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1 Overview
Introduction

My research focuses on developing a global understanding of how complex systems change over
time, and bridging the gap between what can be proven mathematically and what can be computed
numerically.

Nonlinear differential equations are rarely explicitly solvable by hand. Instead of searching for
arbitrary solutions, the dynamical systems viewpoint is to focus one’s analysis on the qualitative
behavior of invariant sets1. For example, while a periodic orbit’s geometry may be sensitive
to perturbations, its topology (eg being homeomorphic to a circle) is much more robust. With
abstract theorems one can describe in great detail the dynamics on and around generic invariant
sets. However for a specific differential equation, verifying the hypotheses of such a theorem often
requires hard quantitative analysis.

I am particularly interested in infinite dimensional dynamical systems2 and understand-
ing their dynamics through a holistic study of a system’s invariant sets. Computationally, this
draws on a variety of numerical techniques from dynamical systems, partial differential equations,
nonlinear optimization, and algebraic topology. Analytically, this often involves proving theorems
with explicitly verifiable hypotheses (eg rather than assuming “there exists some ϵ > 0”, concretely
quantifying how small ϵ must be). The impetus for this is not bookkeeping for bookkeeping’s sake,
but rather to build a complete picture of a complex system from disparate components.

For example, standard numerical methods can solve an initial value problem for an ODE and
provide local error bounds at each step. However a global error bound on the final solution requires
the cumulative error be quantified. This quickly becomes a nontrivial problem in chaotic systems,
where arbitrarily close initial conditions will inevitably diverge, and the difficulties compound in
partial differential equations where the phase space is infinite dimensional.

To that end, validated numerics have been developed to keep track of all the sources of error
inherent to numerical calculations. To bridge the gap between numerics and a computer assisted
proof, a problem must be translated into a list of the conditions that the computer can check.
Most famously used to solve the four color theorem [2], computer assisted proofs have also been
employed to great effect in dynamics, proving results such as the universality of the Feigenbaum
constants [24] and Smale’s 14th problem on the nature of the Lorenz attractor [30].

Past Work
In my Ph.D. dissertation I solved a pair of longstanding conjectures about the global dynamics

of a nonlinear delay differential equation (DDE) – where the rate of change depends nonlocally on
both the past and the present (cf §4). First studied in 1955, Wright’s equation has come to be known
as a canonical example of a nonlinear scalar DDE. The conjectures by Wright and Jones claimed
that for parameters α < π

2 all initial data is attracted to 0, and for α > π
2 almost all initial data is

attracted to a unique periodic orbit [21, 34]. Building upon prior work, we used a combination of
detailed bifurcation analysis and computer-assisted-proofs to prove these conjectures [13,17,31].

My recent research has focused on the dynamics of PDEs, both dissipative and dispersive (cf
§2). More specifically, my work has focused on proving existence and stability of certain coherent
structures [5,6,14], characterizing how trajectories transition from one coherent structure to another
[18,19], and studying the behavior of blowup solutions [14,19,29]. In a series of papers I have been

1An invariant set is a closed subsystem within the dynamical system; i.e. all points in the set must stay in set under
the dynamics. Examples include steady states, periodic orbits, stable/unstable manifolds, and chaotic attractors.

2An infinite dimensional dynamical system is a dynamical system whose phase space is infinite dimensional (such
as a PDE describing the time evolution of functions), rather than finite dimensional (such as an ODE describing the
time evolution of points in Rn).
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studying PDEs with vortex-stretching type nonlinearities, and have demonstrated a rich zoo of
dynamical behavior and blowup solutions (cf §2.2-§2.4).

Differential equations can be extremely useful in describing complex phenomenon, however it is
usually impossible to completely understand them using analytical methods. Often a coarser but
computationally tractable description is needed (cf §3). In recent years computational topology has
become widely recognized as an important tool for quantifying complex structures, and in [16, 20]
we applied persistent homology to study spatial patterns and self-similar structures. Biological sys-
tems are prone to generate complex chaotic activity, yet many experimental observations reported
robustness of biological systems to changes in external or internal conditions, and in [15] we study
how biological function can be maintained or disrupted in chaotic slow-fast systems.

