a position vector proof to the

theorem that is short and elegant. Recall that if O is an arbitrary origin in the plane, then

p = ~OP and q = ~OQ. Since P and Q are midpoints we have from eq. (4.27) that

p =
1

2
(a+ c), q =

1

2
(b+ c) (4.31)

and upon elimination of c obtain

q − p =
1

2
(b− a) (4.32)

meaning that ~PQ = 1
2
~AB, and the proof is done.

Once the algebraic statement of the geometric problem is written down the proof is

mechanically produced, an advantage of algebraic methods over purely geometric.

Theorem 4.10. If in triangle ABC, P,Q,R are midpoints then the three medians PC,

QA,RB are concurrent and intersect at a ratio 1/2.

Proof. Refer to Fig. 15. First we consider the triangle given by edges and write for:

triangle ABC 2a+ 2b+ 2c = o,

triangle QCG b− αp− q = o,

triangle APG a+ p+ βq = o,

triangle CAG 2c− βq + αp = o.

(4.33)

Elimination of a, b, c from among the above four vector equations results in

(−2 + α)p+ (2− β)q = o (4.34)

20



(a) Fig. 4.15 (b)

and since p and q are noncolinear the above equation holds only if α = 2 and β = 2. This

is a typical intersection ratio for medians and the third must pass through the intersection

point of any two. End of proof.

A simple proof to Theorem 4.10 is given using position vectors by showing that all

medians pass through G positioned by

g =
1

3
(a+ b+ c) (4.35)

where a, b, c are the position vectors of vertices A,B,C, respectively.

Indeed, since P is the midpoint between A and B

p =
1

2
(a+ b) (4.36)

and

g =
2

3
p+

1

3
c. (4.37)

implying, according to Theorem 4.8, that PGC are colinear, and that G divides segment

PC at a 1/2 ratio. It is true for any median, and the proof is done.

Point G given by eq. (4.35) is called the center of area of triangle ABC. If the vertices

of the triangle are considered as equal point masses, then point G is also the center of mass

of the system.

A generalization of Theorem 4.10 (see Fig. 16, where all lines are straight) is given next,

ab initio, in its algebraic position vector formulation.

Theorem (Ceva) 4.11. If in the plane of triangle ABC point G is given by

g = ≥1a+ ≥2b+ ≥3c ≥1 + ≥2 + ≥3 = 1 (4.38)
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Fig. 4.16

≥i =/ 0, ≥i =/ 1, and points P,Q,R are such that

p = ∏1b+ ∏01c ∏1 + ∏01 = 1

q = ∏2c+ ∏02a ∏2 + ∏02 = 1 (4.39)

r = ∏3a+ ∏03b ∏3 + ∏03 = 1,

then

∏1 =
≥2

≥2 + ≥3
, ∏2 =

≥3
≥3 + ≥1

, ∏3 =
≥1

≥1 + ≥2

∏01 =
≥3

≥2 + ≥3
, ∏02 =

≥1
≥3 + ≥1

, ∏03 =
≥2

≥1 + ≥2

(4.40)

and
∏1

∏01

∏2

∏02

∏3

∏03
= 1. (4.41)

Proof. To eq. (4.39) we add

p = α1a+ α01g α1 + α01 = 1

q = α2b+ α02g α2 + α02 = 1

r = α3c+ α03g α3 + α03 = 1

(4.42)
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and eliminate g from them with the aid of eq. (3.38). Equating first p of eq. (4.39) with that

of eq. (4.42) results in

(α1 + α01≥1)a+ (α01≥2 − ∏1)b+ (α01≥3 − ∏01)c = o (4.43)

and since A,B,C are distinct and noncolinear eq. (4.43) dictates that

α1 + α01≥1 = 0, α01≥2 − ∏1 = 0, α01≥3 − ∏01 = 0. (4.44)

From the first of eqs. (4.44) we have, with α1 + α01 = 1, that α01 = 1/(1 − ≥1) or α01 =

1/(≥2 + ≥3). The two other equations yield the expressions for ∏1 and ∏01. In exactly the

same way we obtain the expressions for ∏2,∏02 and ∏3,∏03. End of proof.

Theorem 4.12. If points A,B,C are noncolinear, then point M is coplanar with them

if and only if scalars α,β, ∞ exist so that

m = αa+ βb+ ∞c α + β + ∞ = 1. (4.45)

Proof. A necessary and sufficient condition that ~AM be coplanar with ~AB and ~AC is

the existence of scalars β and ∞ so that ~AM = β ~AB+ ∞ ~AC. Or in terms of position vectors

a, b, c,m,

m− a = β(b− a) + ∞(c− a) (4.46)

or

m = (1− β − ∞)a+ βb+ ∞c (4.47)

which with α = 1− β − ∞ becomes (4.45). End of proof.

Equation (4.45) is the parametric equation of the plane in space.

Theorem 4.12 may be restated with no preference given to point M in saying that

A,B,C,M are coplanar if and only if α,β, ∞, µ exist, not all zero, so that

αa+ βb+ ∞c+ µm = o α + β + ∞ + µ = 0. (4.48)

If A,B,C are colinear then eq. (4.48) holds with µ = 0.
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Triplet α,β, ∞ in eq. (4.45) subject to α + β + ∞ = 1, are the barycentric coordinates of

point M in the plane through A,B,C. We verify with reference to Fig. 17a that ~PM = ∞ ~PC

and also ~P 0M 0 = ∞ ~P 0C, if MM 0 is parallel to PP 0, and conclude that

α =
A1

A
, β =

A2

A
, ∞ =

A3

A
A1 +A2 +A3 = A (4.49)

A1, A2, A3 being the areas of the three sub-triangles in Fig. 17b. If M is not outside the

triangle, then 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ ∞ ≤ 1, but if M is below the line through A,B,

then ∞ < 0.

(a) Fig. 4.17 (b)

Vector calculus is even more helpful in three-dimensional, solid, geometry where perspec-

tive drawing distorts angle and distance, and where non-intersecting lines in space intersect

on paper.

Theorem 4.13. Let points A,B,C,D be the vertices of a tetrahedron. If point M is the

center of area of face ABC, then DM is said to be a median of the tetrahedron. All four

medians in the tetrahedron are concurrent and intersect at the ratio 1/3.

Proof. We shall prove that all medians of the tetrahedron pass through point G (Fig. 18)

fixed by

g =
1

4
(a+ b+ c+ d) (4.50)

wherever origin O is. Indeed,

m =
1

3
(a+ b+ c) (4.51)

and

g =
3

4
m+

1

4
d. (4.52)
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Fig. 4.18

Points MGD are colinear, and G divides MD at the typical ratio of 1/3. It is the same for

all medians and the proof is done.

Point G is the center of volume of the tetrahedron or the center of mass of the vertices.

No vector calculus text is crowned without the triumphant algebraic proof to the cele-

brated theorem of Desargue. But first we prove useful

Lemma 4.14. Let A,B,C,D be coplanar points with no three being colinear. Denote

a = ~OA, b = ~OB, c = ~OC, d = ~OD for point O not on the plane of points A,B,C,D. If

both

αa+ βb+ ∞c+ δd = o α + β + ∞ + δ = 0
and (4.53)

α0a+ β0b+ ∞0c+ δ0d = o α0 + β0 + ∞0 + δ0 = 0

hold nontrivially, then scalar ∏ exists so that

α0 = ∏α, β0 = ∏β, ∞0 = ∏∞, δ0 = ∏δ. (4.54)

Proof. Multiplication by ∏ and subtraction produces

(α0 − ∏α)a+ (β0 − ∏β)b+ (∞0 − ∏∞)c+ (δ0 − ∏δ)d = o. (4.55)

One of the coefficients, say that of a, may be made zero with ∏ so that α0− ∏α = 0. By our

assumption that B,C,D are noncolinear, and O out of their plane, the remaining coefficients

of b, c, d must vanish and eq. (4.54) is obtained. End of proof.
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Two triangles are said to be copolar if the lines joining their corresponding vertices

happen to be concurrent. The triangles are said to be coaxial if the extensions to their

corresponding sides intersect at three colinear points. Triangles ABC and A0B0C 0 of Fig. 19

are copolar and coaxial at once.

Fig. 4.19

Theorem (Desargue) 4.15. Copolar triangles are coaxial, and conversely.

Proof. We shall prove the first part of the theorem only, namely that copolar triangles

are coaxial. The converse is left as an exercise. We prove, with reference to Fig. 19, that if

lines AA0, BB0, CC 0 intersect at common point S, then points P,Q,R are colinear.

The linear algebraic statement of the theorem is expressed in the following three sets of

position vector equations,
s = αa+ α0a0 α + α0 = 1
s = βb+ β0b0 β + β0 = 1
s = ∞c+ ∞0c0 ∞ + ∞0 = 1

(4.56)

p = ºa+ ωc º + ω = 1 p = º0a0 + ω0c0 º0 + ω0 = 1
q = σb+ τc σ + τ = 1 q = σ0b0 + τ 0c0 σ0 + τ 0 = 1
r = ρb+ µa ρ + µ = 1 r = ρ0b0 + µ0a0 ρ0 + µ0 = 1.

(4.57)
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Considering first equations that involve a, a0, b, b0 we deduce from eqs. (4.56) and (4.57) that

αa+ α0a0 − βb− β0b0 = o
ρb+ µa− ρ0b0 − µ0a0 = o.

(4.58)

By Lemma 4.14 scalar ∏ exists so that

∏α = µ ∏α0 = −µ0
−∏β = ρ −∏β0 = −ρ0 (4.59)

and hence

∏(α− β) = µ+ ρ = 1 (4.60)

so that ∏ = 1/(α− β).

The equality α = β imports that α0 = β0 = 1 − α, implying that point R is at infinity,

or that segment AB is parallel to A0B0. We wish to reject this possibility for now.

In a likewise manner we obtain

(α− β)r = αa− βb α =/ β
(β − ∞)q = βb− ∞c β =/ ∞
(∞ − α)p = ∞c− αa ∞ =/ α

(4.61)

and then

(α− β)r + (β − ∞)q + (∞ − α)p = o (4.62)

proving, by way of Theorem 4.8, that R,Q,P are colinear. End of proof.

Figure 19 acquires sudden sense and clarity if we imagine it depicting a three-dimensional

situation whereby triangle ABC floats above triangle A0B0C 0 on an inclined plane. Point

S can be imagined as being a source of light with rays that pierce exactly through the

corresponding vertices of the two triangles. Triangle A0B0C 0 is the shadow, or the perspective

projection, that triangle ABC casts upon the lower plane.

Algebraic proofs to geometrical theorems are methodical but the writing can become

lengthy. Synthetic proofs require insights but can be short and elegant. Look again at

Fig. 19 and consider it showing triangles ABC and A0B0C 0 being on inclined planes in space.

Triangles SAC and SA0C 0 are coplanar, as are the lines through A,C and A0, C 0, and they

intersect at P . Triangles SAB and SA0B0 are coplanar and hence intersection point R.

Triangles SBC and SB0C 0 are coplanar and hence intersection point Q. Points P,Q,R are
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on the intersection of the plane of triangle ABC and the plane of triangle A0B0C 0, and they

are therefore colinear.

Desargue’s theorem says in effect that every pair of arbitrary triangles can be considered

the perspective projection, or the shadow, of each other. It results simply from the fact that

two triangles that share a vertex are at once copolar and coaxial, as is seen in Fig. 20.

Fig. 4.20

None of the previous theorems of this section involved angle or distance. Vectors provide

short proofs for the forthcoming theorems on orthogonalities in space. While reading the

next theorem look at Fig. 21 but be wary of the fact that it is an angle-distorting projection

of a three-dimensional situation. Symbol ⊥ stands for orthogonal.

Theorem 4.16. Let points A and B on the two nonintersecting orthogonal lines ∏1 and

∏2 in space be such that AB ⊥ ∏2. Then also CB ⊥ ∏2 for any point C on ∏1.

Proof. Around triangle ABC

αp+ r + s = o. (4.63)

Premultiplication of eq. (4.63) by qT collapses it into the scalar equation

αqTp+ qT r + qT s = 0 (4.64)
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Fig. 4.21

but since pT q = 0 by virtue of ∏1 and ∏2 being orthogonal, and because qT r = 0 by

construction, all that remains of eq. (4.64) is qT s = 0, and the proof is done.

Fig. 4.22

Theorem 4.17. If in triangle ABC the angle bisector of A meets BC at P , then

BP/PC = AB/AC.

Proof. With reference to Fig. 22 we write the two vector equations

x+ ∏c− b = o

a+ c− b = o
(4.65)

and seek to prove that (1− ∏)/∏ = kak/kbk. Elimination of c from system (4.65) results in

x = (1− ∏)b+ ∏a (4.66)

and by virtue of x being a bisector
aTx

kak =
bTx

kbk . (4.67)
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With eq. (4.66) and aT b = kak kbk cos 2α, eq. (4.67) becomes

kbk(1− ∏)(cos 2α− 1) = ∏kak(cos 2α− 1) (4.68)

but since cos 2α =/ 1, we are left with kbk(1− ∏) = ∏kak, and the proof is done.

Theorem 4.18. Let the vertices of triangle ABC be at A(x1, y1), B(x2, y2), C(x3, y3),

and write a = ~AB, b = ~AC. Let the vertices of tetrahedron ABCD be at A(x1, y1, z1)

B(x2, y2, z2), C(x3, y3, z3), D(x4, y4, z4), and write a = ~AB, b = ~AC, c = ~AD. Then

Area ABC =
1

2

ØØØØØØØ

aTa aT b

bTa bT b

ØØØØØØØ

1/2

=
1

2

ØØØØØØØ

a1 b1

a2 b2

ØØØØØØØ
=

1

2

ØØØØØØØ

1 1 1
x1 x2 x3

y1 y2 y3

ØØØØØØØ
(4.69)

Volume ABCD =
1

6

ØØØØØØØ

a1 b1 c1
a2 b2 c2
a3 b3 c3

ØØØØØØØ
=

1

6

ØØØØØØØØØ

1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

ØØØØØØØØØ

. (4.70)

Proof. According to Fig. 23a

(a) Fig. 4.23 (b)

Area ABC =
1

2

q
(nTn)(aTa). (4.71)

Inasmuch as n is orthogonal to a and is coplanar with a and b

n = −a
T b

aTa
a+ b (4.72)
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and

Area ABC =
1

2

µ
(aTa)(bT b)− (aT b)2

∂1/2
=

1

2

ØØØØ
aTa aT b
bTa bT b

ØØØØ
1/2

(4.73)

which is true, we notice, for any triangle in space. In terms of the components of spatial a

and b

Area ABC =
1

2
(∆2

1 + ∆2
2 + ∆2

3)
1/2 (4.74)

where

∆1 =
ØØØØ
a2 b2
a3 b3

ØØØØ , ∆2 =
ØØØØ
a3 b3
a1 b1

ØØØØ , ∆3 =
ØØØØ
a1 b1
a2 b2

ØØØØ. (4.75)

In case triangle ABC lies in a plane parallel to the xy plane a3 = b3 = 0, and

Area ABC =
1

2

q
(a1b2 − a2b1)2 =

1

2

ØØØØ
a1 b1
a2 b2

ØØØØ (4.76)

or by vertex coordinates

Area ABC =
1

2

µ
(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)

∂
=

1

2

ØØØØØØØ

1 1 1
x1 x2 x3

y1 y2 y3

ØØØØØØØ
. (4.77)

The sign ambiguity raised by the square root will be resolved after the proof is completed.

