Homogenization in PDE’s and in Stochastic
Processes: An Introduction.

Konstantinos Spiliopoulos
University of Maryland, College Park

Sep 19, 2007



Let f be a smooth function, D be a bounded
smooth function that is periodic with period 1
(i.,e. D(x) =D(x+1)) and € > 0.
Consider the second order parabolic PDE:
ui(t,z) = L*u(t,x)
u(0,z) = f(x), (t,x) € (0,00) xR (1)

where for u € C2(R) we denote:

Lo = QieD’(a;/@ux(t, ) + %D(az/e)um(t, z)
(2)

It is easy to see that
1d du
Ly = ——(D —).
U de( (x/e)dx)

We say that the elliptic operator (2) can be
written in divergence form.

Our goal is to consider the limit as € | O of the
solution u€ to (1). The approach will be based
on probabilistic methods.



Consider now a probability space (€2, 5§, P) equipped
with a filtration §; (i.e. an increasing family of
o-fields).

Definition 1. A one dimensional Wiener process
(or Brownian motion) is usually denoted by W; =
Wi(w), t >0, w e Q or better as (Wy, §t) and is
a stochastic process that satisfies the follow-

ing:

(i). Wo =0 P-a.s.

(ii). Wy~ N(0,t). So W; is Gaussian.

(iii). W4 has independent increments, i.e. if 0 <
t1 <tp <tz <tg then Wy, — Wy, is indepen-
dent of Wy, — W4, .

(iv). It is a continuous process with P-probability
one.



Let now f(¢,w) be a function that is indepen-
dent of the Wiener process W. after time t. For
those functions f that also satisfy the property

t
| Bl (s,0)] < o0

we can define the so called stochastic Ito in-
tegral (If)(t,w) = [§ f(s,w)dWs which besides
the standard properties of an integral, it also
satisfies the following two relations:

O

E/Ot f(s,w)dWs

t t t
E /O f1.(s, w)dWs /O fo(s,w)dWs = /O Ef1f2(s,w)ds



In addition the Ito integral I; = (If)(t,w) is a
stochastic process that is an §: martingale, i.e.
it satisfies the following properties:

e Let T" > 0. Then I; is § measurable for
every t € [0,T].

o F|I}|] < oo for every t < T.

o [ = E[I;|§s] for every s <t P-a.s.



Let us return now to our parabolic PDE:

ui(t,z) = L*u(t,x)
u (0,z) = f(z), (t,z) € (0,00) xR (3)

where:

Loy = Qiep’(x/e)u;(t, ) + %D(:r;/e)ufw(t, )
(4)
Associated with the elliptic operator L€ is a
stochastic process, which we will denote by
X" = X" (w) and is the solution to the stochas-
tic differential equation (SDE):

€, t1 €, t €,T
X ::c—|—/0 _-D/(X /e)ds—l—/o J/D(XE /e)(d51/;/3

Taking into account that the Wiener process
has independent increments and that equation
(5) has a unique (strong) solution, one can
show that X;”" has the Markov property. Namely
if we define the filtration X = o(Xy", v < s),
then for every s <t

EXJYFET] = BIXPY| XS], P —a.s.
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So we see that there is some connection be-
tween elliptic operators of second order (like L€
given in (4)) and Ito processes (like X, that
is the solution to (5)). This is a deep result
of semigroup theory, but we will nhot go to-
wards this direction. However this relation will
become clearer by the following two famous
results:

Theorem 1.[Ito formula]

Let g € €12((0,00) x R) and X;* be the solu-
tion to (5). Then:

t
9(t,X(") = 9(0,2) + [ (9t + L) (5, X™)ds

+ /Ot \/D(Xg’x/ﬁ)gaz(s,ng)dWS (6)

where L¢g = %D’(m/e)ggg(t, m)—l—%D(a:/e)g;m(t, x),
IS the operator that corresponds to Xf’x.




Theorem 2.[Feynman-Kac formula]

The solution uf to (3) can be represented as

u(t,x) = Bf(Xp") (7)

Sketch of the proof.