Current & Future Work
In my future research, I will continue to study the dynamics of PDEs using analytic and

computer-assisted-proof techniques to bridge the gap between numerical evidence and mathemati-
cal certainty. Towards this goal, my current projects focus on proving the existence and stability of
a variety of coherent structures (eg steady states, pulses, blowup profiles). Beyond analyzing each
piece in isolation, my future work will study how trajectories travel from invariant set to another,
and develop a global understanding of the dynamics.

Using the Swift-Hohenberg equation as an exemplary system of pattern formation, current
projects focus on computing spectral stability of pulses (unbounded domains) and connecting or-
bits between unstable steady states (bounded domains). In another project I am studying self-
similar blowup in a nonlinear Schrödinger equation with a vortex-stretching type nonlinearity.
More broadly I plan to use persistent homology to empirically analyze self-similar blowup in PDEs.

One strength of validated numerics is their potential to yield non-perturbative results, even in
scenarios where global existence or generic well-posedness may not be guaranteed [7]. One such
example are the incompressible Navier-Stokes equations, which describe the motion of viscous fluids
and for which the global existence of solutions in 3D is famously unknown [32, 33]. The case of
axisymmetric flow with swirl contains many of the essential difficulties of the problem, and recent
numerical work has uncovered initial data yielding nearly singular behavior [12]. In current work
I am developing validated numerics to study steady states of the forced NSE in this geometry.
Beyond the intrinsic interest of the problem, this work will develop validated spectral methods for
more complicated (ie non-toroidal) geometries. In future work I plan to study how these steady
states continue, and bifurcate to produce more complex dynamics.

A fundamental innovation in my PhD thesis was developing a numerical method which will
exhaustively search through an infinite-dimensional phase space, making sure that no other at-
tractors could exist [13, 17]. This Fourier/spectral methodology is by no means limited to DDEs.
An exciting student research project would be to develop computer-assisted-proofs for an exact
count of the number of equilibria of nonlinear parabolic PDEs on finite intervals and eventually
multidimensional domains. Such an enumeration would be a powerful tool to analyze systems with
a global attractor (eg Swift-Hohenberg equation, forced Navier-Stokes equations [28]).

2 Dynamics of Partial Differential Equations
Understanding the long term behavior of solutions is fundamental to the study of evolutionary
equations. This begins with questions of existence, and whether local existence can be extended
globally. Of the solutions which exist globally, coherent structures (such as equilibria, traveling
waves and periodic orbits) serve as emblematic examples of how solutions to a PDE may behave.
My recent research has largely focused on the dynamics of PDEs, in particular proving existence
and stability of certain coherent structures, characterizing how trajectories transition from one
coherent structure to another, as well as studying the behavior of blowup solutions.
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2.1 Stability of coherent structures
The local stability of coherent structures helps to inform us as to what type of phenomena are

generically observable: while stable structures are robust and attract nearby trajectories, unstable
objects repel solutions and are harder to detect. Nevertheless unstable objects are critically impor-
tant in guiding the transient behavior of a system, and understanding to which particular stable
state solutions will be attracted, see Fig. 1.

For a PDE on a finite domain one can use a Galerkin projection to approximate the dynamics
and calculate the stability of equilibria. As the projection dimension approaches infinity, standard
numerics can guarantee that solutions of the finite dimensional system will converge to solutions
of the infinite dimensional system. However for a fixed, finite dimensional Galerkin projection, a
natural question is: How close are the approximate solutions to the true solutions? In [6,18,19,29]
I have been exploring how to answer this question in a variety of scenarios, and using computer-
assisted-proofs to provide explicit error bounds.

