
Perfect Numbers

Joe Luquette

June 20, 2008



History

A perfect number n is a number whose positive divisors (sans the number itself)
sum to n. Equivalently, if we consider n to be a divisor of itself (which it is!),
we call n perfect if the sum of all of its divisors is 2n. These numbers have
been studied for thousands of years, as ancient Greek mathematicians spent
much time studying the relationship between a number and its divisors. Many
classes of numbers arose from these studies, including deficient numbers, whose
divisors’ sum is less than the number itself, abundant numbers, whose divisors
sum to more than the number itself, and, of course, perfect numbers.

An example of a perfect number is 6: the divisors of 6 are 1, 2, 3 and 6.
Adding these together, we see that

1 + 2 + 3 = 6, or 1 + 2 + 3 + 6 = 2 · 6.

The next few perfect numbers are small, and were easy to find by exhaustive
search: 6, 28, 496 and 8128. In fact, Euclid himself discovered that these perfect
numbers are generated by the formula

2n−1(2n − 1),

whenever 2n−1 is prime. In the 17th century, the monk Marin Mersenne began
studying primes of the form 2n − 1, and these primes have become known as
Mersenne primes.

It is easy to see that any perfect number generated by this formula must be
even: 2n−1 is always even and 2n − 1 is always odd.1 Since the product of an
even and odd number is even, we see that this formula can only render even
perfect numbers. Even glancing again at our initial list of four perfect numbers,
we see that each of these values is indeed even. This begs the obvious question:
do odd perfect numbers exist?

Technical Details

There is a bit of standard notation for dealing with perfect numbers and their
properties. The first such object is the divisor function σ(n). The divisor
function on any value n is the sum of every natural number which divides n—
including n itself. Thus,

σ(1) = 1,
σ(2) = 1 + 2,
σ(3) = 1 + 3,
σ(4) = 1 + 2 + 4,
σ(5) = 1 + 5,
σ(6) = 1 + 2 + 3 + 6,

and so on. We can then formally define the divisor function as follows.
1Unless n = 1, in which case 20(21 − 1) = 2 is not a perfect number.
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Definition. Let n ∈ N. Then we denote the summation over all of n’s natural
divisors by

σ(n) =
∑

d∈N :d|n

d,

and refer to σ : N→ N as the divisor function.

With the divisor function well-defined, a more exacting definition of a perfect
number can be given.

Definition. Let n ∈ N such that

σ(n) = 2n,

then we say that n is a perfect number.

Mersenne Primes and Even Perfect Numbers

As we discovered earlier, the first four perfect numbers are given by the formula

2n−1(2n − 1),

when 2n − 1 is prime. Primes of this form are referred to as Mersenne primes
and are deeply related to even perfect numbers. Mathematicians had previously
been interested in primes of the form an − 1 for arbitrary a ∈ N. However, it is
easy to see that for n > 1, the only possible value for a is 2. This is due to the
following factorization:

an − 1 = (a− 1)(an−1 + an−2 + . . .+ a+ 1).

Thus, for any number of the form an−1 with n > 2, we know immediatley that
a− 1 | an − 1. When a = 2, we have a− 1 = 1, which does not pose a problem
for a prime number. However, for any other value of a > 2, this divisor will
destroy the primality of an − 1.

Thus, the study of primes of the form 2n − 1 began. The singularity of
the subject of Mersenne primes and even perfect numbers had been realized by
mathematicians as early as 1000AD; but it was not until the 18th century that
Euler provided a bijection between the Mersenne primes and the even perfect
numbers. That is to say, due to Euler’s result, we have a complete description
of all even perfect numbers.

Theorem (Euler). Let n ∈ N be an even perfect number. Then there exists a
k ∈ N such that

n = 2k−1(2k − 1).
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Odd Perfect Numbers

Up until this point, we have been very careful to point out that the perfect
numbers generated by Mersenne primes are always even. Even more amazingly,
we’ve provided a complete description of the set of even perfect numbers. But
what about odd perfect numbers?

These objects have proven to be very elusive. Many results have shown that,
if an odd perfect number were to exist, that it would have an extremely limited
form. For example, Euler also showed that if n were an odd perfect number,
that its prime factorization must be given by

n = qαp2e1
1 p2e2

2 · · · p2ek

k ,

where q ≡ α ≡ 1 (mod 4) and q, p1, . . . , pk are distinct primes. To give an
example of a less elegant property of an odd perfect number, Nielsen and Hare
showed that n would have to have at least 75 prime factors; at least 9 of which
are distinct.