Let ¢ be an arbitrary fixed positive number.
Apply Ito formula to the function u¢(t — ¢, x).
By Theorem 1 and after taking ¢ =t we have:

t
w€(0, X% = uf(t,x) + /O (—uf 4+ Lu®) (s, XST)ds

+ /Ot ¢D(X§’”3/e)ufc(s,X§@)dWS (8)

By taking expected value now to (8), taking
into account the fact that «€ is a solution to
(3) and the fact that the stochastic integral is
a martingale we conclude that:

u(t,x) = Ef(X;7).



Limit as ¢ | O of u°

The plan is as follows:

(i).

(ii).

(iii).

(iv).

Prove that the family {X*} is weakly com-
pact (tight). In other words this means
that there is a stochastic process X! such
that for any continuous bounded functional
F(-) we have

EF(X5") —¢ 0 EF(XY).
Find X[.

Conclude that uf(t,z) = EF(X;)") —¢jo
EF(XT).

Set u(t,z) := EF(X{) and find the PDE
that v satisfies using again Feynman-Kac
formula (theorem 2).



Recall now that X" satisfies

Xt = :I;—I—/Ot %D/(Xg’m/e)ds—l—/ot \/D(Xg’m/e)dWS

(9)
At first glance the term * [{ 3D'(X5“/e)ds ap-
pears to be of order % However this is not
truel!ll Indeed:

Let v(x) be a function that we will specify later.
Apply Ité formula to the function ev(e~1z) to
get:

t
(e 1XST) — (e lr)] = /O eLv(e~ 1 XET)ds

t
+ | VDX (T XE) W

The last equation and equation (9) motivates
us to choose v(-) such that

1 t € —1+vex 1 t1 / €,T 1
/OeL v(e LX) ds = _E/o SD/(XE"/e)ds'.
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In other words let v satisfy:

SD@Y@)Y =D @), (10)
Equation (10) has many solution. However
since D is a periodic function with period one,
we want to choose a periodic solution that will
also be twice differentiable. Such a choice is
attained if we impose the condition fol v(z)dx =
0. Then the solution to (10) is

v(a:):/OxDl_)(l;)(y)dy (11)
where
D=([ D () (12)

Thus putting things together we have that (9)
can be rewritten as:

X" = z—ew(e 1XP") —v(e )] (13)
t
+ /O VD LX) (1 4 o/ (7 LX) dWs
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T herefore we have the following observations:

(i). X;* is weakly compact. This follows by
the boundedness of the coefficients.

(ii). The term e[v(e 1 XP") — v(e~tx)] in (13)
goes to zero as € | O since v is a bounded
function. Thus it only remains to consider
the stochastic integral

t
[ VTR 4 e xmya,

Lemma [Random time change].

Under technical but fairly general conditions,
there is another Wiener process W; such that
for a function f we have

t t
€,X T — i 2 €,X
PG AWs ~ Wt oy = WS ((Xs)>ds).
14
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Thus by the lemma above we have that

/Ot \/D(e_ng"”)(l + o' (e 71 X5%))dWE15)
~ W( /o tD(e_ng’x)(l + o'(e 1 X57%))?ds)

Now we will use the periodicity of D(x). The
function D(z)(1 + v/(z))? is 1l-periodic, and
the Lebesque measure is the invariant mea-
sure. Thus a version of the ergodic theorem
implies that

/ot D(e™tXOT) (1 + o' (71 X57))ds
oy [ ' D(@)(1 + v/(2))da (16)

But if we recall the definition of v(x) in (11),
we see that

1 p = 1 B B
/O D(x)(14v/(2))2dz = D = ( /O D™ (y)dy) L.
(17)
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Thus putting things together we see that
X6% el0 xz (18)
where X’ satisfies:

Xf=z+Wp, =x+VDW;.  (19)

Therefore the definition of convergence in dis-
tribution implies that

u(t,z) = Ef(Xp") =940 Bf(XF) = u(t, z)
(20)
So by Feynman-Kac formula we have that
u(t, z) =40 u(t, z), (21)
where u(t,z) is the solution to:

ut(t,x) = %Dumw(t, x)
u(0, x) f(z) (22)
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General Remarks

e \We actually need to assume something less
than periodicity for D.

e Without major changes in the proof we
can consider the multi-dimensional case,
i.e. when x € R,

e [ he procedure above can be applied to
more complicated problems.
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