For example, in [6] with JB van den Berg (VU Amsterdam) and J Mireles James (Florida
Atlantic University), we present a rigorous computational method for approximating infinite di-
mensional stable manifolds of non-trivial equilibria for parabolic PDEs. Our approach combines
the parameterization method – which can provide high order approximations of finite dimensional
manifolds with validated error bounds – together with the Lyapunov-Perron method – which is a

Fig. 1: A connecting orbit to the nonlinear Schrödinger equation iut = uxx + u2 with x ∈ T = R/Z, cf [18].
(a) Real and imaginary components of a nontrivial equilibrium, with two trajectories on its unstable manifold;
(b) Rigorous integration of an endpoint from the unstable manifold; (c) A trapping cone in Fourier space of
points converging to the center-type 0-equilibrium.
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powerful technique for proving the existence of (potentially infinite dimensional) invariant mani-
folds. As an example, we apply this technique to approximate the stable manifold associated with
unstable nonhomogeneous equilibria for the Swift-Hohenberg equation on a finite interval.

For PDEs on unbounded domains Galerkin methods run into difficulties. Recent work on the
Maslov index has extended classical results from Sturm-Liouville theory to a much more general set-
ting, thus allowing for spectral stability of nonlinear waves in a variety of contexts to be determined
by counting conjugate points. With M Beck (Boston University) we have developed a framework
for the computation of conjugate points using rigorous numerics [5]. We apply our method to a
parameter-dependent system of bistable equations and show that there exist both stable and un-
stable standing fronts. In comparison with rigorous numerical methods to compute stability using
the Evans function [3], our results suggest that counting conjugate points is much more efficient.
With PhD student Hannah Pieper (Boston University), we are extending this methodology to 4th

order systems such as the Swift-Hohenberg equation.

2.2 Global dynamics in a toy vortex-stretching model
In a series of work [14,18,19,29] I have been studying the family of complex valued PDEs:

ut = eiθ
(
uxx + u2

)
, x ∈ T ≡ R/2π

ω Z. (1)

for parameters θ ∈ [−π
2 ,

π
2 ]. When θ = 0, then (1) is equivalent to the viscous Constantin-Lax-

Majda model of hydrodynamic vortex stretching [9]. When θ = ±π
4 the equation resembles the com-

plex Ginzburg-Landau equation, and when θ = ±π
2 the equation becomes a nonlinear Schrödinger

equation. While it is well known that solutions to (1) can blowup, the equation exhibits a rich zoo
of dynamical behavior which had scarcely been explored.

Together with JP Lessard (McGill University) and A Takayasu (University of Tsukuba), we use
computer assisted proofs to demonstrate existence of nontrivial equilibria, and heteroclinic orbits
between these nontrivial equilibria and 0, see Fig. 1.

Theorem 1 ( [18,19]). The PDE (1) has at least two non-trivial, linearly unstable equilibria. For
θ ∈ {0,±π

4 ,±
π
2 }, and for each equilibrium ũ there exists a heteroclinic orbit traveling from ũ to 0.

Connecting orbits provide a road map for how a dynamical system transitions between its
various fixed points and periodic orbits. Certain kinds of connecting orbits, such as homoclinics
from a periodic orbit to itself, can be used to prove the existence of mathematical chaos. In the
temporal dynamics of a PDE, a connecting orbit between two nonhomogeneous equilibria describes
how perturbations to an unstable equilibrium unfold, and to which stable equilibrium the perturbed
state will be attracted.

In future work I plan to develop validated numerics for computing saddle-to-saddle connecting
orbits in the Swift-Hohenberg equation, which will build upon our work in [6] computing infinite
dimensional stable manifolds. Longer term goals include constructing a computer assisted proof
of chaos in a PDE via a homoclinic tangle, and computing connecting orbits in strongly indefinite
problems motivated from multidimensional traveling waves.