For tetrahedron ABCD of Fig. 23b we have that

Volume ABCD =
1

3
knk Area ABC. (4.78)

Vector n is solved, using Cramer’s rule, from the three equations aTn = 0, bTn = 0, cTn =

nTn, 


a1 a2 a3

b1 b2 b3
c1 c2 c3








n1

n2

n3



 = nTn




0
0
1



 (4.79)

as

n =
nTn

∆
[∆1 ∆2 ∆3]

T (4.80)

where ∆1,∆2,∆3 are given in eq. (4.75), and where

∆ =

ØØØØØØØ

a1 b1 c1
a2 b2 c2
a3 b3 c3

ØØØØØØØ
. (4.81)
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Writing nTn for n in eq. (4.80) we obtain

∆ = (nTn)1/2(∆2
1 + ∆2

2 + ∆2
3)

1/2.

We recognize that (∆2
1 + ∆2

2 + ∆2
3)

1/2 = 2 Area ABC, and conclude that volume ABCD =

∆/6. Putting the components of a, b, c as differences of vertex coordinates we obtain the

second determinant for the volume. End of proof.

To resolve the sign ambiguity of the triangle area formula we write

a = kak [cosα sinα]T , b = kbk [cosβ sinβ]T (4.83)

and have that

Area ABC =
1

2

ØØØØ
a1 b1
a2 b2

ØØØØ=
1

2
kak kbk sin(β − α) (4.84)

If the vertices of triangleABC are listed sequentially counterclockwise, then β−α > 0 and the

area of the triangle is positive. The triangle, we say, has positive orientation. Permutation

of two vertices reverses the sign of Area ABC, and hence its orientation. Planar rotation

and translation does not affect the orientation of a triangle; only a flip-over changes it.

A triangle with vertices at A(0, 0), B(1, 0), C(0, 1) has positive orientation, and so does

a tetrahedron with vertices at A(0, 0, 0), B(1, 0, 0), C(0, 1, 0), D(0, 0, 1).

Let’s muse more and delve deeper into the nature of the affinity between algebra and

geometry. Once we have decided that an ordered pair of numbers makes a point, and once we

have formulated the distance between two points—that is, once we have fixed the metric of

the space, algebra becomes fully equipped to travel its own way through geometry. Analytic

geometry is then completely determined by the nature of real numbers with their inherent

properties of order and continuity. Nothing more is needed, except the analytic formulation

of the geometric problem. We need construct noting say nothing, nor imagine anything. A

point is a pair of numbers, that’s all, not a dent not a peck not a peg, and not a speck

of light or matter. the mysteriously primitive object called line in geometry, supposedly

being ”determined” by two points, becomes a simple functional relationship between two

variables with two parameters that are exactly fixed by two distinct points. The geometer

who is constantly torn between the existential and the philosophical, between the real and
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the ideal, must be forever on guard to separate the obvious from the assumed. For the

geometer, a coherent geometrical proof to the simplest and most obvious of theorems can

turn into a feat of reasoning. Algebra relieves all that. Yet algebra is not geometry. One

cannot divide plots nor build houses with algebra. To return to the physical world we shall

need to know where and how to pick a point, how to construct a line, and how to compare

distances.

Exercises

4.5.1. In trapezoid ABCD, P and Q are midpoints (Fig. 24.)

Prove that PQkAB, and PQ = 1
2(AB + CD).

4.5.2. In quadrilateral ABCD, P,Q,R, S are midpoints, and so are K and L. Prove that

K,O,L are colinear (Fig. 25.)

Fig.4.24 Fig.4.25

4.5.3. Prove that the diagonals of a parallelogram bisect each other.

4.5.4. Prove that if P is the midpoint of AA0, Q the midpoint of BB0, and R the midpoint

of CC 0, then P,Q,R are colinear.

Also, that

(1 + µ)m = b0 + µb, (1− µ)m0 = b0 − µb
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or

~B0M = µ ~MB, ~B0M 0 = −µ ~M 0B.

Such division is called harmonic. The two diagonals CC 0 and AA0 divide the third diagonal

BB0 harmonically (Fig. 26.)

5.5.5. Prove that if

~CA = −∏ ~CB, ~C 0A0 = −∏0 ~C 0B0

and

~DA = −µ ~DB, ~D0A0 = −µ0 ~D0B0

then ∏/∏0 = µ/µ0. This is the celebrated cross-ratio theorem (Fig. 27.)

4.5.6. Prove that a parallelogram is a rhomb if and only if its diagonals are orthogonal.

4.5.7. Prove that a parallelogram is a rectangle if and only if its diagonals are equal.

Fig.4.26 Fig.4.27

4.5.8. Let a = [1 1]T , b = [1 − 2]T . Find x = [x1 x2]T so that aTx = 2, bTx = −7. Numbers

2 and -7 are called by some the covariant components of x. Also, for a, b, x find α and β so

that x = αa+ βb. Numbers α,β are called by some the contravariant components of x.

With reference to Fig.28 prove that if a and b are unit vectors and aT b = 0, then the covariant

and contravariant components of x are equal.
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Fig.4.28

Fig.4.29

4.5.9. Point P is in the plane of ABC. If A0B0kAP,B0C 0kBP,C 0A0kCP , show that the lines

through A0, B0, C 0 parallel to AC,BA,CB respectively, are concurrent (Fig. 29.)

4.5.10. Show that if in quadrilateral ABCD, AB ⊥ CD, then (AC)2 + (BD)2 = (AD)2 +

(BC)2, and vice versa (Fig. 30.)
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4.5.11. Show that if coplanar a, b, x are such that kak = kbk = kxk and aT b = 0, then

x = a cosα + b cosβ. Also, that if kxk is arbitrary, then x = (kxk/kak)(a cosα + b cosβ)

(Fig. 31.)

Fig.4.30 Fig.4.31

4.5.12. Show that if coplanar a, b, x are such that kak = kbk = kxk, aTx = kak2 cosα,

bTx = kak2 cosβ and aT b = kak2 cos(α + β), then

x =
sinβ

sin(α + β)
a+

sinα

sin(α + β)
b.

4.5.13. Show that if x in the plane of a and b bisects the angle between them, then x = αa+βb

with

α =
kxk
kak

1

2 cos θ
, β =

kxk
kbk

1

2 cos θ

(Fig. 32.)

4.5.14. Prove that if OA = OB,OA ⊥ OB, and OC = OD, OC ⊥ OD, then AD ⊥ BC

(Fig. 33.)

4.5.15. Prove that if A,M,B are collinear points so that

m =
kqk
krka+

kpk
krkb , r = p+ q

then

krk kmk2 = kqk kak2 + kpk kbk2 − kpk kqk krk.
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Fig.4.32 Fig.4.33

This is Stewart’s formula (Fig. 34.)

4.5.16. Show that

kxk2 = kck2(1− ∏) + kbk2∏− kak2∏(1− ∏)

(Fig. 35.)

4.5.17. Let

a = α1
~OA1 + α2

~OA2 + · + αn
~OAn.

Show that if α1 + α2 + · · · + αn = 0, then vector a is independent of point O.

4.5.18. Points A1, A2, . . . , An fix point G according to

g = α1a1 + α2a2 + · · · + αnan, α1 + α2 + · · · + αn = 1

where g = ~OG and ai = ~OAi. Prove that G is independent of O.

4.5.19. Show that if aT b = o, then

kpk2 + kqk2 = 5kck2

(Fig. 36.)

4.5.20. If point I is the center of the inscribed circle in triangle ABC, show that in terms of

the position vectors,

(α + β + ∞)i = αa+ βb+ ∞c
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Fig.4.34 Fig.4.35

Fig.4.36 Fig.4.37

where α = BC, β = CA, ∞ = AB.

4.5.21 Let AM ⊥ CB, MB ⊥ BA, and write ~MC = c, ~MA = (1 + α)c, ~MB = t, ~OM =

m, ~OA = a. Prove that

(1 + α)cT c = tT t = mTm− aTa

(Fig. 37.)

4.5.22. If in triangle ABC, P,Q,R are midpoints, show that

AreaPQR/Area ABC = 1/4.
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Generally, if g = (αa+ βb+ ∞c)/(α + β + ∞), then

Area PQR/Area ABC = 2αβ∞/((α + β)(β + ∞)(∞ + α))

(Fig. 38.)

Fig.4.38 Fig.4.39

4.5.23. Following Menelaus prove that a necessary and sufficient condition for points A0, B0,

C 0 to be colinear is that

αβ∞ = 1, α =
A0B

A0C
, β =

B0C

B0A
, ∞ =

C 0A

C 0B

(Fig. 39.)

4.5.24. Prove that if ρ is the radius of the circumscribing circle to triangle ABC, then

Area ABC =
1

4

αβ∞

ρ
, α = AB, β = BC, ∞ = CA.

4.5.25. Let the barycenter (center of mass) of points A1, A2, . . . , An and points B1,B2,. . .,Bm

be G1 and G2 respectively,

g1 = α1a1 + α2a2 + · · · + αnan, α1 + α2 + · · · + αn = 1

g2 = β1b1 + β2b2 + · · · + βnbn, β1 + β2 + · · · + βn = 1
.

Show that barycenter G of all points is the barycenter of the barycenters,

g = ∞1g1 + ∞2g2, ∞1 + ∞2 = 1.

39



4.5.26. Triangle ABC has vertices at A(x1, y1), B(x2, y2), C(x3, y3). Show that Cartesian

coordinates x, y are obtained from the barycentric coordinates ≥1, ≥2, ≥3, ≥1 + ≥1 + ≥3 = 1 as

x = x1≥1 + x2≥2 + x3≥3

y = y1≥1 + y2≥2 + y3≥3.

4.5.27. Show that in terms of the barycentric coordinates ≥1, ≥2, ≥3 a complete quadratic is

written as ≥k1 ≥
l
2≥

m
3 k + l +m = 2 with k, l,m being positive integers.

4.5.28. Using barycentric coordinates write the equation of the line parallel to AB through

C. Also the line orthogonal to AB through A.

4.5.29. Write the area of triangle P 0Q0R0 in terms of the area of triangle ABC, given that

r = (α1a+ β1b)/(α1 + β1)

p = (β2b+ ∞1c)/(β2 + ∞1)

q = (∞2c+ α2a)/(∞2 + α2).

(Fig. 40.)

4.5.30. Equation 4.84 states that if a1 and a2 are in R2, then det[a1 a2] is the area of

the parallelogram formed by a1, a2 on its sides. Discuss using area to define det[a1 a2]

for rectangular matrix A with columns of more than two components. If A is rectangular

and B square, is it still true that det(AB) = det(A)det(B)? Generalize the argument to

det[a1 a2 a3], etc.

4.5.31. Write the lengths of the angle bisectors in a triangle in terms of the three sides.

4.5.32. Prove that if the bisectors of two internal angles of a triangle are equal, then the

triangle is isosceles. This, not so easy problem, is the Steiner-Lehmus theorem.

4.5.33. Discuss Desargue’s theorem (4.15) for the case that points A,A0 and B,B0 coincide.

Also for the case that points C,C 0 coincide and ABkA0B0.

4.5.34. Prove the converse to Theorem 4.15.
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Fig.4.40

4.6 Linear transformations

In Chapter One we looked with deliberate care at linear system Ax = f with f given.

Here we consider the linear relationship Ax = x0 between independent variable vector x and

dependent variable vector x0. When x varies over a certain vector space, over what vector

space does x0 range? This is essentially the question before us now.

Recall that a one-dimensional vector space holds all vectors x = αa for given a =/ o and

arbitrary α, that is, all vectors colinear with the line generated by a. A two-dimensional

vector space includes the collection of all vectors x = αa + βb for noncolinear a, b and

arbitrary α,β; that is, the set of all vectors parallel to the plane generated by a, b. The

three-dimensional vector space R3 includes all vectors with three real components, that is,

all vectors x = α1[1 0 0]T + α2[0 1 0]T + α3[0 0 1]T for arbitrary α1,α2,α3, or all vectors

x = αa+ βb+ ∞c for noncoplanar a, b, c and arbitrary α,β, ∞.

Suggestive terminology calls x0 = Ax the linear transformation of the corresponding

vector spaces of x and x0, or the linear mapping of x into its image x0. One may also want

to think of A in x0 = Ax as being a linear operator that acts upon x to produce x0.

When A is nonsingular the transformation is said to be nonsingular. Nonsingular trans-

formations are special to a degree that they alone are sometimes found worthy of the name

transformation.
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Suppose that

x = [x1 x2]
T = x1[1 0]T + x2[0 1]T = x1e1 + x2e2 (4.85)

for arbitrary x1, x2. This vector space, R2, spanned by e1, e2 is the domain of the mapping.

Vector space

x0 = Ax = x1Ae1 + x2Ae2 = x1a1 + x2a2 (4.86)

spanned by columns a1, a2 of A is the range of the transformation, and if A = A(2 × 2) is

nonsingular, then the range of the mapping is also R2. Every vector x ∈ R2 has a unique

image x0 ∈ R2, and vice versa. The nonsingular mapping is one-to-one, or in the emphatic

terminology of linear transformations the mapping is onto; R2 is mapped onto R2 and we

write R2 → R2.

Similarly R3 is mapped by nonsingular A = A(3 × 3) onto R3; if x0 = Ax, then also

x = A−1x0.

Since the linear transformation x0 = Ax is given entirely by matrix A, we may inter-

changeably speak about the vector spaces associated with the transformation or the vector

spaces associated with A itself.

Consider, for instance, the linear operator (alias matrix)

A =
∑

1 −1
−1 1

∏
(4.87)

in the linear mapping x0 = Ax and see Fig. 41. With no restrictions imposed on x the domain

of this mapping is R2; x is any

vector with two real components, but since the columns of A are colinear it is singular and

the range of the mapping is only a one-dimensional vector space R spanned by r = [−1 1]T .

Every image vector x0, whatever x, is colinear with vector r. All vectors x such that Ax = o

constitute the nullspace of matrix A. Nullspace N of A in eq. (4.87) is a one-dimensional

vector space spanned by n = [1 1]T . Every vector of the form x = α[1 1]T , and only vectors

of this form, have as image the zero vector o = [0 0]T .

Vectors that are already in the range of this mapping, i.e. x = α[−1 1]T return image

vector x0 to the range. Here, for the matrix in eq.(4.87),

x0 = Ax = 2x (4.88)
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Fig. 4.41

and x and Ax are colinear. A nonzero vector x that is colinear with Ax, Ax = ∏x, is said

to be an eigenvector of square matrix A with eigenvalue ∏. Vector x = [1 1]T that spans the

nullspace of A is also an eigenvector of A since for this vector Ax = 0x, and the eigenvalue

is zero.

Matrix A in linear mapping x0 = Ax need not be square. For example



x01
x02
x03



 =




1 1
−1 1
1 1





∑
x1

x2

∏
, x0 = Ax

(4.89)

sends x ∈ R2 into the two-dimensional subspace, a plane, of R3 spanned by the noncolinear

columns a1 = [1 − 1 1]T , a2 = [1 1 1]T of A.

