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Let f be a smooth function, D be a bounded
smooth function that is periodic with period 1
(i.e. D(x) = D(x + 1)) and ε > 0.

Consider the second order parabolic PDE:

uε
t(t, x) = Lεuε(t, x)

uε(0, x) = f(x), (t, x) ∈ (0,∞)× R (1)

where for u ∈ C2(R) we denote:

Lεu =
1

2ε
D′(x/ε)ux(t, x) +

1

2
D(x/ε)uxx(t, x)

(2)

It is easy to see that

Lεu =
1

2

d

dx
(D(x/ε)

du

dx
).

We say that the elliptic operator (2) can be
written in divergence form.

Our goal is to consider the limit as ε ↓ 0 of the
solution uε to (1). The approach will be based
on probabilistic methods.
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Consider now a probability space (Ω, F, P ) equipped
with a filtration Ft (i.e. an increasing family of
σ-fields).

Definition 1. A one dimensional Wiener process
(or Brownian motion) is usually denoted by Wt =
Wt(ω), t ≥ 0, ω ∈ Ω or better as (Wt, Ft) and is
a stochastic process that satisfies the follow-
ing:

(i). W0 = 0 P -a.s.

(ii). Wt v N(0, t). So Wt is Gaussian.

(iii). Wt has independent increments, i.e. if 0 <

t1 < t2 < t3 < t4 then Wt4−Wt3 is indepen-
dent of Wt2 −Wt1.

(iv). It is a continuous process with P-probability
one.
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Let now f(t, ω) be a function that is indepen-

dent of the Wiener process W· after time t. For

those functions f that also satisfy the property
∫ t

0
E|f2(s, ω)| < ∞

we can define the so called stochastic Itô in-

tegral (If)(t, ω) =
∫ t
0 f(s, ω)dWs which besides

the standard properties of an integral, it also

satisfies the following two relations:

E
∫ t

0
f(s, ω)dWs = 0

E
∫ t

0
f1(s, ω)dWs

∫ t

0
f2(s, ω)dWs =

∫ t

0
Ef1f2(s, ω)ds
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In addition the Itô integral It = (If)(t, ω) is a

stochastic process that is an Ft martingale, i.e.

it satisfies the following properties:

• Let T > 0. Then It is Ft measurable for

every t ∈ [0, T ].

• E|It| < ∞ for every t ≤ T .

• Is = E[It|Fs] for every s ≤ t P -a.s.
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Let us return now to our parabolic PDE:

uε
t(t, x) = Lεuε(t, x)

uε(0, x) = f(x), (t, x) ∈ (0,∞)× R (3)

where:

Lεu =
1

2ε
D′(x/ε)uε

x(t, x) +
1

2
D(x/ε)uε

xx(t, x)

(4)
Associated with the elliptic operator Lε is a
stochastic process, which we will denote by
X

ε,x
t = X

ε,x
t (ω) and is the solution to the stochas-

tic differential equation (SDE):

X
ε,x
t = x+

∫ t

0

1

2ε
D′(Xε,x

s /ε)ds+
∫ t

0

√
D(Xε,x

s /ε)dWs

(5)
Taking into account that the Wiener process
has independent increments and that equation
(5) has a unique (strong) solution, one can
show that X

ε,x
t has the Markov property. Namely

if we define the filtration FXε,x

s = σ(Xε,x
v , v ≤ s),

then for every s ≤ t

E[Xε,x
t |FXε,x

s ] = E[Xε,x
t |Xε,x

s ], P − a.s.
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So we see that there is some connection be-

tween elliptic operators of second order (like Lε

given in (4)) and Itô processes (like X
ε,x
t that

is the solution to (5)). This is a deep result

of semigroup theory, but we will not go to-

wards this direction. However this relation will

become clearer by the following two famous

results:

Theorem 1.[Itô formula]

Let g ∈ C1,2((0,∞) × R) and X
ε,x
t be the solu-

tion to (5). Then:

g(t, Xε,x
t ) = g(0, x) +

∫ t

0
(gt + Lεg)(s, Xε,x

s )ds

+
∫ t

0

√
D(Xε,x

s /ε)gx(s, X
ε,x
s )dWs (6)

where Lεg = 1
2εD

′(x/ε)gx(t, x)+
1
2D(x/ε)gxx(t, x),

is the operator that corresponds to X
ε,x
t .
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Theorem 2.[Feynman-Kac formula]

The solution uε to (3) can be represented as

uε(t, x) = Ef(Xε,x
t ) (7)

Sketch of the proof.

Let t be an arbitrary fixed positive number.

Apply Itô formula to the function uε(t − t̂, x).