In addition to developing methods to analyze more complicated dynamical behavior, I am
also extending our current methodology to study a broader class of PDEs. In current work I am
developing validated numerics to study steady states in the forced incompressible 3D Navier-Stokes
equation with axisymmetric symmetry. Beyond the intrinsic interest of studying the NSE in a
geometry where global existence is unknown, this work will develop validated spectral methods for
more complicated (ie non-toroidal) geometries. In future work I plan to study how these steady
states continue, and bifurcate to produce more complex dynamics.
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2.3 Nonconservative nonlinear Schrödinger equations
More generally, the NLS case (θ = −π

2 ) of (1) may be considered with higher power nonlinear-
ities p ≥ 2 and higher spatial dimensions d ≥ 1:

iut = △u+ up, x ∈ Td ≡ Rd/2π
ω Zd. (2)

This NLS does not have gauge invariance, (eiθu)p ̸= eiθup for generic θ ∈ R, and it does not
admit a natural Hamiltonian structure. In the spatially homogeneous dynamics of (2), the origin
is foliated by homoclinic solutions with the exception of some finite time blowup solutions. These
homoclinic solutions in fact extend to an open set of initial data, which allows us to show that (2)
is nonconservative.

Theorem 2 ( [18]). There exists an open set of complex initial data with summable Fourier coef-
ficients whose solutions to (2) are homoclinic orbits, limiting to 0 in forward/backward time.

Corollary 3 ( [18]). The only analytic functionals conserved under (2) are constant.

Despite the nonconservative nature of this system, I show in [14] that it surprisingly exhibits
another facet of integrability3. Namely, the space of positive Fourier modes form an invariant
subspace, wherein a solution’s Fourier coefficients may be explicitly solved for order by order, akin
to the cubic Szegő equation [11] or the Constantin-Lax-Majda equation [9, 26]. Moreover, I show
that small initial data to (2) will yield quasiperiodic solutions, all with fixed frequencies {ω2

j /2π}dj=1

determined by the geometry of the torus Td, cf Fig. 2. In future work I plan to explore how this
facet of integrability may be connected to an underlying singular symplectic structure [25].

3Integrability is associated with having a maximal number of conserved quantities and being able to explicitly
construct solutions by definite ‘integrals’.

A=3

A=2

A=1

Real Component Imaginary Component

Fig. 2: Solutions to the NLS iut = uxx + u2 with initial data u0(x) = Aeix. If |A| ≤ 3 the solution is
2π-periodic, however if |A| ≥ 6 the solution blows up in finite time, cf [14].
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2.4 Unbounded growth of solutions in finite/infinite time
It is often the case that global existence may be proved for small initial data, but the argument

breaks down for large data. One is left to wonder: Can some other proof techniques show global
existence for large data, or is there a counter-example (eg finite time blowup)?

Using (1) as a toy model I have explored answering this question using several different tech-
niques. In the NLS case (θ = ±π/2), it turns out that monochromatic inital data will yield periodic
solutions if the data is small (cf Fig. 2) but will blow up if the data is large [14]. In the heat and
CGL case (θ = 0,±π/4) there do not appear to be any periodic orbits. However by using a forcing
argument, we prove there exists solutions limiting to the non-trivial equilibria in backwards time,
and are unbounded in forward time [19].

In [29] with A Takayasu (University of Tsukuba), JP Lessard (McGill University), and H
Okamoto (Gakushuin University), we study the PDE ut = uxx + u2 for x ∈ T = R/Z and the
behavior of solutions when continued past their blowup time. It is well-known that dissipative
PDEs have solutions that will exist not only for some interval t ∈ [0, ϵ), but moreover the solution
u(t) can be analytically continued for complex values of t ∈ C. By solving the PDE, with a validated
numerical integrator we developed, along a contour in the complex plane of time, and showing that
the contours in the upper and lower halves of the complex plane yield different solutions, we are
able to prove that a branching singularity occurs.

In current work, I am pursuing a conjecture by Cho et al. [8], that the NLS case (θ = ±π/2)
of (1) is globally well posed for all real initial data. In [18] we proved global existence for close-
to-constant real initial data. However, my recent numerical simulations indicate that there is a
meagre set of real initial data that does blowup. To rigorously prove this to be the case, I aim to
combine validated numerics with a center-stable manifold analysis of the self-similar dynamics.

3 Coarse-grained analysis of complex systems

3.1 Computational algebraic topology
Partial differential equations can be extremely useful in describing patterns in biological and

physical systems. However these patterns can be quite complicated, exhibiting distinct structures
at different spatial/temporal scales, and it is usually impossible to completely understand them
using analytical methods. Often a coarser but computationally tractable description is needed.
In recent years computational topology has become widely recognized as an important tool for
quantifying complex structures.