The nullspace of mapping (4.89) includes only one element, the zero vector, since a1 and

a2 are not colinear. A mapping has a nontrivial, or nonempty, nullspace only if matrix A

that affects it has colinear or coplanar columns.

Generally, let the domain of x0 = Ax, A = [a1 a2 a3], beR3 so that x0 = x1a1+x2a2+x3a3

for arbitrary x1, x2, x3. If the columns of A are colinear and a1 =/ o, then we may write

a2 = α2a1, a3 = α3a1 and the image of x becomes x0 = (x1 + α2x2 + α3x3)a1, signifying

that the range of A is a one-dimensional subspace of R3 spanned by a1 =/ o. If the columns

of A are coplanar such that a1 = α2a2 + α3a3, with a2, a3 being noncolinear, then

x0 = (x1α2 + x2)a2 + (x1α3 + x3)a3 = α02a2 + α03a3 (4.90)
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signifying, since α02 and α03 are arbitrary, that the range of A is a two-dimensional subspace

of R3 spanned by the noncolinear a1, a2. The range of A is the vector space spanned by its

columns; it is the column space of A. The dimension of the range is the rank of A.

If in the mapping x0 = Ax of x ∈ R3 the columns of A are coplanar, then the range of

A is a subspace R of R3 of dimension less than three. Say x0 is on a plane. Vector x ∈ R

already on the plane creates an image x0 confined to a subspace R0 of R, R0 ⊂ R ⊂ R3. For

example, if x ∈ R3, then the range of

A = [a1 a2 a3] =




1 1 1
1 −1 −3
1 1 1



 (4.91)

constitutes the totality of vectors x0 = α1a1 + α2a2 + α3a3 for arbitrary α1,α2,α3. It

turns out that a1, a2, a3 are coplanar so that a3 = −a1 + 2a2 and the range of A is two-

dimensional, x0 = α01a1 + α02a2, where α01 = α1 − α3, α02 = α2 + 2α3 are arbitrary. Taking

x = α1a1 + α2a2 in R we obtain the image x0 = α1Aa1 + α2Aa2 = (3α1 + α2)[1 − 1 1]T ,

and R0 is a one-dimensional vector space spanned by r0 = [1 − 1 1]T . Now, if x ∈ R0, that

is, if x = α[1 − 1 1]T , then Ax = x, and x is an eigenvector of A with eigenvalue equal to

1. Solving Ax = o we discover that the nullspace of A is the one-dimensional vector space

that includes the set of all vectors x = α[1 − 2 1]T . The nullspace of A happens here to be

in its range,−a1 + 3a2 = 2[1 − 2 1]T .

One more example. Matrix

A = [a1 a2 a3] =




1 0 1
1 1 0
1 −1 2



 (4.92)

of linear mapping x0 = Ax, x ∈ R3, has coplanar columns so that a1 = a2 + a3. We verify

that the nullspace of A is the one-dimensional vector space spanned by n = [−1 1 1]T . The

range x0 = α1a1+α2a2+α3a3 of the mapping reduces by virtue of the coplanarity of a1, a2, a3

to x0 = α02a2 + α03a3 where α02 = α1 + α2, α03 = α1 + α3 are arbitrary. The totality of image

vectors x0 constitutes a two-dimensional subspace R, spanned by a2, a3 of R3. Restricting x

to R, x = α2a2 + α3a3, we obtain

x0 = Ax = α2




−1
1
−3



+ α3




3
1
5



 = α2a
0
2 + α3a

0
3. (4.93)
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Vectors a02 and a03 are not colinear and are in R; they span R. In fact, a02 = a2 − a3, and

a03 = a2 + 3a3 so that

x0 = (α2 + α3)a2 + (−α2 + 3α3)a3 = α02a2 + α03a3. (4.94)

Since
α02 = α2 + α3

α03 = −α2 + 3α3
and conversely

α2 = 3
4α
0
2 − 1

4α
0
3

α3 = 1
4α
0
2 + 1

4α
0
3

(4.95)

every vector x ∈ R has a unique image x0 ∈ R. Vector space R is an invariant subspace of

A. It contains an interesting subspace R0 spanned by a = [1 1 1]T , given by α2 = α3 = 1/2,

such that if x = αa, then Ax = 2x. Vector x is then an eigenvector of A with eigenvalue 2.

Theorem 4.19. If range R of mapping x0 = Ax, x ∈ R3, is a subspace of R3 of

dimension dim(R), and nullspace N of the mapping is a subspace of R3 of dimension dim(N),

then dim(R) + dim(N) = 3.

Proof. Let the columns of A be a1, a2, a3, and assume the mapping nontrivial so that

at least one of the columns, say a1 is nonzero.

If the range is one-dimensional, (dim(R) = 1), then a2 and a3 are parallel to a1, and

a2 = α2a1 and a3 = α3a1. The nullspace totals the vectors n = [n1 n2 n3]T such that

n1a1 + n2a2 + n3a3 = o. Because a1, a2, a3 are colinear, two components of n, here n2 and

n3, are independent and n1 depends on them. Vectors n are on one plane. Indeed, under

the condition that n1a1 +n2a2 +n3a3 = o and with a2 = α2a1 and a3 = α3a1 it results that

(n1 + n2α2 + n3α3)a1 = o. (4.96)

Since a1 =/ o, n1 = −n2α2 − n3α3 and

n = n2




−α2

1
0



+ n3




−α3

0
1



 (4.97)

showing n to be in the plane generated by the noncoplanar [−α2 1 0]T and [−α3 0 1]T .

In case the range is two-dimensional, the columns of A are coplanar with at least two of

them, say a1 and a2, being noncolinear so that the third column may be expressed as

a3 = α1a1 + α2a2. (4.98)
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Substituting this into n1a1 + n2a2 + n3a3 = o yields

(n1 + α1n3)a1 + (n2 + α2n3)a2 = o. (4.99)

Because a1, a2 are noncolinear n1 = −α1n3, n2 = −α2n3, and n = n3[−α1 − α2 1]T is in a

one-dimensional vector space. End of proof.

Range R and nullspace N of A in eq. (4.87) are orthogonal subspaces complementing R2.

This is always the case if A is symmetric.

Theorem 4.20. If matrix A = A(3 × 3) is symmetric, A = AT , then the range and

nullspace of the linear transformation x0 = Ax are orthogonal complements of R3. In case

the range is one-dimensional, orthogonality happens only if A = AT .

Proof. Suppose first a one-dimensional range so that the three columns of A are colinear.

If A is symmetric, A = AT , then An = o means that aT1 n = 0, aT2 n = 0, aT3 n = 0, and n is

in the plane orthogonal to the range.

To prove that if the range of A is one-dimensional then the nullspace of A is orthogonal

to it only if A = AT , assume A− AT =/ O and consider the range of A spanned by vector r

and the nullspace of A spanned by vectors n1, n2 taken so that nT1 n2 = 0 and nT1 r = nT2 r = 0.

Vectors n1, n2, r span R3. Writing

ATn1 = ∫1n1 + ∫2n2 + ρr (4.100)

and using the fact that n T
1 ATn1 = n T

1 An1 = nT2 An1 = nT1An2 = 0 we readily conclude

that ATn1 = o, and in the same way that ATn2 = o, and also that AT r = Ar, or

(A−AT )n1 = (A−AT )n2 = (A−AT )r = o. (4.101)

But for a 3 × 3 matrix this means that A − AT = O, since it implies that for any x ∈

R3, (A − AT )x = o. Our assumption that A − AT =/ O is contradicted and the plane

orthogonal to r is not the nullspace of A.

If the range of A is two-dimensional, then a1, a2, a3 generate a plane in R3, and aT1 n =

aT2 n = aT3 n = 0 means that n is orthogonal to that plane. End of proof.

46



The dimension of the range is the rank of A and the dimension of the nullspace is the

nullity of A.

As an example consider

A =




1 3 −2
−1 4 −5
2 −1 3



 (4.102)

that has a two-dimensional range spanned by r1, r2, and a one-dimensional nullspace spanned

by n,

r1 = [1 1 0]T , r2 = [1 0 1]T , n = [−1 1 1]T . (4.103)

Matrix A of eq. (4.102) is not symmetric but its nullspace is orthogonal to its range,

rT1 n = rT2 n = 0. Matrix A is of rank 2 and nullity 1. According to Theorem 4.17 rank A+

nullity A = 3.

Theorem 4.21. The range of A and the nullspace of AT are orthogonal.

Proof. The range of A is spanned by a1, a2, a3, while nullspace N of AT consists of all

vectors n so that aT1 n = aT2 n = aT3 n = 0. Hence every n ∈ N is orthogonal to the range or

the column space of A. End of proof.

Exercises

4.6.1. Find the range and nullspace of

A =




1 3 2
2 1 −1
−1 1 2



 and T =




0 α β
−α 0 ∞
−β −∞ 0.





What are the rank and nullity of A and T?

4.6.2. The range and nullspace of matrix

A =
∑

1 1
−1 −1

∏

are the same vector space spanned by a = [1 − 1]T . Write all such (2× 2) matrices. Can A

ever be symmetric? Do the same for (3× 3) matrices.

4.6.3. In the transformation x0 = Ax,

A =
∑−4 1
−1 1

∏
,
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find all x so that xTx0 = 0.

4.6.4. Does a linear mapping x0 = Ax of R2 onto itself exist by which the orthonormal x1, x2

are mapped such that Ax1 = ∏1x2, Ax2 = ∏2x1, ∏1 =/ ∏2? Hint: xT1 Ax1 = xT2 Ax2 = 0.

4.7 Projection into subspaces

A notable conclusion of the previous section has been that if A in linear mapping x0 = Ax,

is singular, then x ∈ R3 is relegated by the mapping to a lower-dimensional vector space. In

this section we shall consider a geometrically significant and linear algebraically important

singular linear mapping having the property that every vector x in the range R of A is an

eigenvector of A with unit eigenvalue

Ax = x x ∈ R. (4.104)

Singular matrix A having this property is said to be a projection matrix, and the mapping

a projection of x into the range.

Matrix

A =
∑

1 −1
−1 1

∏
(4.105)

is not a projection matrix since

∑
1 −1
−1 1

∏ ∑
1
−1

∏
= 2

∑
1
−1

∏
(4.106)

and every vector x = α[1 − 1]T in the range of A is extended by the mapping to twice its

length.

The essential property of projection embodied in eq. (4.104) imports that for any x ∈

R3, A2x = Ax and the projection matrix is characterized by A2 = A, A =/ I. One and zero

are the only eigenvalues of a projection matrix.

A common notation for the projection matrix is P , and if in addition to P 2 = P also

P = PT , then the projection is orthogonal —the nullspace of P is orthogonal to its range.

For a geometric interpretation of the projection of R2 into (not onto!) a line see Fig. 42.

Projection Px of x ∈ R2 on line ∏ with unit vector v along it is geometrically imagined as

the shadow that x casts upon ∏ by rays of light parallel to unit vector u. When x is parallel
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Fig. 4.42

to the line, Px = x, but when x is parallel to u, Px = o; vector u spans the nullspace of the

projection. We write with reference to Fig. 42

P =
1

1− α2 (vvT − αvuT ), α = uT v (4.107)

and verify that Pv = v and that Pu = o. When uT v = 0

P = vvT , vT v = 1 (4.108)

and the projection is orthogonal. It is an easy matter to show that in both eqs. (4.107) and

(4.108) P = P 2.

If in projection matrix P of eq. (4.108) v ∈ R3, then the nullspace of this projection

consists of the plane orthogonal to v, and every x ∈ R3 is orthogonally projected on line ∏.

Projection matrix P in eq. (4.108) is written in terms of vector v that spans the range,

but it may also be written in terms of the vectors that span its nullspace. Let u1 and u2

be two orthogonal unit vectors on the plane orthogonal to v. Then instead of eq. (4.108) we

have

P = I − u1u
T
1 − u2u

T
2 (4.109)

and verify that Pv = v, and that Pu1 = Pu2 = o.

Orthogonal projection (see Fig. 43) of R3 on plane º generated by the orthonormal (i.e.

unit and orthogonal) u1, u2 is accomplished by projection matrix

P = u1u
T
1 + u2u

T
2 . (4.110)
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Fig. 4.43

We verify that Pu1 = u1, Pu2 = u2, and that Pn = o, where n is a unit vector perpendicular

to º. The same projection matrix is written in terms of n as

P = I − nnT , nTn = 1 (4.111)

by the formal use of u1uT1 + u2uT2 + nnT = I.

Orthogonal projection of x ∈ R3 on a plane is imagined as the shadow x casts under an

overhead sun.

Orthogonal projection is of great interest because of

Theorem 4.22. Orthogonally projected vector Px is the best approximation to x in the

range R of P ;

kx− Pxk ≤ kx− x0k x0 ∈ R, x ∈ R3 (4.112)

with equality holding if and only if x0 = Px.

Proof. We shall produce an analytic proof to this geometrically obvious theorem. Let

u1, u2, n be an orthonormal system of three vectors of which u1, u2 span the range of the

projection (a plane), and of which n spans the nullspace (orthogonal line) of the projection,

so that Pu1 = u1, Pu2 = u2, Pn = o. If x = α1u1 + α2u2 + ∫n, then Px = α1u1 + α2u2,
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x − Px = ∫n, kx − Pxk2 = ∫2. Every vector x0 in the range can be expressed as x0 =

α01u1 + α02u2, and

kx− x0k2 = (α1 − α01)
2 + (α2 − α02)

2 + kx− Pxk2. (4.113)

Hence the inequality of the theorem. Equality happens in the above equation for α1 =

α01, α2 = α02 only, or x0 = α1u1 + α2u2 = Px. End of proof.

Exercises

4.7.1. Which of the following matrices

P1 =
∑
1 0
0 0

∏
, P2 =

∑
0 1
0 0

∏
, P3 =

∑
0 0
1 0

∏
, P4 =

∑
0 0
0 1

∏
, P5 =

∑
1 0
α 0

∏

is a projection matrix? Find the range and nullspace of P5.

4.7.2. Show that if A2 = A, A =/ I, then P = I − A is a projection matrix. Also, that if

A2 = I, A =/ I, then P = 1
2(I +A) is also a projection matrix.

4.7.3. Prove that P = A(ATA)−1AT is a projection matrix.

4.7.4. For what value of α is

P = α




2 1 −1
1 2 1
−1 1 2





a projection matrix.

4.7.5. Is the product of two projection matrices a projection matrix? Let P1 = I − u1uT1

and P2 = I − u2uT2 be two orthogonal projections of R3. Prove that their product is an

orthogonal projection if and only if uT1 u2 = 0 or P1P2 = P2P1.

4.8 Nonsingular mappings

Nonsingular mappings have remarkable geometrical properties that essentially emanate

from

Theorem 4.23. Nonsingular matrix A maps noncolinear vectors into noncolinear vec-

tors and noncoplanar vectors into noncoplanar vectors.
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Proof. If A is nonsingular, then in x0 = Ax, x and x0 are both zero or both nonzero.

Suppose v1, v2, v3 noncoplanar. Then for any α1,α2,α3, not all zero

α1v1 + α2v2 + α3v3 = v =/ o (4.114)

and hence

α1Av1 + α2Av2 + α3Av3 = Av =/ o. (4.115)

End of proof.