Given these sometimes powerful and sometimes ludicrous restrictions on odd
perfect numbers, it is widely believe that no odd perfect numbers can exist. A
large distributed computing is currently performing an exhaustive search to
increase the range of numbers in which we know there exist no odd perfect
numbers. So far, the project has verified that no odd perfect numbers exist in
the interval [1, 10300] ⊂ N.

Further Questions

Upon studying numbers n ∈ N which satisfy σ(n) = 2n, the question naturally
arises: what is so important about the coefficient 2? Can we describe other
classes of numbers by changing the coefficient or using a different function of n
altogether? Here, we examine a few different options.

First, what about numbers that satisfy σ(n) = n? In reality, this defines an
extremely narrow class of numbers: the only natural number to satisfy this is
1. To see why no natural number greater than 1 can satisfy σ(n) = n, consider
that for every n ∈ N, we know that both 1 | n and n | n. When n > 1, we then
know that

σ(n) ≥ 1 + n > n, n > 1.

Thus, σ(n) 6= n for any n > 1.
What about trying some other arbitrary coefficient? Let us consider the set

of natural numbers
{n ∈ N | σ(n) = 3n}.

This set is much harder to analyze. It is, however, non-trivial and non-empty.
The first three such numbers are 120, 672 and 523,776. An exhaustive search by
computer has shown that no more such numbers exist in the interval [776, 108].
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An interesting property shared by these three numbers is the structure of their
prime factorization. We have

120 = 23 · 31 · 51,

672 = 25 · 31 · 71,

523, 776 = 29 · 31 · 111 · 311.

We may perhaps conjecture that all numbers satisfying σ(n) = 3n are of the
form

n = 2α · p1
1 · p1

2 · · · · · p1
k.

Clearly, α need not be prime and the primes p1, . . . , pk need not all be 1 or 3
modulo 4. An attempt at a proof of this conjecture is beyond the scope of this
paper.

Now we consider a different function of n altogether: a quadratic function.
So, we look at the following set of naturals:

{n ∈ N | σ(n) = n2}.

This unfortunately also defines an extremely trivial set of natural numbers. To
begin, clearly 1 satisfies this property and belongs to the above set. We claim
that no other number can have this property. First, recall the value of the
following summation:

n∑
k=0

k =
n(n+ 1)

2
.

The above defines the sum of all natural numbers less than or equal to n; it is
then a clear consequence of the definition of the divisor function that

σ(n) ≤
n∑
k=0

k,

since the divisors of n form a subset of the numbers less than or equal to n.
Clearly, then if we can show that

∑n
k=0 k < n2 for all n > 1, we see that

σ(n) ≤
n∑
k=0

k < n2 implies σ(n) 6= n2, n > 1

We prove exactly this in the following lemma.

Lemma. Let n ∈ N be greater than 1. Then
∑n
k=0 k < n2.

Proof. We can prove this inductively. Consider the base case n = 2: then a
direct check shows that

n(n+ 1)
2

= 3 < 4 = n2, n = 2.
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Now suppose inductively that n(n+ 1)/2 < n2 for some n. Consider the result
of adding 2n+ 1 to each side of our inductive hypothesis:

n(n+ 1) + 4n+ 2
2

=
n(n+ 1)

2
+ 2n+ 1 < n2 + 2n+ 1 = (n+ 1)2. (1)

The far left-hand term of the above display can be rewritten:

n(n+ 1) + 4n+ 2
2

=
n2 + 5n+ 2

2
.

Now we are almost done: we know that (n+ 1)(n+ 2)/2 = (n2 + 3n+ 2)/2 and
clearly

(n+ 1)(n+ 2)
2

=
n2 + 3n+ 2

2
<
n2 + 5n+ 2

2
, n > 0. (2)

Combining equations (1) and (2), we arrive at

(n+ 1)(n+ 2)
2

< (n+ 1)2.

By induction, we have
∑n
k=0 k < n2 for all n > 2.

Now we consider one final class of numbers: those defined by

{p ∈ N | σ(p) = p+ 1}.

The variable p used in the set definition above is meant to be suggestive: this
set is exactly the set of prime numbers. The proof is extremely simple and
straightforward.

Proof. Suppose that n ∈ N is such that σ(n) = n + 1. First, it is clear that 1
cannot satisfy this statement: σ(1) = 1. So let us consider n > 1. If n > 1, then
we know that there are at least two distinct divisors of n: 1 and n itself. Thus
σ(n) ≥ n+ 1 for all n > 1. Recall that we chose n such that σ(n) = n+ 1. But
then this means that 1 and n are the only2 divisors of n! This is exactly the
definition of a prime number, and thus we are done.

2If there existed another divisor, d ∈ N, then σ(n) = 1 + n + d > 1 + n, refuting our
selection of n.
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