Persistent homology is an algebraic tool that provides a mathematical framework for analyz-
ing the multi-scale structures frequently observed in nature. For a given point cloud, one may
construct a nested sequence of topological spaces by growing ϵ-balls about each point, see Fig. 3.
The 0-dimensional persistent homology tracks when connected components first appear, and later
merge together; the 1-dimensional persistent homology tracks when loops in the space appear and
disappear.

Long persistence intervals are generally considered to correspond to important topological fea-
tures, whereas short intervals are considered to be noise. That is, as the number of points n
increases, the important persistence intervals will stabilize whereas the average length of the noisy
intervals will decrease. However if a point cloud is sampled from a d-dimensional Lebesgue measure,

the summed-length of all 0-dimensional persistence intervals will grow in proportion with n
d−1
d .

In fact, a fractional dimension can be defined for a measure in terms of the asymptotic growth
of the totaled persistence intervals of point samples [27]. In [20] with B Schweinhart (George
Mason University) we implement an algorithm to estimate the i-dimensional persistent homology
dimension (i = 0, 1, 2) to study self-similar fractals, chaotic attractors, and an empirical dataset of
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(a) (b) (c)

Fig. 3: Top: ϵ-neighborhoods about a sample of 100 points from the Sierpinski triangle. Bottom: Persistence
diagrams for (a) 100 point sample from the Sierpinski triangle, (b) 1000 points from the Sierpinski triangle
and (c) the Sierpinski triangle itself (where the area of a dot is proportional to the number of persistent
homology intervals with corresponding birth and death time).

earthquake hypocenters.
Often when a PDE blows up, a solution’s magnitude and spatial dependence become increas-

ingly singular according to a power law as the blowup time is approached. However by making a
change of coordinates into self-similarity variables, the solution can be renormalized. In these new
coordinates, a blowup solution may be understood as limiting towards a fixed point, limit cycle or
even a strange attractor [10]. In future work I plan to use persistent homology to empirically study
self-similar blowup in PDEs. This topological tool is particularly well suited for the task, as a
function’s persistent homology is invariant under continuous deformations of its domain, providing
a robust lens to analyze complex spatio-temporal behavior [23].

3.2 Global bifurcations and chaos in slow-fast systems
Nonlinear systems in interaction, often used to describe biological systems, are prone to generate

complex chaotic activity, yet many experimental observations reported robustness of biological
systems to changes in external or internal conditions. In [15], with E Sander (George Mason
University), S Kedia (Brandeis University), and J Touboul (Brandeis University), we study how
biological function can be maintained or disrupted in chaotic slow-fast systems. In particular we
propose a refinement of the notion of chaos that reconciles chaos and biological robustness in chaotic
systems with multiple timescales.

We find that systems displaying relaxation cycles going through strange attractors do generate
chaotic dynamics that are regular at macroscopic timescales, thus consistent with physiological
function. However, this relative regularity breaks down through a universal global bifurcation,
beyond which the system generates erratic activity also at slow timescales. Our manuscript focuses
on the analysis of an exemplar system describing nerve cell activity and data in a crustacean central
pattern generator. Beyond this example, we show that the passage of slow relaxation cycles through
a strange attractor crises is a universal mechanism for the transition in such dynamics, and future
work will investigate such crisis bifurcations in more realistic neuronal models [1, 22].
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4 Wright’s Conjecture on a Nonlinear Delay Differential Equation
In my thesis I proved two half-century old conjectures concerning the delay differential equation
known as Wright’s equation:

x′(t) = −α
(
ex(t−1) − 1

)
. (3)

First studied in 1955 as a heuristic model of the distribution of primes [34], Wright’s equation has
come to be known as a canonical example of a nonlinear scalar delay differential equation (DDE).
As with partial differential equations, the initial data for DDEs are functions. In Wright’s seminal
work he showed that if α ≤ 3

2 then the equilibrium solution x ≡ 0 is the global attractor, and made
the following conjecture:

Theorem 4 (Wright’s Conjecture, 1955). For every 0 < α ≤ π
2 the equilibrium solution x ≡ 0

to (3) is globally attractive.