Linear transformation x0 = Ax can be looked upon as the mapping of vector spaces, or

what to geometry is more pertinent, as the mapping of points. In the latter, position vector

x of point X(x1, x2, x3) is mapped by x0 = Ax into position vector x0 of point X 0(x01, x
0
2, x

0
3)

with reference to the same Cartesian coordinate system. The origin is mapped into itself,

and if the mapping is nonsingular, then to one point X there corresponds one point X 0 and

vice versa.

We conclude from Theorem 4.23 that nonsingular linear transformations preserve lines

(the mapping is a collineation). Indeed, if the equation of the line passing through A,B is

given in terms of position vectors as

x = αa+ βb α + β = 1 (4.116)

with a and b being noncolinear then

Ax = αAa+ βAb (4.117)

or

x0 = αa0 + βb0 α + β = 1 (4.118)

in which a0, b0 remain noncolinear.

In the same way one shows that planes remain plane under nonsingular linear mappings.

A nonsingular linear mapping is essentially a reversible, one-to-one, transformation of a

vector space onto itself. Geometrically speaking a nonsingular linear transformation maps a

line onto a line, a plane onto a plane, and space onto itself. Such transformations realistically
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occur when a rigid body tilts in space or when a pliable solid undergoes an elastic squeezing

deformation. If the elastic deformation is not too severe and no overlapping or tearing

occurs in it, then it is reasonable to assume that the correspondence between the points

on the undeformed solid and the deformed are one-to-one. Even simpler, we may think

of the transformation of a plane as an elastic sheet being stretched differently in different

directions. Figures drawn on the sheet are distorted in the stretching, but for obvious

geometrical reasons, and admittedly also for analytic tractability, we are most interested in

transformations that preserve straight lines.

Before returning to linear algebraic formalities we want to consider the geometrically

significant, one-to-one mapping, taking place in perspective projection.

We look first at the simpler case of projection of lines. Refer to Fig. 44 and think of point

S as being a source of light. A ray of light emitted from S traverses point P on inclined line

∏, and casts it as point P 0 on line ∏0. Let x be the coordinate of point P on ∏, and x0 the

coordinate of point P 0 on ∏0, for this choice of origins.

Fig. 4.44
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Some simple algebra leads to

x0 =
x cosφ

1− (x/h) sinφ

x =
x0

cosφ + (x0/h) sinφ

(4.119)

implying analytically what is geometrically obvious, that the mapping is reversible with a

one-to-one correspondence between x and x0, provided that the ray of light is not parallel to

line ∏0, or that 1 − (x/h) sinφ =/ 0. Projective mapping by a point source of light extends

the line, but not uniformly. Point A,B,C,D on line ∏ in Fig. 45 are

Fig. 4.45

equidistant but not so their images A0, B0, C 0, D0. Betweenness is preserved by the mapping

of Fig.45—point B is between points A and C—and so is point B0 that is between points A0

and C 0, but ratio is not preserved by it. Point B is midway between points A and C, but

point B0 is not midway between points A0, C 0. What is preserved, or what is invariant, under

the mapping is the ratio of ratios, or cross ratio (AC/BC)/(AD/BD), the proof of which is

left as an exercise. But if point S recedes into infinity, then the rays of light come down in

parallel sheafs, and transformation (4.119) simplifies into x0 = x cosφ, which amounts to a

uniform extension or contraction of any segment on line ∏ by the ratio of 1/ cosφ.

Perspective projection of planes is similar. In Fig. 46 a point light source at S(s1, s2, s3),

given in
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Fig. 4.46

reference to Cartesian coordinate system 0x 01 x
0

2 x
0

3 sheds point P of plane º upon point P 0

of plane º0, x 03 = o.

Plane º is fixed by point C(c1, c2, c3) and the orthonormal vector pair u, v. With x1, x2

taken as parameters, the parametric equation of plane º assumes the form




x

00
1

x
00
2

x
00
3



 =




c1
c2
c3



+ x1




u1

u2

u3



+ x2




v1

v2

v3



 . (4.120)

The parametric equation of the line through P and S is




x01
x02
x03



 = ∏




s1
s2
s3



+ (1− ∏)




x

00
1

x
00
2

x
00
3



 (4.121)

and at x03 = 0

∏ = − x
00
3

s3 − x
00
3

, 1− ∏ =
s3

s3 − x
00
3

. (4.122)

When s3 = x
00
3, when the ray of light is parallel to plane º0, point P 0 falls at infinity.

Substitution of x
00

from eq. (4.120) into eqs. (4.121) and (4.122) results in the rational
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mapping

x01 =
(u1s3 − u3s1)x1 + (v1s3 − v3s1)x2 + (c1s3 − c3s1)

−u3x1 − v3x2 + s3 − c3

x02 =
(u2s3 − u3s2)x1 + (v2s3 − v3s2)x2 + (c2s3 − c3s2)

−u3x1 − v3x2 + s3 − c3

(4.123)

or in short

x01 =
α1x1 + α2x2 + α3

β1x1 + β2x2 + β3
, x02 =

α01x1 + α02x2 + α03
β1x1 + β2x2 + β3

(4.124)

and it preserves lines. If

α0x01 + β0x02 + ∞0 = 0, (4.125)

then, so long as β1x1 + β2x2 + β3 =/ 0,

αx1 + βx2 + ∞ = 0, (4.126)

where

α = α0α1 + β0α01 + ∞∞β1, β = α0α2 + β0α02 + ∞0β2, ∞ = α0α3 + β0α03 + ∞0β3. (4.127)

The case of parallel planes is simplified with the choice of u = [1 0 0]T , v = [0 1 0]T , that

reduces the mapping to

x01 =
s3

s3 − c3
x1 +

c1s3 − c3s1
s3 − c3

x02 =
s3

s3 − c3
x2 +

c2s3 − c3s2
s3 − c3

(4.128)

which apart from the shift is pure enlargement.

To write the mapping of inclined planes by parallel rays we take u = [1 0 0]T , v =

[0 cosφ sinφ]T , set σ1 = s1/s3, σ2 = s2/s3, and let s3 →1, resulting in

∑
x01
x02

∏
=
∑
1 −σ1 sinφ
0 cosφ− σ2 sinφ

∏ ∑
x1

x2

∏
+
∑
c1 − σ1c3
c2 − σ2c3

∏
(4.129)

which is linear.

In the case of an overhead sun, σ1 = σ2 = 0, and if we also take c1 = c2 = 0, projection

(4.129) becomes

x01 = x1, x
0
2 = x2 cosφ (4.130)

and º0 is stretched along x02 only. Orthogonal projection (4.130) is not general enough to map

a triangle of any shape into another triangle of any shape. We shall see in Section 10 that
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for such general mapping two independent stretches, or magnifications, are needed along x01

and x02. To parallel ray projection (4.130) of inclined planes we must add an enlargement ∑

so as to have

x01 = ∑x1, x
0
2 = ∑ cosφx2, (4.131)

or we must project twice to produce noncolinear extensions.

We return to linear mappings.

Theorem 4.24. Linear mapping of R3 onto itself is uniquely determined by three non-

coplanar (two noncolinear in R2) vectors and their three respective noncoplanar images.

Proof. Let the three vectors be x1, x2, x3 and their three images under the supposed

mapping x0 = Ax be x01, x
0
2, x

0
3 so that

[x01 x
0
2 x

0
3] = A[x1 x2 x3] (4.132)

or in short X 0 = AX. The three columns of X are noncoplanar and matrix X is invertible.

So is X 0, X 0X−1 = A, and A is nonsingular. End of proof.

Considering linear mapping as that of points, Theorems 4.23 and 4.24 may be restated

as

Corollary 4.25. Under nonsingular linear mapping:

1. Three noncolinear points are mapped into three noncolinear points, and three colinear

points are mapped into three colinear points.

2. Four noncoplanar points are mapped into four noncoplanar points, and four coplanar

points are mapped into four coplanar points.

3. Parallel lines are mapped into parallel lines and intersecting lines into intersecting

lines, with the intersections being the image of one another. Parallel planes are mapped into

parallel planes and intersecting planes into intersecting planes, with the intersections being

the image of one another.

4. Three arbitrary points in the plane are mapped into three arbitrary points in the plane,

and four arbitrary points in space are mapped into four arbitrary points in space.
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Statement 4 asserts that an arbitrary triangle is mapped onto an arbitrary triangle. All

geometrical properties that are preserved by the nonsingular linear mapping hold true for

both triangles. A theorem involving these properties proved for one particular triangle is

proved for an arbitrary triangle. The study of invariants under nonsingular linear mappings

belongs to affine geometry.

Length, angle, area, and volume are not preserved by nonsingular linear transformations,

and are therefore outside the scope of affine geometry, but betweenness and length ratios on

a line are maintained.

Projective geometry studies the invariants left under perspective projection or rational

mapping. It excludes mention not only of angle, length, and area, but also of segment ratio,

which is not preserved by it. The theorem of Pythagoras belongs not in affine geometry

and not in projective geometry. Theorem 4.10 on the intersection of medians in a triangle

belongs in affine geometry but not projective. Desargue’s theorem on coaxial and copolar

triangles in one plane is a theorem of projective geometry as it deals with the incidence of

lines and points only.

Theorem 4.26. Let A,M,B be three colinear points and A0,M 0, B0 their image under

a nonsingular linear mapping. If point M is between points A and B, then so is M 0; and

wherever M is, AM/AB = A0M 0/A0B0.

Proof. Suppose A and B are noncoincidental. Then M is uniquely fixed by ∏ in the

position vector equation

m = (1− ∏)a+ ∏b (4.133)

and when 0 < ∏ < 1 point M is between points A and B. For any ∏,

km− ak = |∏| kb− ak (4.134)

and AM/AB = |∏|. Mapping by the nonsingular A produces

m0 = (1− ∏)a0 + ∏b0 (4.135)

where m0 = Am, and where a0 = Aa and b0 = Ab are noncolinear. Point M 0 is between

points A0 and B0, and A0M 0/A0B0 = |∏| = AM/AB. End of proof.
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An interesting result of the last theorem is

Corollary 4.27. Nonsingular matrix A maps the interior of a triangle onto the interior

of the image triangle.

The proof of which is left to the reader.

Theorem 4.28. If triangle ABC is mapped by the nonsingular A = A(2×2) into triangle

A0B0C 0, and tetrahedron ABCD is mapped by nonsingular A = A(3 × 3) into tetrahedron

A0B0C 0D0, then

Area A0B0C 0 / Area ABC = det(A)

Volume A0B0C 0D0 / Volume ABCD = det(A).
(4.136)

Proof. For triangle ABC let a = ~AB and b = ~AC. Then det[a b] = 2 Area ABC. The

mapping is written as [a0 b0] = A[a b], and

det[a0 b0] = det(A) det[a b] (4.137)

proves the first part of the theorem. The proof for the tetrahedron is analogous. End of

proof.

If det(A) > 0, then the triangle (tetrahedron) is mapped into a triangle (tetrahedron) of

the same orientation, but when det (A) < 0 the orientation is reversed.

Example. Triangle ABC be given by a = ~AB = [1 − 2 1]T and b = ~AC = [1 1 1]T . It

is mapped by

A =




1

1
−2



 , det(A) = −2 (4.138)

into triangle A0B0C 0 with a0 = [1 −2 −2]T , b0 = [1 1 −2]T , and we compute from eq. (4.73)

Area ABC = 3
√

2/2, Area A0B0C 0 = 3
√

5/2, Area A0B0C 0/Area ABC =
q

5/2. (4.139)

Segment length is not invariant under nonsingular mapping. Contraction and elongation

of the image segment takes place as a function of inclination. Suppose that x0 = Ax,

A = A(2×2), and that x = [cos θ sin θ]T , xTx = 1. As θ varies between 0o and 360o position
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vector x traces a unit circle, while image vector x0 changes in length as ρ2 = x0
T
x0 = xTATAx.

Because the mapping is nonsingular

B = ATA =




A2

11 +A2
21 A11A12 +A22A21

A11A12 +A22A21 A2
12 +A2

22



 (4.140)

is symmetric and positive definite.

We expand xTBx into

ρ2 = B11 cos2 θ +B22 sin2 θ + 2B12 sin θ cos θ (4.141)

and use the trigonometrical identities

sin 2θ = 2 sin θ cos θ, sin2 θ =
1

2
(1− cos 2θ), cos2 θ =

1

2
(1 + cos 2θ) (4.142)

to rewrite quadratic form (4.141) as

ρ2 =
1

2
(B11 +B22) +

1

2
(B11 −B22) cos 2θ +B12 sin 2θ. (4.143)

To group the last two terms of eq. (4.143) we introduce parameter ∑ and angle θ0 through

1

2
(B11 −B22) = ∑ cos 2θ0, B12 = ∑ sin 2θ0 (4.144)

and with cos2 2θ0 + sin2 2θ0 = 1 determine that

∑ =
1

2

q
(B11 −B22)2 + 4B2

12, tan 2θ0 =
2B12

B11 −B22
. (4.145)

Now

ρ2 =
1

2
(B11 +B22) + ∑ cos 2(θ − θ0) > 0 (4.146)

and ρ is seen to reach two extrema, a maximum at θ− θ0 = 0 or θ− θ0 = º, and a minimum

at θ − θ0 = º/2 or θ − θ0 = 3º/2. The two extreme values of ρ,∏1 and ∏2, given by

min
θ

ρ2 = ∏2
1 =

1

2
(B11 +B22)−

1

2

q
(B11 −B22)2 + 4B2

12

max
θ

ρ2 = ∏2
2 =

1

2
(B11 +B22) +

1

2

q
(B11 −B22)2 + 4B2

12

(4.147)
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are the principal stretch ratios of the mapping, and for any θ the relative segment stretch

lies between the two extremes.

Orthogonal lines θ− θ0 = 0 and θ− θ0 = º/2 are the principal axes of the mapping, and

we verify that

x1 = [− sin θ0 cos θ0]
T and x2 = [cos θ0 sin θ0]

T (4.148)

are two orthogonal eigenvectors of B,

Bx1 = ∏2
1x1 and Bx2 = ∏2

2x2. (4.149)

Angle θ measures the inclination of x, but ρ measures the length of x0. To identify the

curve that x0 traces as x rounds the unit circle we write the inverse map x = A−1x0, and

have that 1 = xTx = x0
T
Cx0, where

C = A−TA−1 =
1

∆2




A2

22 +A2
21 −A22A12 −A11A21

−A22A12 −A11A21 A2
11 +A2

12



 , ∆ = det(A), (4.150)

is symmetric and positive definite.

With x0 = [ρ cos θ0 ρ sin θ0]T , x0
T
Cx0 = 1 becomes

1

ρ2 =
1

2
(C11 + C22) + ∑0 cos 2(θ0 − θ00) (4.151)

where, in analogy to eq. (4.144)

1

2
(C11 − C22) = ∑0 cos 2θ00, C12 = ∑0 sin 2θ00. (4.152)

Equation (4.151) is identified as that of an ellipse with principal axes at θ0 − θ00 = 0 and

θ0 − θ00 = º/2. See Fig. 47.