In 1962 Jones [21] proved that for α > π
2 there exists at least one slowly oscillating periodic

solution (SOPS) to Wright’s equation. That is, a periodic solution x : R → R such that it is
positive for at least the length of the time delay, and then negative for at least the length of the
time delay. Based on numerical simulations Jones made the following conjecture:

Theorem 5 (Jones’ Conjecture, 1962). For every α > π
2 there is a unique slowly oscillating periodic

solution to (3).

I proved both of these conjectures in a trio of papers [13,17,31]. Prior work had proved Wright’s
conjecture for α < π

2 − 2 × 10−4 via a computer assisted proof which took months of CPU time,
and as authors mention, “substantial improvement of the theoretical part of the present proof is
needed to prove Wright’s conjecture fully” [4]. Hopf bifurcations are canonically analyzed with the
method of normal forms, which transforms a given equation into a simpler expression having the
same qualitative behavior as the original equation. By an implicit-function-theorem type argument,
this transformation is valid in some neighborhood of the bifurcation. However, the proof does not
offer any insight into the size of this neighborhood. In [31] with JB van den Berg (VU Amsterdam)
we develop an explicit description of a neighborhood wherein the only periodic solutions are those
originating from the Hopf bifurcation. The main result of this analysis is the resolution of Wright’s
conjecture.

In 1991 Xie [35] proved Jones’ conjecture for α ≥ 5.67. He accomplished this by first showing
that there is a unique slowly oscillating periodic solution to (3) if and only if every SOPS is
asymptotically stable. By using asymptotic estimates of SOPS for large α, Xie was able to estimate
their Floquet multipliers and prove that all SOPS had to be stable. However, at α = 5.67 these
asymptotic estimates break down.

π 2
1 2 3 4 5 6

α

10
- 10

10
- 8

10
- 6

10
- 4

0.01

1

Fig. 4: A strict upper bound on the modulus of the Floquet
multipliers for SOPS to Wright’s equation [17].

In [17] with JP Lessard (McGill
University) and K Mischaikow (Rut-
gers University) we used the same ba-
sic method as Xie, however we replace
the asymptotic estimates with vali-
dated numerics. We use a branch and
bound algorithm to develop pointwise
estimates on all the possible SOPS
to Wright’s equation and then bound
their Floquet multipliers. Using these
two main steps, we generate a com-
puter assisted proof for α ∈ [1.9, 6.0]
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Fig. 5: The first Fourier coefficient of SOPS to Wright’s equation, which has a Hopf bifurcation at α = π
2 .

Uniqueness of the SOPS with respect to α is proved for the green cubes in [13] and for the blue cubes in [31].

that all SOPS to Wright’s equation
are asymptotically stable, and thereby unique up to translation.

I finished the proof to Jones’ conjecture in [13], proving there is a unique SOPS for α ∈ (π2 , 1.9].
While previous work [31] showed that there are no folds in the principal branch of periodic orbits
this did not rule out the possibility of isolas, that is SOPS far away from the principal branch. To
rule out the existence of these isolas, we recast the problem of studying periodic solutions to (3)
as the problem of finding zeros of a functional defined on a space of Fourier coefficients, and again
employed an infinite dimensional branch and bound algorithm.

This methodology for exhaustively searching through an infinite-dimensional phase space to find
all of the solutions is by no means limited to DDEs. An exciting student research project would
be to develop computer-assisted-proofs for an exact count of the number of equilibria of nonlinear
parabolic PDEs on compact domains. While obtaining an initial enclosure of all solutions would be
problem specific, the essential component is to apply elliptic bootstrapping and then perform the
branch and bound algorithm from [13]. Such an enumeration would be a powerful tool to analyze
systems with a global attractor (eg Swift-Hohenberg equation, forced Navier-Stokes equations [28]).
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