Comparing B in eq. (4.140) and C in eq. (4.150) reveals that when A = AT , when A is

symmetric, C11 = B22/∆2, C22 = B11/∆2, C12 = −B12/∆2, and

cos 2θ00 = − cos 2θ0, sin 2θ00 = − sin 2θ0 (4.153)

so that θ00 = θ0 + º/2. This implies that x1 and x01 are colinear, and also x2 and x02. Scalars

µ1 and µ2 exist so that x01 = µ1x1 and x02 = µ2x2,

Ax1 = µ1x1, Ax2 = µ2x2 (4.154)
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Fig. 4.47

and x1 and x2 are the orthogonal eigenvectors of the symmetric A with the corresponding

eigenvalues µ2
1 = ∏2

1 and µ2
2 = ∏2

2.

Equation (4.149) is written for C as

Cx01 = ∏−2
1 x01 , Cx

0
2 = ∏−2

2 x02 (4.155)

geometrically explained with reference to Fig. 46. If we write φ(x0) = x0
T
Cx0, then φ(x0) = 1

is one contour line of the quadratic function. Differentiation with respect to x0 produces

grad φ = 2Cx0 (4.156)

and a necessary and sufficient condition that kx0k/kxk be extremal is that the gradient of

φ(x0) be colinear with position vector x0.

Figure 47 is drawn for the example of

A =
∑

1 1
−1 2

∏
, B =

∑
2 −1
−1 5

∏
, C =

1

9

∑
5 −1
−1 2

∏
(4.157)
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with the computed values of θ0,∏1 and ∏2 shown on the graph.

An explicit analysis of this kind for the nonsingular mapping of the unit sphere is utterly

prohibitive. It is left to us to remark that for x ∈ R3 and x0 = Ax, x0
T
Cx0 = 1 traces the

surface of an ellipsoid. Every plane through the origin cuts the surface in an ellipse. Let

u1, u2 be two orthonormal vectors in space. If x0 is restricted to the plane generated by

them, x0 = α1u1 + α2u2, then

α2
1u

T
1 Cu1 + α2

2u
T
2 Cu2 + 2α1α2u

T
1 Cu2 = 1 (4.158)

and

C 0 =
∑
uT1 Cu1 uT1 Cu2

uT2 Cu1 uT2 Cu2

∏
(4.159)

is positive definite since C = A−TA−1 is positive definite. Equation (4.158) describes an

ellipse. Among all ellipses on the different planes there is one with longest major axis and

shortest minor axis.

Let ∏1 be the minimal stretch ratio of the mapping and ∏3 the maximal, occurring for

orthogonal x0 = x01 and x0 = x03 so that Cx01 = ∏−2
1 x01 and Cx03 = ∏−2

3 x03. If x02 is a (unit)

vector orthogonal to both x01 and x03, then also Cx02 = ∏−2
2 x02. Indeed, if we write

Cx02 = α1x
0
1 + α2x

0
2 + α3x

0
3 (4.160)

then premultiplication by x0
T

1 yields

α1x
0T
1 x

0
1 = x0

T

1 Cx
0
2 = x0

T

2 Cx
0
1 = ∏−2

1 x0
T

2 x
0
1 = 0 (4.161)

and α1 = 0 since x0
T

1 x
0
1 =/ 0. The same happens to α3; we are left with Cx02 = α2x02, and

α2 = ∏−2
2 .

Look at Fig. 48. Mapping R2 → R2 carries the circle into an ellipse and the tangent

square into a tangent parallelogram with tangent points going onto tangent points (why?)

As the square rotates the parallelogram rotates with it until it becomes a rectangle with

sides parallel to the principal axes of the ellipse. Then the orthogonal ~OP, ~OQ are mapped

into the orthogonal ~OP
0
, ~OQ

0
. In R3 the situation is essentially the same except that for
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Fig. 4.48

circle and ellipse we have sphere and ellipsoid, and for square and parallelogram we have

cube and parallelepiped.

In every nonsingular mapping of R3 onto itself there exists an orthonormal vector triplet

x1, x2, x3 that is mapped into the orthogonal vector triplet x01, x
0
2, x

0
3.

Exercises

4.8.1. In the R2 → R2 mapping given by linear transformation x0 = Ax, find matrixA so that

points A(0, 0), B(1, 0), C(0, 1) are mapped to points A0(0, 0), B0(2, 1), C 0(1, 1), respectively.

4.8.2. Let distinct points A,B,C be on line ∏ and distinct points A,B0, C 0 on ∏0. Point A
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is shared by both. Show a unique perspective projection exists by which points B,C are

placed on points B0, C 0, respectively. Discuss the projection that puts point B on point C 0

and point C on B0. What happens to the metaphor of light sources and point shadows?

4.8.3. Distinct points A,B,C are on line ∏, and distinct points A0, B0, C 0 are on line ∏0.

Show that if the lines are coplanar, then two successive perspective projections can place

one set of points on the other. What happens if the lines are not coplanar?

4.8.4. Let x be the coordinate of point P on line ∏, and x0 the coordinate of point P 0 on line

∏0. Perspective projection of lines is algebraically described by the rational mapping

x0 =
α1x+ α2

β1x+ β2

which is the general form of eq.(4.119), and which is the one-dimensional counterpart to the

perspective projection of planes described in eq.(4.124). Prove the fundamental theorem on

the projective geometry of lines asserting that the projection is uniquely determined by three

distinct points on ∏ and their three distinct images on ∏0.

4.8.5. Figure 49 shows planes º and º0 of Fig.46 on top of each other. Show that for

this noncoplanar arrangement of triangles on planes that intersect at the line through A,B,

equilateral triangle ABC can be projected by either radial or parallel rays into arbitrary

triangle A0B0C 0, and vice-versa. Is inclination φ =/ 0 of º0 relative to º unique?

Fig. 4.49 Fig. 4.50
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4.8.6. With reference to Fig. 50, show that if arbitrary triangles ABC and A0B0C 0 are placed

in space so that vertex A coincides with vertex A0, and sides CB and C 0B0 are parallel, then

the lines through B,B0 and C,C 0 intersect. Hence prove that projection of planes by a point

source of light is capable of transforming an arbitrary triangle into an arbitrary triangle. Is

the projection unique? How are triangles of opposite orientation projected?

The fundamental theorem on the perspective projection of planes, which claims that four

points A,B,C,D, no three of which are colinear, on plane º; and four points A0, B0, C 0, D0,

no three of which are colinear, on plane º0 fix the projection uniquely, is more difficult to

prove.

4.8.7. Fix the coefficients in transformation (4.124) so that A(0, 0), B(1, 0), C(0, 1), D(1, 1)

are respectively mapped to A0(0, 0), B0(1, 1/2), C 0(1/2, 1), D0(1/2, 1/2).

4.8.8. In the mapping

x01 =
2x1 − x2

x1 + 2x2
, x02 =

−x1 + x2

x1 + 2x2

find all lines of the form α0x01 + β0x02 = 0 that map into ∏α0x1 + ∏β0x2 = 0, ∏ =/ 0.

4.8.9. Linear transformation x0 = Ax of planes is bounded and invariably maps the unit circle

into an ellipse. Cylindrical perspective projection by parallel rays does the same. Conical

perspective projection of planes is capable of sending a point to infinity and is therefore able

to transform the unit circle into a general conic section. Consider rational transformation

x1
0 =

x1 + αx2

x1 + x2 + ∞
, x2

0 =
βx1 + x2

x1 + x2 + ∞

with parameters α,β, ∞. Invert the transformation and write x1, x2 in terms of x1
0, x2

0. Study

the possible second-order curves on the x1, x2 plane corresponding to x1
02 + x2

02 = 1.

4.8.10. Prove that nonsingular linear mapping x0 = Ax maps the barycenter of a system of

points to the barycenter of the mapped system of points.

4.8.11. Compute the principal axes and principal stretch ratios of x0 = Ax for

A =
∑
1 −1
1 2

∏
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4.9 Orthogonal transformations; rotations and reflections

Linear mappings that preserve length are important. Movement of a rigid body is an

example for such a mapping. It consists of translations whereby all material points move

along parallel lines, of rotations around a fixed axis, or their combination. Mapping x0 =

Ax of vectors x and x0 excludes translation as the origin is always a fixed point of the

transformation, but rotation of space is possible.

In this section we shall be concerned with the linear mapping x0 = Qx that preserves

length; for which kx0k = kxk for any x ∈ R3.

Definition. Square matrix Q is orthogonal if QTQ = I, that is if its columns are orthonor-

mal.

If Q is orthogonal, then QT = Q−1 and also QQT = I. Not only are the columns of Q

orthonormal but also the rows. A linear transformation that preserves length is said to be

an isometry.

Theorem 4.29. A necessary and sufficient condition that linear mapping x0 = Qx be

an isometry is that Q is orthogonal.

Proof. We have that x0
T
x0 = xTQTQx and hence if QTQ = I, then x0

T
x0 = xTx and

the condition is sufficient. To show necessity we choose x = e1, x = e2, x = e3 and obtain

that (QTQ)ii = 1. The choice x = [1 1 0]T , x = [1 0 1]T , x = [0 1 1]T establishes that

(QTQ)ij = 0, i =/ j. End of proof.

Theorem 4.30. The product of orthogonal matrices is an orthogonal matrix.

Proof. Let Q1 and Q2 be orthogonal. If Q = Q1Q2, then QTQ = QT
2 Q

T
1 Q1Q2 = I.

End of proof.

The linear mapping x0 = Qx with QTQ = I is an orthogonal transformation.

Theorem 4.31. Orthogonal transformation is conformal; angles are preserved by it.

Proof. If x01 = Qx1 and x02 = Qx2, then x0
T

1 x
0
2 = xT1 Q

TQx2 = xT1 x2. Also, by the nature

of the transformation, x1
Tx1 = x01

Tx01, xT2 x2 = x02
Tx02, and hence according to eq.4.22 the
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angle between x1 and x2 is the same as the angle between x01 and x02. Notice, however, that

cos θ = cos θ0 happens for both θ = θ0 and θ = −θ0. End of proof.

From generalities we descend to specifics and look first at plane orthogonal transforma-

tions for which the matrix is written generally as

Q =
∑
cosα cosβ
sinα sinβ

∏
, cosα cosβ + sinα sinβ = cos(β − α) = 0. (4.162)

Angle β is related to α in eq. (4.162) either by β = α + º/2, or β = α + 3º/2 and we

accordingly have the two basic plane orthogonal matrices

Q1 =
∑
cosα − sinα
sinα cosα

∏
and Q2 =

∑
cosα sinα
sinα − cosα

∏
. (4.163)

Matrix Q1, for which det(Q1) = 1, preserves triangle orientation, and matrix Q2, for which

det(Q2) = −1, reverses it. Orthogonal mapping with Q1 is said to be of the first kind, and

that with Q2 is said to be of the second kind.

To see what Q1 and Q2 do to a unit vector we write x = [cosβ sinβ]T and have

x0 = Q1x = [cos(α + β) sin(α + β)]T (4.164)

showing that matrix Q1 rotates the plane by α degrees, as in Fig. 51a, whereas

x0 = Q2x = [cos(α− β) sin(α− β)]T (4.165)

and matrixQ2 reflects the plane in the line generated by u = [cosα/2 sinα/2]T as in Fig. 51b.

Clearly Q1(−α) = QT
1 (α), and Q1(α)Q1(β) = Q1(α + β).

(a) Fig. 4.51 (b)
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Reflection of the plane in line ∏ can also be interpreted as a half-turn of the plane in

space around the reflecting line.

Matrix Q1 that performs rotation has generally no real eigenvector and no corresponding

real eigenvalue since all vectors are turned by it, except for α = 180o when Q1 = −I. Then

every x ∈ R2 is an eigenvector of Q1 with eigenvalue −1, −Ix = −x. Reflection matrix Q2

has two orthogonal eigenvectors. If vector x is parallel to the reflecting line (the mirror),

then x = x0, and if x is orthogonal to the reflecting line then x = −x0. The two eigenvalues

of reflection matrix Q2 are 1 and −1.

Let q1 and q2 denote the orthonormal columns (rows) of orthogonal matrix Q = Q(2×2).

Figure 52 shows them for Q1 and Q2.

Fig. 4.52

Theorem 4.32. Every plane rotation is the product of two reflections.

Proof.

∑
cosα − sinα
sinα cosα

∏
=
∑
cosβ sinβ
sinβ − cosβ

∏ ∑
cos ∞ sin ∞
sin ∞ − cos ∞

∏
=
∑
cos(β − ∞) − sin(β − ∞)
sin(β − ∞) cos(β − ∞)

∏
.

(4.166)

End of proof.
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One readily imagines two half-turns of a plane around two intersecting lines on it causing

an in-plane rotation. This is what happens when a cone rolls without slipping on a plane.

The reflection matrix can be written with the aid of the projection matrix. With reference

to Fig. 53 we establish that

x0 = Px− (x− Px) = 2Px− x = (2P − I)x (4.167)

and reflection matrix S (for Spiegelung) is

S = 2P − I = 2uuT − I, uTu = 1. (4.168)

Fig. 4.53

Projection matrix P is such that Pu = u, Pn = o, whereas reflection matrix S is such that

Su = u and Sn = −n. Notice that matrix S is symmetric as is Q2 in eq. (4.163).

We turn now to isometries of space.

Theorem 4.33. Let Q = Q(3× 3) be orthogonal. If det(Q) = 1, then there exists x =/ o

so that Qx = x. If det(Q) = −1, then there exists x =/ o so that Qx = −x.

Proof. To prove that if detQ = 1, then there exists x =/ o such that (Q− I)x = o, it is

enough that we show that Q− I is singular or det(Q− I) = 0. Indeed

det(Q− I) = det(Q−QQT ) = detQ(I −QT )

= det(I −QT )T = det(−I) det(Q− I)
(4.169)
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and since for I = I(n× n), det(−I) = (−1)n it results that 2 det(Q− I) = 0.

To prove that if det(Q) = −1, then there exists x =/ o such that (Q + I)x = o, it is

sufficient that we show that Q+ I is singular, or that det(Q+ I) = 0. In fact

det(Q+ I) = det(Q+QQT ) = detQdet(Q+ I)

= −det(Q+ I)
(4.170)

and 2 det(Q+ I) = 0. End of proof.

Theorem 4.34. Let x0 = Qx be an isometry of R3, QTQ = I. If det(Q) = 1, then the

isometry is a rotation. If det(Q) = −1, then the isometry is a reflection followed by rotation.

Proof. First let det(Q) = 1. By Theorem 4.33 there exists a right hand orthonormal

system q01, q
0
2, q

0
3 in R3 so that Qq01 = q01. Let the images of q02 and q03 be denoted by q

00
2 and

q
00
3 , Qq

0
2 = q

00
2 , Qq

0
3 = q

00
3 . The image system q

00
1 = q01, q

00
2 , q

00
3 is orthonormal and therefore

q
00
2 , q

00
3 are in the plane of q02, q

0
3. If Q0 is with columns q01, q

0
2, q

0
3, then det(Q0

T
QQ0) = 1 and

therefore

Q0
T
QQ0 =




1

q02
T q2

00
q20

T q3
00

q30
T q

00
2 q30

T q
00
3



 =




1

cosα − sinα
sinα cosα



 (4.171)

and space is rotated. Eigenvector q01 spans the axis of rotation and all points move on planes

orthogonal to q01 such that if x = q02 cos θ + q03 sin θ, then x0 = Qx = q
00
2 cos θ + q

00
3 sin θ, and

xTx0 = cosα for any θ.

Now let det(Q) be −1. In this case detQ0
T
QQ0 = −1, and if we choose q01 so that

Qq01 = −q01, then

Q0
T
QQ0 =




−1

q20
T q

00
1 q20

T q
00
3

q30
T q

00
2 q30

T q
00
3



 =




−1

cosα − sinα
sinα cosα



 (4.172)

and we have reflection followed by rotation. The reflecting plane, the mirror, is the plane

orthogonal to q01. Vector x orthogonal to the mirror is reflected into vector −x, and vector

x parallel to the mirror is rotated by α degrees in the plane. When α = 0

Q0
T
QQ0 =




−1

1
1



 (4.173)
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which is pure reflection. End of proof.

To write the matrix for the rotation of R3 around an axis spanned by the unit vector n,

we choose the orthonormal pair u v to span the plane perpendicular to the axis of rotation.

Figure 54 shows this plane with n pointing up.

Fig. 4.54

Vector x ∈ R3 is projected upon the u, v plane by

Px = (uuT + vvT )x (4.174)

or, with reference to Fig. 54

Px = kPxk(u cos θ + v sin θ) (4.175)

and x = Px+ (nTx)n. Rotation of space by α degrees around axis n produces the image

x0 = kPxk(u cos(θ + α) + v sin(θ + α)) + (nTx)n (4.176)

that with uTPx = kPxk cos θ, vTPx = kPxk sin θ, and uuT + vvT + nnT = I, is written as

x0 = Rx, R = I + (cosα− 1)(uuT + vvT ) + sinα(vuT − uvT ) (4.177)

and R is the space rotation matrix. We verify that, since uTn = vTn = 0,

Rn = n
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Ru = u cosα + v sinα, Rv = −u sinα + v cosα = u cos(
º

2
+ α) + v sin(

º

2
+ α) (4.178)

R(−α) = RT (α) = R−1(α)

and

R(180o) = I − 2(uuT + uvT ) = I − 2P = −I + 2nnT . (4.179)

To write rotation matrix R in terms of unit vector n = [n1 n2 n3]T that generates the

rotation axis we introduce N = vuT − uvT for which we have

N [u v n] = [v − u o]. (4.180)

Vectors u, v, n are orthonormal, matrix [u v n] is orthogonal, and

N = [v − u o][u v n]T (4.181)

or explicitly

N =




0

v2u1 − u2v1

v3u1 − u3v1

v1u2 − u1v2

0
v3u2 − u3v2

v1u3 − u1v3

v2u3 − u2v3

0



 . (4.182)

We observe that

n = [v3u2 − u3v2 v1u3 − u1v3 v2u1 − u2v1]
T (4.183)

is orthogonal to u and v, vTn = uTn = 0, and nTn = 1. In particular if u = e1 and v = e2,

then n = e3, and

N =




0 −n3 n2

n3 0 −n1

−n2 n1 0



 (4.184)

with n1, n2, n3 being the components of unit vector n that generates the rotation axis. Mak-

ing use once more of uuT + vvT + nnT = I we write rotation matrix R in final form

R = I cosα + (1− cosα)nnT + sinαN. (4.185)

One is tempted to represent rotation α around axis n as vector αn, but the end effect

of two rotations is not their vector sum. Finite rotation is not a vector. Only infinitesimal

rotation and angular velocity are vectors. Two successive rotations are described by the

ordered product of the two corresponding rotation matrices (Prove!)
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Reflection of space in a plane perpendicular to unit vector n is accomplished by matrix

S = I − 2nnT . (4.186)

If u is any vector in the reflecting plane (mirror), then Su = u, but Sn = −n.

Reflection in a line generated in space by unit vector u is done with

S = −I + 2uuT (4.187)

which we compare with R(180o) in eq. (4.179). When n and u are e3 = [0 0 1]T , the reflection

matrices in eqs. (4.186) and (4.187) become

S =




1

1
−1



 and S =




−1

−1
1



 (4.188)

respectively.

Theorem 4.35. Rotation of R3 is the product of two reflections in planes containing

the axis of rotation.

Proof. Let u1 and u2 be two unit vectors in the plane perpendicular to the axis of

rotation. With reference to Fig. 54 let u1 = u, and u2 = u cosφ+ v sinφ. The product of the

two reflection matrices S1 = I − 2u1uT1 and S2 = I − 2u2uT2 is

S1S2 = I + (cos 2φ− 1)(uuT + vvT ) + (uvT − vuT ) sin 2φ (4.189)

and if 2φ = −α, then S1S2 = R as in eq. (4.177). End of proof.

Theorem 4.36. Every orthogonal transformation is either a rotation or the product of

a rotation and a reflection.

Proof. This theorem is a restatement of Theorem 4.34. Let the columns of Q be q1, q2, q3

and consider the two orthonormal systems of R3 : e1 = [1 0 0]T , e2 = [0 1 0]T , e3 = [0 0 1]T ,

and q1, q2, q3. There exists a rotation R1 in the e1, q1 plane so that R1q1 = e1. Vectors

q01 = e1 = R1q1, q02 = R1q2, q03 = R1q3 are still orthonormal with q03 and q02 being in the
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e2, e3 plane. A second rotation around e1 turns q02 into q
00
2 = e2. Then q

00
3 = ±e3. In matrix

form

R1Q = [e1 R1q2 R1q3] , R2R1Q = [e1 e2 ± e3] (4.190)

For the plus sign we have R2R1Q = I, or Q = RT
1 R

T
2 which is a rotation matrix, whereas

for the minus sign we have SR2R1Q = I where S is the reflection matrix

S = I − 2e3e
T
3 =




1

1
−1



 . (4.191)

Then Q = RT
1 R

T
2 S. End of proof.

Corollary 4.37. Every orthogonal transformation of R3 is the product of at most three

reflections,

Q = (I + (∏1 − 1)u1u
T
1 )(I + (∏2 − 1)u2u

T
2 )(I + (∏3 − 1)u3u

T
3 ) (4.192)

where ∏1,∏2,∏3 are ±1, and where uT1 u1 = uT2 u2 = uT3 u3 = 1.

Proof. According to Theorem 4.36 Q = RI or Q = RS where R is rotation and S

reflection. Theorem 4.35 states that R itself is the product of two reflections and hence Q is

the product of at most three reflections. End of proof.

Exercises

4.9.1. Compute the eigenvalues and eigenvectors of

Q1 =
∑−1 0

0 −1

∏
, Q2 =

∑
1 0
0 −1

∏
, Q3 =

∑
0 1
−1 0

∏
, Q4 =

∑
0 1
1 0

∏

and show that Q1 performs a half-turn, and Q3 a quarter-turn. Verify that Q2 and Q4

perform reflection and find the mirror.

Hint: Q4e1 = e2, Q4e2 = e1, Q4(e1 + e2) = e1 + e2.

Show that Q2
3 = Q1, Q2

1 = I, Q2
2 = I and that Q2Q3 = Q4.
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Fig.4.55

4.9.2. Verify that the punctual transformations of R2 → R2

∑
x01
x02

∏
=
∑
x1

x2

∏
+

∑
c1
c2

∏
x0 = Ix+ c

and
∑
x01
x02

∏
= −

∑
x1

x2

∏
+ 2

∑
c1
c2

∏
x0 = −Ix+ 2c

are a translation and a half-turn around point C(c1, c2), respectively.

Show that the product of two half-turns is a translation, the product of three half-turns

is a half-turn, and that half-turns generally do not commute. When do half-turns commute?

(Fig. 55.)

4.9.3. Verify that the punctual transformation of R2 → R2

∑
x01
x02

∏
=
∑
cosα − sinα
sinα cosα

∏∑
x1 − c1
x2 − c2

∏
+
∑
c1
c2

∏
x0 = R(x− c) + c

is a rotation around C(c1, c2).

Show that the product of two plane rotations is a plane rotation of their angle sum. Find

the compound center (Fig. 56.)

4.9.4. Verify that the punctual transformation R2 → R2,

∑
x01
x02

∏
=
∑
cos 2θ sin 2θ
sin 2θ − cos 2θ

∏ ∑
x1

x2

∏
+ 2∞

∑− sin θ
cos θ

∏
x0 = Sx+ 2∞v
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Fig.4.56 Fig.4.57

where S = 2uuT − I, is a reflection in the line generated by u = [cos θ sin θ]T , passing at a

distance ∞ from the origin (Fig. 57.)

Show that the product of two reflections in parallel lines is a translation.

Show that the product of two reflections in lines making angle θ is a rotation of angle

2θ around their intersection point.

In particular, show that the product of two reflections in perpendicular lines is a half-

turn.

4.9.5. The mapping x0 = ρQx, where ρ > 0 and Q is a rotation matrix is called a similarity

transformation (when Q = I it is a dilation). Show that length is not preserved by it, but

angle is.

4.9.6. Show that if Q rotates R2 by angle θ, then

Q+QT = 2I cos θ, and aT (Q+QT )b = 2aT b cos θ.

In particular if aT b = 0 then aTQb+ bTQa = 0.

4.9.7. Prove that if R is a rotation matrix turning R3 by angle θ around n = [n1 n2 n3]T ,

then
1

2
(R11 +R22 +R33 − 1) = cos θ
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and

1

2
(R12 −R21) = −n3 sin θ,

1

2
(R13 −R31) = n2 sin θ,

1

2
(R23 −R32) = −n1 sin θ

or

(R12 −R21)
2 + (R13 −R31)

2 + (R23 −R32)
2 = 4 sin2 θ.

Show further that

det(R+ I) = 4(1 + cos θ).

Show that

Q =
∑
√

6/6
√

2/2
√

3/3
−2
√

6/6 0
√

3/3√
6/6 −

√
2/2

√
3/3

∏

rotates R3, find the axis and angle of rotation.

4.9.8. Prove that two rotations of R3 commute if and only if they share the same axis.

4.9.9. Prove that if R1 and R2 are rotations of R3 around axes passing through the origin,

then R1R2 is a rotation around some axis through the origin.

4.9.10. Verify that if R rotates R3 around n by angle θ, then the same rotation, around an

axis that does not necessarily pass through the origin, is done by

x0 = R(x− p) + p

where p is the position vector of an arbitrary point on the axis of rotation (Fig. 58.)

Fig.4.58 Fig.4.59
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4.9.11. Prove that the product of rotations around parallel axes in R3 is either a rotation or

a translation.

4.9.12. Prove that the product of rotations around non-intersecting axes in R3 is neither a

rotation nor a translation, but rather a rotation followed by a translation.

4.9.13. Prove that if OA = OB, OA0 = OB0 and angle AOB = angle A0OB0 = α, then AA0

and BB0 intersect at angle α. Make use of rotation matrix R (Fig. 59.)

4.9.14. Prove that the centroids G1, G2, G3 of equilateral triangles erected externally on the

sides of an arbitrary triangle form an equilateral triangle. Use the rotation matrix R (Fig.

60.)

4.9.15. Triangle ABC has right angle at C. Show that if G and G0 are centers of exterior

squares, and M is a midpoint, then GMG0 is isosceles with a right angle at M . Use the

rotation matrix R (Fig. 61.)

Fig.4.60 Fig.4.61

4.10 Spectral decomposition

Let u1, u2, u3 be an orthonormal system in R3. Since I = u1uT1 +u2uT2 +u3uT3 , reflection

matrix S = I − 2u3uT3 can also be written as

S = u1u
T
1 + u2u

T
2 − u3u

T
3 (4.193)
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so that Su3 = −u3, Su1 = u1, Su2 = u2, and S−1 = S. Reflection, we know, is the basic

isometry with which any orthogonal mapping is generated.

Presently we introduce the more general stretch matrix

T = u1u
T
1 + u2u

T
2 + ∏u3u

T
3 T−1 = u1u

T
1 + u2u

T
2 + ∏−1u3u

T
3 (4.194)

where u1, u2, u3 are orthonormal, that we may also write as

T = I + (∏− 1)u3u
T
3 . (4.195)

We will show it to be a basic element in the general nonsingular mapping of R3.

Stretch matrix T is such that Tu1 = u1, Tu2 = u2, Tu3 = ∏u3, and u1, u2, u3 are three

orthonormal eigenvectors of T corresponding to eigenvalues 1, 1,∏. Writing x = α1u1 +

α2u2 +α3u3 and seeking ∏0 so that Tx = ∏0x we ascertain that stretch matrix T has no more

eigenvalues. Vectors in the plane generated by u1 and u3 are unaffected by mapping T , but

vectors along u3 extend by factor ∏. The unit sphere is mapped by T into an ellipsoid of

revolution.

Three matrices T1, T2, T3

T1 = I + (∏1 − 1)u1u
T
1 , T2 = I + (∏2 − 1)u2u

T
2 , T3 = I + (∏3 − 1)u3u

T
3 (4.196)

affect successive orthogonal stretchings of R3 and the compound T = T1T2T3 is

T = ∏1u1u
T
1 + ∏2u2u

T
2 + ∏3u3u

T
3 . (4.197)

As a prelude to a more general discussion, we raise at this point the following question on

plane linear mappings: Given two noncolinear vectors a1, a2, does there exist an orthogonal

double-stretching of their plane

T = ∏1u1u
T
1 + ∏2u2u

T
2 (4.198)

that maps a1, a2 into an orthonormal q1, q2?

We write

[a1 a2] =
∑
A11 A12

A21 A22

∏
, [q1 q2] =

∑
cosφ − sinφ
sinφ cosφ

∏
, [u1 u2] =

∑
cos θ − sin θ
sin θ cos θ

∏
(4.199)
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and require that Ta1 = q1, Ta2 = q2. Elimination of ∏1 and ∏2 between the two equations

yields

(uT1 q1)(u
T
1 a2)− (uT1 q2)(u

T
1 a1) = 0, (uT2 q2)(u

T
2 a1)− (uT2 q1)(u

T
2 a2) = 0 (4.200)

respectively, or

(A22 −A11) sin(2θ − φ) + (A12 +A21) cos(2θ − φ) + (A11 +A22) sinφ

+ (A12 −A21) cosφ = 0,

(A22 −A11) sin(2θ − φ) + (A12 +A21) cos(2θ − φ)− (A11 +A22) sinφ

− (A12 −A21) cosφ = 0

(4.201)

respectively. Hence

(A11 +A22) sinφ + (A12 −A21) cosφ = 0,

(A22 −A11) sin(2θ − φ) + (A12 +A21) cos(2θ − φ) = 0
(4.202)

that can be solved for φ and θ.

In case A12 = A21 we may take φ = 0 so that q1 = e1, q2 = e2. Expressed as matrix

products, if A = AT , then TA = I or A = T−1 and every nonsingular symmetric mapping

of R2 is the result of two stretchings along orthogonal axes. The singular case is trivial.

Agreeing that T is generic for stretch we write for A = AT , A = T , and have that

Au1 = ∏1u1 and Au2 = ∏2u2. (4.203)

In every nonsingular symmetric mapping of R2 there are two orthogonal vectors u1, u2 that

have as images u01 = ∏1u1 and u02 = ∏2u2. This is not new to us. We have already seen it in

Section 4.8 when we discussed the mapping of the unit circle into an ellipse.

Writing A = T, x = α1u1 +α2u2 and restricting x to xTx = 1, we have that α2
1 +α2

2 = 1.

Since A−1 = (1/∏1)u1uT1 +(1/∏2)u2uT2 writing the image x0 = Ax as x0 = α01u1 +α02u2 yields

µ
α01
∏1

∂2
+
µ
α02
∏2

∂2
= 1 (4.204)

which is an ellipse.
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For nonsymmetric A = A(2 × 2) the above argument implies the existence of stretch

matrix T and rotation matrix Q, QTQ = I, so that TA = Q, differently written as A = TQ,

and we have

Theorem 4.38. Every nonsingular mapping of R2 is the result of a rotation followed

by two orthogonal stretchings.

Stretch T changes the area of a triangle by factor ∏1∏2, and det (T ) = ∏1∏2. Hence det

(A) = det(AQ) = det(A) det(Q) = ∏1∏2.

As an example consider the deformation or mapping performed by

A =
∑
1 k

1

∏
(4.205)

called shear. Only one vector, u = [1 0]T is mapped colinearly by A and has the eigenvalue

∏ = 1. For k = 1 we compute from eq. (4.202) φ = −26.565o and θ = 31.718o, and from

A = TQ we have

uT1 a1 = ∏1u
T
1 q1, u

T
2 a1 = ∏2u

T
2 q1 (4.206)

so that ∏1 = 1.618, ∏2 = 0.618.

Figure 62 shows the decomposition of shear into a rotation and two perpendicular stretch-

ings (actually a compression and a stretch).

Shear has the physical significance of involving the relative sliding movement of material

layers–a deformation with friction. Such friction between layers of flowing fluid is termed

viscosity.

In R3, if the mapping x0 = Ax is such that xTx = 1, then 1 = x0(AAT )−1x0 describes

an ellipsoid. Every plane through the origin cuts it in an ellipse. Among all ellipses there is

one with longest major axis and shortest minor axis. These are the maximum and minimum

of x0Tx0, respectively. It is a simple argument to show that the extrema of x0Tx0 occur

in orthogonal directions. Let the maximum of x0Tx0 happen in the direction of x03 and the

minimum in the direction of x01. They are the image of the orthogonal x3, x1. By the gradient

argument of Section 4.8, Cx01 = ∏−2
1 x01 and Cx03 = ∏−2

3 x03, C = (AAT )−1. If x02 is a vector

orthogonal to both x01 and x03, then Cx02 = ∏−2
2 x02. We have that

xT1 x2 = x1
0TA−TA−1x02 = 0 , xT1 x3 = x1

0TA−TA−1x03 = 0 (4.207)
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Fig. 4.62

and the orthonormal x1, x2, x3 is mapped into the orthogonal x01x
0
2x
0
3; the eigenvectors of

(AAT )−1 or AAT . If ∏−2
j is such that (AAT )−1x0j = ∏−2

j x0j , then xj 0
Tx0j = ∏2

j . In sum

Theorem 4.39. Every nonsingular linear mapping of R3 is the product of three orthog-

onal stretchings (positive or negative) and a rotation. Matrix A = A(3 × 3) can be written

as A = TQ where T = TT and where Q is a rotation.

Now let A be symmetric, A = AT . There exists an orthonormal system u1, u2, u3 in

R3 that is mapped by u0 = Au into the orthogonal u01, u
0
2, u

0
3 such that A2u0j = ∏2

ju
0
j , or

A2uj = ∏2
juj , and A2(uj − u0j) = ∏2

j(uj − u0j). If the principal axes of the ellipsoid are

unique, then uj is colinear with u0j and we have that u0j = µjuj or Auj = µjuj . No rotation

of the mapped u1, u2, u3 takes place, A = T , and we have

Theorem 4.40. Every nonsingular symmetric mapping of R3 is the product of three

orthogonal stretchings.
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Any symmetric A = A(3 × 3) matrix, not necessarily positive definite, has three real

eigenvalues and three orthonormal eigenvectors. If the eigenvalues are distinct, the eigen-

vectors are unique up to sense.

Computation of the eigenvalues and eigenvectors is related to the minimization of a

function of several variables and is more involved than the solution of a system of linear

equations. The algebraic eigenproblem is theoretically interesting and physically significant.

It constitutes the better part of theoretical and computational linear algebra and we shall

return to the subject in Chapters 6 and 8 for a thorough discussion.

Meanwhile we consider the two dimensional eigenproblem det (A− ∏I) = 0 that can be

given a simple geometrical meaning. Writing A = TQ, where T is the symmetric stretch

matrix and Q a rotation, we determine that

det(A− ∏I) = det(TQ− ∏QTQ) = det(T − ∏QT )

= det(T − ∏Q)
(4.208)

and det (A− ∏I) = 0 if and only if vector u =/ o exists so that Tu = ∏Qu.

Mapping u0 = Tu stretches and rotates unit vector u. Let T = ∏1u1uT1 +∏2u2uT2 be with

positive ∏’s. Then, as in Fig. 63, rotation is zero when u is colinear with u1 or u2, and is

Fig. 4.63

maximal for some intermediate direction. If ∏1 is negative then Tu1 rotates u1 by 180o. The

isometry u0 = Qu rotates u through a constant angle α. Colinearity of Tu and Qu, that is,
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Tu = ∏Qu, can be realized if and only if the angle of rotation by Qu is less than or equal to

the maximum rotation by Tu. And we see that if there is one solution to Tu = ∏Qu, then

there are two.

Consider for example

A =
∑
1

2

∏ ∑
cosα − sinα
sinα cosα

∏
= TQ. (4.209)

Matrix T rotates and elongates unit matrix u = [cosφ, sinφ]T . Figure 64 shows the angle

of rotation θ between u and its image u0 = Tu = [cosφ, 2 sinφ]

cos θ =
uTu0

u0T u0T
(4.210)

as a function of 0 ≤ φ ≤ º/2.

Fig. 4.64

As expected, θ = 0 at φ = 0 and φ = º/2, and it reaches a maximum of θ = 19.47o at

φ = 35.28o. Hence matrix A has two (real) eigenvalues if α ≤ 19.47o, and no real eigenvalue

if α > 19.47o. Take α = 15o and look again at Fig. 64. For this α matrix A has two

noncolinear eigenvectors u1 = [cosφ1 sinφ1]T and u2 = [cosφ2 sinφ2]T at φ1 = −32.97o

and φ2 = −72.03o, with corresponding eigenvalues ∏1 = 1.134 and ∏2 = 1.764. The reader

may verify that Au1 = ∏1u1 and Au2 = ∏2u2.
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More generally, if

det
µ∑

∏1

∏2

∏
− ∏

∑
cosα − sinα
sinα cosα

∏∂
= 0 (4.211)

written out as

∏2 − ∏(∏1 + ∏2) cosα + ∏1∏2 = 0

is with ∏1∏2 < 0, that is if Tu can perform a half-turn, then the quadratic equation is soluble

for any α and

A =
∑
∏1

∏2

∏ ∑
cosα − sinα
sinα cosα

∏
= TQ (4.212)

has two real eigenvalues for any α.

The three-dimensional picture is more involved, but we readily conclude that since in

R3 det (A− ∏I) = 0 is a cubic equation in ∏, one real solution to it always exists.

Exercises

4.10.1. Show that the three roots of det(R − ∏I) = 0, RTR = I, det(R) = 1, are ∏1 =

1, ∏2 = cos θ + i sin θ, ∏3 = cos θ − i sin θ.

4.10.2. Solve

det(A− ∏I) = 0 , A =
∑

1 −1
−1 2

∏

and write the matrix as A = ∏1u1uT1 + ∏2u2uT2 for orthonormal u1, u2.

4.10.3. Express

A =
∑
1 1
−1

∏

as A = TQ in accordance with Theorem 4.38.

4.10.4. Let the matrix in transformation (4.129) be A,

A =
∑
1 −σ1 sinφ
0 cosφ− σ2 sinφ

∏
, ATA =

∑
1 −σ1 sinφ

−σ1 sinφ σ2
1 sin2 φ + (cosφ− σ2 sinφ)2

∏
.

Show that the two eigenvalues ∏2
1,∏

2
2 of ATA are limited by

∏2
1 + ∏2

2 − ∏2
1∏

2
2 ≥ 1.
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4.10.5. Prove that the 3× 3 symmetric

A = ∏1u1u
T
1 + ∏2u2u

T
2 + ∏3u3u

T
3 , uTi ui = 1, uTi uj = 0

is positive definite if and only if its three eigenvalues ∏1,∏2,∏3 are positive.

4.10.6. Prove that for every A = AT there exists a symmetric orthogonal matrix Q =

QT , Q2 = I, so that AQ is positive definite.

4.10.7. Prove that if B = −BT , then Q = (I − B)(I + B)−1 is orthogonal. Show that

det(Q) = 1.

4.11 Vector and matrix norms

Motivated by geometrical considerations, we introduced in Section 4.3 the concept of

vector magnitude or norm as the length of the directed segment the list of numbers represents.

For vectors with more than three (real) components, for vectors in vector space Rn, the

geometrical meaning of length is lost but the concept of size remains useful and is naturally

extended. We take kak =
√
aTa to be the norm of a ∈ Rn, and have for any a ∈ Rn and

b ∈ Rn,

Theorem 4.41.

1. kαak > 0 if a =/ o, and kak = 0 if a = o,

2. kαak = |α| kak, and

3. ka+ bk ≤ kak+ kbk,

4. |aT b| ≤ kak kbk.

Proof. Statements 1 and 2 are obvious. To prove the Cauchy-Schwarz inequality of

statement 4 we use the fact that whatever α, a, and b,

(a+ αb)T (a+ αb) ≥ 0 (4.213)

or

aTa+ 2αaT b+ α2bT b ≥ 0 (4.214)
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and conclude that since this quadratic form in α is non-negative its discriminant is not

positive, or

(aT b)2 − (aTa)(bT b) ≤ 0. (4.215)

Upon taking the positive square root of (aT b)2 we obtain the desired inequality

|aT b| ≤ kak kbk. (4.216)

To prove the triangular inequality of statement 3, we start with

ka+ bk2 = (a+ b)T (a+ b) = kak2 + 2aTa+ kbk2 (4.217)

and get

ka+ bk2 ≤ kak2 + 2|aT b| + kbk2. (4.218)

Replacement of |aT b| by the not less kakkbk results in

ka+ bk2 ≤ kak2 + 2kak kbk+ kbk2 = (kak+ kbk)2 (4.219)

and the triangular inequality is obtained by taking the positive square root on both sides.

End of proof.

The next inequality is important enough to be put as

Corollary 4.42. Let a ∈ Rn and b ∈ Rn. Then

ka− bk ≥ | kak − kbk |. (4.220)

Proof. Writing the triangular inequality as

ka+ b− ak ≤ kak+ kb− ak, and ka− b+ bk ≤ ka− bk+ kbk (4.221)

results in kb− ak ≥ kbk − kak and ka− bk ≥ kak − kbk. Hence the absolute value. End of

proof.
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Fig. 4.65

For a geometrical interpretation to Corollary 4.42 see Fig. 65.

Norms introduce analysis into linear algebra in giving sense to the idea of closeness or

distance between two vectors. If it is true for the three vectors a, x, x0 that

ka− xk ≤ ka− x0k (4.222)

then vector x is closer, or nearer to vector a than vector x0, and we concisely qualify

lim
n→1xn = a (4.223)

as

lim
n→1 kxn − ak = 0 (4.224)

instead of saying that every component of xn tends to the corresponding component of a as

n→1.

In Rn, n > 3, we may relinquish any vestige of geometry and seek other convenient or

appropriate, analytically defined, norms that satisfy the basic requirements 1,2,3 of Theorem

4.41.

The choice

kakp = (|a1|p + |a2|p + · · · + |an|p)
1
p p ≥ 1 (4.225)
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often referred to as the `p norm, is common, not only for p = 2, but also for p = 1, for which

it becomes

kak1 = |a1| + |a2| + · · · + |an| (4.226)

and p =1, for which it becomes

kak1 = max
i

|ai|. (4.227)

Obviously kakp > 0 if a =/ o, kakp = 0 only if a = o, and kαakp = |α|kakp. Also

ka+ bk1 =
nX

i=1

|ai + bi| ≤
nX

i=1

|ai| + |bi| = kak1 + kbk1 (4.228)

and

ka+ bk1 = max
i

|(a+ b)i| ≤ max
i

|ai| + max
j

|bj| = kak1 + kbk1. (4.229)

As an exercise the reader may prove that

kak1 ≤ kak2 ≤ kak1 (4.230)

and compare the inequalities with Fig. 66.

Fig. 4.66

From vector norms we turn to matrix norms and find it helpful to think of matrix A as

being a linear operator that acts on x to produce x0 = Ax. The size or magnitude of the

operator is taken to be its largest action —the greatest relative magnification it gives x:

kAk = max kAxk, kxk = 1 (4.231)
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where max stands for the superior or utmost value. Since the linear transformation is bounded

such value exists. When kAxk is a continuous function of the components of x, as for kAxk2,

the least and largest values of kAxk2 under the condition that kxk2 = 1 are true local minima

and maxima.

Equivalently

kAk = max
kAxk
kxk x =/ o (4.232)

from which the fundamental norm inequality

kAxk ≤ kAk kxk (4.233)

quickly results.

Theorem 4.43. If kAk < 1, then for any vector x, kAnxk → 0 as n→1.

Proof.

kAnxk = kAAn−1xk ≤ kAk kAn−1xk ≤ kAknkxk (4.234)

and as n→1 kAkn → 0. End of proof.

Matrix A is said in this case to be convergent.

Matrix norm kAk is defined through vector norm kAxk, and the matrix norm depends

on the choice of the vector norm so that we have kAk1, kAk2, kAkp, and kAk1. In case the

subscript is omitted, reference is to any accepted norm.

Unlike vector norms, matrix norms are not always easily computed, let alone explicitly

written in terms of the entries, but kAk1 is an exception. From the definition

kAk1 = max kAxk1, kxk1 = 1 (4.235)

it follows that

kAk1 = max
i

X

j

|Aijxj| , kxk1 = 1 (4.236)

and the maximum is seen to be achieved with xj = ±1 so as to make each term in the row

sum positive, and

kAk1 = max
i

X

j

|Aij|. (4.237)
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We return to the `2 norm of Ax, for which

kAxk22 = xTATAx. (4.238)

From the previous section we know that in R3 ATA has three non-negative eigenvalues

∏2
1 ≤ ∏2

2 ≤ ∏2
3, and

kAk2 = |∏3|. (4.239)

Matrix A need not be square, but if A is singular, then some of the eigenvalues of ATA are

zero, but as long as A =/ O at least one eigenvalue of ATA is greater than zero.

The symmetric case is most interesting. When A = AT , matrix A itself has three (real)

eigenvalues which are the principal stretches of x0 = Ax.

Theorem 4.44. Let the three eigenvalues of A = AT be arranged as |∏1| ≤ |∏2| ≤ |∏3|.

Then kAk2 = |∏3| and kA−1k2 = |∏−1
1 |.

Proof. If Ax1 = ∏1x1 then A−1x1 = ∏−1
1 x1, and hence the eigenvalue magnitudes of

A−1 are |∏−1
3 | ≤ |∏−1

2 | ≤ |∏−1
1 |. End of proof.

We have limited our arguments of kAk2 to R3 in the geometrical spirit of this chapter,

but the incisive reader should see the ready extensions to Rn. How to actually compute the

maximum of kAxk2/kxk2 over all x =/ o must wait until Chapter 8.

Computation of kAk2 is costly, but it has a remarkable property.

Theorem 4.45. If A = AT , then kAk2 ≤ kAk.

Proof. Let the eigenvalues of A be ordered as |∏1| ≤ |∏2| ≤ |∏3|, and write Ax3 = ∏3x3.

Then

kAx3k = |∏3| kx3k = kAk2 (4.240)

if we choose kx3k = 1. Since kAx3k ≤ kAk the inequality of the theorem is established. End

of proof.

The spectral norm kAk2 of A = AT is the least of all norms.

Theorem 4.45 asserts that if A = AT , then a necessary and sufficient condition for

An → O as n→1, is that max |∏j| < 1. For any other norm the condition is sufficient but
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not necessary. If A is not symmetric, then the condition that kAk2 < 1 is again sufficient

but not necessary. We define therefore the spectral radius of A as the function ρ of A such

that in any norm

lim
k→1

k(1
ρ
A)kk = 1 (4.241)

or

ρ = lim
k→1

kAkk
1
k , ρ = lim

k→1

kAk+1k
kAkk . (4.242)

Then ρ ≤ max |∏j|, ∏2
j being the eigenvalues of ATA, with equality holding if A = AT . The

purpose of factor 1/ρ is to make sure that as k →1, (1/ρA)k tends to a nonzero matrix of

finite entries.

Theorem 4.46. For matrix A:

1. kAk > 0 if A =/ O, kAk = 0 if A = O.

2. kαAk = |α| kAk.

3. kABk ≤ kAk kBk, kA2k ≤ kAk2.

4. kA+Bk ≤ kAk+ kBk.

5. kA−Bk ≥ | kAk − kBk |.

6. kA−1k ≥ kAk−1.

Proof.

1. Since x =/ o, kAxk = 0 only if A = O.

2. kαAxk = |α| kAxk.

3. Let x, kxk = 1, be such that kABk = kABxk.

Then kABxk ≤ kAk kBxk ≤ kAk kBk.

4. Let x, kxk = 1, be such that kA+Bk = k(A+B)xk. Then k(A+B)xk ≤ kAxk+kBxk ≤

kAk+ kBk.

5. Same as Corollary 4.22.

6. Since AA−1 = I, and kIk = 1, it results that kAA−1k = 1 and kAk kA−1k ≥ kAA−1k = 1.

End of proof.
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As an example of how the concept of norm enters analytical considerations, particularly

the notion of convergence, into linear algebra consider the following. Suppose that matrix A

can be split into A = I − E with kEk < 1. Writing

A−1 = (I − E)−1 = I + E + E2 + · · · + Ek +Rk (4.243)

where Rk is a residual matrix, leads to

I = (I − E)(I + E + E2 + · · · + Ek +Rk) (4.244)

and the residual matrix is obtained as

Rk = (I − E)−1Ek+1 = A−1Ek+1. (4.245)

In norms

kRkk = kA−1Ek+1k ≤ kA−1k kEk+1k ≤ kA−1k kEkk+1 (4.246)

and kRkk → 0 as k →1.

Otherwise stated, if

Bk = I + E + E2 + · · · + Ek (4.247)

then

kA−1 −Bkk = kRkk (4.248)

and kRkk → 0 as k →1. The iterative algorithm

Bk+1 = I + EBk , B0 = I (4.249)

generates a sequence of matrices B0, B1, . . . , Bk that converges to A−1.

All this opens up fascinating prospects for the iterative solution of the linear system

Ax = f . If we succeed in writing A = I − E with kEk < 1, then the iterative algorithm

xk+1 = f + Exk, x0 = f (4.250)

generates the vector sequence x0, x1, . . . , xk that is assured to converge to the solution x of

Ax = f . In other words, for any preset tolerance ≤, index k exists so that kx− xkk ≤ ≤.
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With the residual vector rk = f−Axk, and by writing E = I−A, the iterative algorithm

to solve Ax = f becomes simply

xk+1 = xk + rk (4.251)

with x0 being arbitrary. Subtraction of x from both sides of this equation results in

ek+1 = Eek (4.252)

where ek = xk − x is the error vector of the kth iteration. Iterative algorithms that exhibit

such an error relationship are said to converge linearly.

For a feel as to how effective the iterative scheme for the solution of Ax = f can be we

undertake the solution of

∑
2 −1
−1 2

∏ ∑
x1

x2

∏
=
∑
0
3

∏
→

∑
1 −1/2

−1/2 1

∏ ∑
x1

x2

∏
=
∑

0
3/2

∏
, x =

∑
1
2

∏
(4.253)

for which we compute kEk2 = kEk1 = 1/2. Starting with x0 = [1 0]T we iteratively

generate the sequence

x1 =
∑
0
2

∏
, x2 =

∑
1

3/2

∏
, x3 =

∑
3/4
2

∏
, x4 =

∑
1

15/8

∏
, x6 =

∑
15/16

2

∏
(4.254)

and decide to pause.

For a larger system with

A =





1 −1/2
−1/2 1 −1/2

−1/2 1 −1/2
−1/2 1 −1/2

−1/2 1 −1/2
−1/2 1





, E =
1

2





1
1 1

1 1
1 1

1 1
1





(4.255)

we readily establish that kEk1 = 1, but it is still possible that kEk2 < 1. We compute

E2 =
1

4





1 1
2 1

1 2 1
1 2 1

1 2
1 1





, E3 =
1

8





2 1
2 3 1

3 3 1
1 3 3

1 3 2
1 2
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E4 =
1

16





2 3 1
5 4 1

3 6 4
4 6 3

1 4 5
1 3 2





, E5 =
1

32





5 4 1
5 9 5

9 10 4
4 10 9

5 9 5
1 4 5





E6 =
1

64





5 9 5
14 14 5

9 19 14
14 19 9

5 14 14
5 9 5





, E7 =
1

128





14 14 5
14 28 19

28 33 14
14 33 28

19 28 14
5 14 14





(4.256)

and obtain the sequence kEk1 = 1, kE2k
1
21 = 0.866, kE3k

1
31 = 0.956, kE4k

1
41 = 0.949,

kE5k
1
51 = 0.936, kE6k

1
61 = 0.932, kE7k

1
71 = 0.926, . . . , kE14k

1
141 = 0.914, that converges to

kEk = 0.901. Iterative scheme (4.248) converges with this E, albeit more slowly.

In fact, for E = E(n× n) at large n, kEk = 1− 4/n2, nearing to 1 as n increases. The

iterative method becomes slower and less efficient exactly when its application becomes most

desirable.

The practical lesson drawn from this limited example is that even though iterative meth-

ods are theoretically intriguing, they can be a practical disappointment. Repetitive correc-

tion of an arbitrary initial guess has great computational appeal but is costly and raises

troublesome issues on start, finish and error estimates.

What attracts us to iterative methods is the central need of computational linear algebra

to deal with vast sparse systems of linear equations. Iterative methods do not require matrix

A explicitly, only Axk, which for a sparse A can be done very efficiently regardless of the

sparseness pattern. Considerable effort has gone and is still going into the search and analysis

of efficient iterative methods for the solution of the large linear system. As matters now stand

no iterative method exists that generally outperforms Gauss elimination, certainly not for

small dense matrices. The only exception to this is the method of conjugate gradients, to be

discussed in Chapter 7, that for special large sparse systems does raise a serious challenge

to the Gauss elimination algorithm.
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Exercises

4.11.1. Under what conditions on vectors a and b is inequality ka − bk ≥ |kak − kbk| best,

and under what conditions is it worst?

4.11.2. Prove that if kak =
√
aTa, then

ka+ bk2 + ka− bk2 = 2(kak2 + kbk2)

and

aT b =
1

4
ka+ bk2 − 1

4
ka− bk2.

4.11.3. Prove that for any four vectors p, q, r, s

kp− rk+ kq − sk ≥ | kp− qk − kr − sk| .

4.11.4. Prove the Hölder inequality

|aT b| ≤ kakpkbkq
1

p
+

1

q
= 1, p > 1, q > 1.

4.11.5. Prove that if u and v are unit vectors and η ≥ 0, then

ku− vk ≤ 2ku− ηvk.

4.11.6. Prove that

ka− bk ≥ 1

4
(kak+ kbk)ku− vk , u = a/kak, v = b/kbk.

4.11.7. For A = aT b, write kAk1.

4.11.8. Can kAk = maxij |Aij| serve as a norm for matrix A? Show that, in fact,

kAk > 0 if A =/ O, kAk = 0 if A = O, kαAk = |α| kAk, kA+Bk < kAk+ kBk,

but that generally kABk is not < kAk kBk.
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4.11.9. Let A = [a1 a2 a3]. Show that the Frobenius norm of matrix A,

kAkF = (
X

i,j

A2
ij)

1/2 = (ka1k2 + ka2k2 + ka3k2)1/2

satisfies the basic norm provisions kAkF > 0 if A =/ O, kAkF = 0 if A = O, kαAkF =

|α| kAkF , kA+BkF ≤ kAkF +kBkF , and kABkF ≤ kAkFkBkF . Notice that kxkF =
√
xTx.

4.11.10. Prove that if kUk < 1, then I − U is nonsingular and

k(I − U)−1k ≤ 1

1− kUk .

Hint: use the fact that (I − U)−1 = I + U(I − U)−1.

4.11.11. Let U = I −A−1B. Show that if kUk < 1, then

kB−1k ≤ kA−1k
1− kUk .

4.11.12. Show that if kUk < 1, then

k(I − U)−1k ≥ 1 + kUk.

4.11.13. Let A be nonsingular. Prove that if kA−1Bk < 1, then A+B is nonsingular.

4.11.14. The condition number of A is defined as

∑(A) = kAk kA−1k.

Show that ∑(I) = 1, ∑(A) ≥ 1, and that ∑(αA) = ∑(A), α =/ 0.

Also that if D is diagonal, then

kDk2 = kDk1 = max
i

|Dii|

and

∑2(D) = ∑1(D) = max
i

|Dii|/min
j

|Djj|.
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4.11.15. Prove that
kB−1 −A−1k
kB−1k ≤ ∑(A)

kB −Ak
kAk .

Hint: start with A−1 −B−1 = A−1(I −AB−1).

4.11.16. If Ax = f and Ax0 = f 0, show that

kx− x0k
kxk ≤ ∑(A)

kf − f 0k
kfk .

Hint: start with x− x0 = A−1(f − f 0).

4.11.17. If AB = I + E, show that

kA−1 −Bk
kA−1k ≤ kEk, kAB − Ik = kEk, kBA− Ik ≤ ∑(A)kEk.

4.11.18. If Ax = f and A0x0 = f , show that

kx− x0k
kxk ≤ ≤∑(A)

1− ≤∑(A)
, ≤ =

kA−A0k
kAk

if ≤∑(A) < 1.

4.11.19. Let Ax = f and Ax0 = f + r be with the symmetric matrix

A = ∏1u1u
T
1 + ∏2u2u

T
2 + ∏3u3u

T
3 0 < |∏1| ≤ |∏2| ≤ |∏3|

for orthonormal u1, u2, u3. Show that if r = α1u1 + α2u2 + α3u3, then

x0 − x = A−1r =
α1

∏1
u1 +

α2

∏2
u2 +

α3

∏3
u3.

4.11.20. Show that if A = ∏1u1uT1 + ∏2u2uT2 + ∏3u3uT3 for the orthonormal u1, u2, u3, and

∏j > 0, then

A
1
2 = ∏

1
2
1 u1u

T
1 + ∏

1
2
2 u2u

T
2 + ∏

1
2
3 u3u

T
3 , A

1
2A

1
2 = A.

4.11.21. Implicit in the vector norm is the requirement that kxk is finite as long as compo-

nents xi of x are finite. Prove that if maxi |xi| → 1, then in any norm kxk → 1. Also,
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that if entries Aij of matrix A are all finite, then so is kAk, and that if kAk is finite, then so

are all Aij .

4.11.22. Use the fact that kAkk ≤ kAkk to prove that the spectral radius ρ of A, as defined

in eq.(4.241), is such that ρ ≤ kAk.

4.11.23. Give a thorough analytical consideration to eqs.(4.241), (4.242) and compute a good

approximation to the spectral radius of

A =
∑
1 −2
1 1

∏
= 2

"
1
2 −1
1
2

1
2

#

using both the kAkF and the kAk1 norms of A. The exact value is ρ =
√

3. What is

lim(1/ρA)k, k →1.

Explain why the result is independent of the norm used.

Hint: say the two spectral radii ρ2 > ρ1 are obtained by two different norms

lim
k→1

k( 1

ρ1
A)kk1 = 1, lim

k→1
k( 1

ρ2
A)kk2 = 1.

This essentially means that for a very high value of k,

(
1

ρ1
A)k = B1 =/ O, (

1

ρ2
A)k = B2 =/ O

with finite B1 and B2 that are independent of k. Or

B1 = (ρ2/ρ1)
kB2, ρ2/ρ1 > 1.
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Answers

Section 4.3

4.3.1. α = ±1.

4.3.3. Vectors not coplanar.

4.3.4. α = 2∞,β = 3∞, ∞ = ∞.

4.3.5. α = 3.

4.3.6. α = 2,β = 3.

Section 4.4

4.4.1. xTa = aTx = 0, x = α[1 1]T for arbitrary α.

4.4.2. x = ±(
√

2/2)[1 1]T .

4.4.3. xTa = xT b = 0, x = o.

4.4.4. xTa = 0, x = α[1 1 0]T + β[−2 0 1] for arbitrary α and β.

4.4.5. xTa = xT b = 0, x = α[1 0 − 1]T for arbitrary α.

4.4.6. cosφ = −
√

6/3,φ = 144.74o .

4.4.7. x = αa+ βb, xT c = 0, x = ∞[−1 2 − 7]T .

4.4.8. x = αa + βb, xT c =
√
xTx

√
cT c cos(60o). Since the condition is on angle we may

assume first that xTx = 1. Then 6α2 + 5β2 = 1,α = 3/14,β = ±(1/7)
q

71/10.

Section 4.6

4.6.1. The nullspace of A = [a1 a2 a3] consists of all vectors x = α[1 − 1 1]T for arbitrary

α from which we conclude that the columns of A are coplanar. In fact, a1 − a2 + a3 = o.

The range of the transformation consists of all vectors x0 = x1a1 + x2a2 + x3a3 for arbitrary

scalar variables x1, x2, x3. But since a1 − a2 + a3 = o the range is only two dimensional,

x = α1a1 + α2a2 where α1 = x1 − x3,α2 = x2 + x3.
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4.6.3. x = [x1 x2]T , x2 = ±2x1.

4.6.4. Does a linear mapping x0 = Ax of R2 onto itself exist by which the orthonormal x1, x2

are mapped such that Ax1 = ∏1x2, Ax2 = ∏2x1, ∏1 =/ ∏2? Hint: xT1 Ax1 = xT2 Ax2 = 0.

Section 4.7

4.7.4. α = 1/3.

Section 4.8

4.8.1.

A =
∑
2 1
1 1

∏
.

4.8.7.

x01 =
2x1 + x2

4x1 + 4x2 − 2
, x02 =

x1 + 2x2

4x1 + 4x2 − 2
.
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