By Theorem 1 and after taking t̂ = t we have:

uε(0, X
ε,x
t ) = uε(t, x) +

∫ t

0
(−uε

t + Lεuε)(s, Xε,x
s )ds

+
∫ t

0

√
D(Xε,x

s /ε)uε
x(s, X

ε,x
s )dWs (8)

By taking expected value now to (8), taking

into account the fact that uε is a solution to

(3) and the fact that the stochastic integral is

a martingale we conclude that:

uε(t, x) = Ef(Xε,x
t ).
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Limit as ε ↓ 0 of uε

The plan is as follows:

(i). Prove that the family {Xε,x· } is weakly com-
pact (tight). In other words this means
that there is a stochastic process Xx

t such
that for any continuous bounded functional
F (·) we have

EF (Xε,x· ) →ε↓0 EF (Xx· ).

(ii). Find Xx
t .

(iii). Conclude that uε(t, x) = EF (Xε,x
t ) →ε↓0

EF (Xx
t ).

(iv). Set u(t, x) := EF (Xx
t ) and find the PDE

that u satisfies using again Feynman-Kac
formula (theorem 2).
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Recall now that X
ε,x
t satisfies

X
ε,x
t = x+

∫ t

0

1

2ε
D′(Xε,x

s /ε)ds+
∫ t

0

√
D(Xε,x

s /ε)dWs

(9)

At first glance the term 1
ε

∫ t
0

1
2D′(Xε,x

s /ε)ds ap-

pears to be of order 1
ε . However this is not

true!!!! Indeed:

Let v(x) be a function that we will specify later.

Apply Itô formula to the function εv(ε−1x) to

get:

ε[v(ε−1X
ε,x
t ) − v(ε−1x)] =

∫ t

0
εLεv(ε−1Xε,x

s )ds

+
∫ t

0

√
D(ε−1Xε,x

s )v′(ε−1Xε,x
s )dWs

The last equation and equation (9) motivates

us to choose v(·) such that

”
∫ t

0
εLεv(ε−1Xε,x

s )ds = −1

ε

∫ t

0

1

2
D′(Xε,x

s /ε)ds”.
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In other words let v satisfy:

1

2
(D(x)v′(x))′ = −1

2
D′(x). (10)

Equation (10) has many solution. However

since D is a periodic function with period one,

we want to choose a periodic solution that will

also be twice differentiable. Such a choice is

attained if we impose the condition
∫ 1
0 v(x)dx =

0. Then the solution to (10) is

v(x) =
∫ x

0

D −D(y)

D(y)
dy (11)

where

D = (
∫ 1

0
D−1(y)dy)−1. (12)

Thus putting things together we have that (9)

can be rewritten as:

X
ε,x
t = x− ε[v(ε−1X

ε,x
t )− v(ε−1x)] (13)

+
∫ t

0

√
D(ε−1Xε,x

s )(1 + v′(ε−1Xε,x
s ))dWs
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Therefore we have the following observations:

(i). X
ε,x
t is weakly compact. This follows by

the boundedness of the coefficients.

(ii). The term ε[v(ε−1X
ε,x
t ) − v(ε−1x)] in (13)

goes to zero as ε ↓ 0 since v is a bounded

function. Thus it only remains to consider

the stochastic integral
∫ t

0

√
D(ε−1Xε,x

s )(1 + v′(ε−1Xε,x
s ))dWs.

Lemma [Random time change].

Under technical but fairly general conditions,

there is another Wiener process W̃t such that

for a function f we have
∫ t

0
f(Xε,x

s )dWs ∼ W̃∫ t
0 f2(Xε,x

s )ds
:= W̃ (

∫ t

0
f2(Xε,x

s )ds).

(14)
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Thus by the lemma above we have that
∫ t

0

√
D(ε−1Xε,x

s )(1 + v′(ε−1Xε,x
s ))dWs(15)

∼ W̃ (
∫ t

0
D(ε−1Xε,x

s )(1 + v′(ε−1Xε,x
s ))2ds)

Now we will use the periodicity of D(x). The

function D(x)(1 + v′(x))2 is 1-periodic, and

the Lebesque measure is the invariant mea-

sure. Thus a version of the ergodic theorem

implies that
∫ t

0
D(ε−1Xε,x

s )(1 + v′(ε−1Xε,x
s ))2ds

→ε↓0 t
∫ 1

0
D(x)(1 + v′(x))2dx (16)

But if we recall the definition of v(x) in (11),

we see that
∫ 1

0
D(x)(1+v′(x))2dx = D̄ = (

∫ 1

0
D−1(y)dy)−1.

(17)
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Thus putting things together we see that

X
ε,x· →ε↓0 Xx· , (18)

where Xx
t satisfies:

Xx
t = x + W̃D̄t = x +

√
D̄Wt. (19)

Therefore the definition of convergence in dis-

tribution implies that

uε(t, x) = Ef(Xε,x
t ) →ε↓0 Ef(Xx

t ) = u(t, x)

(20)

So by Feynman-Kac formula we have that

uε(t, x) →ε↓0 u(t, x), (21)

where u(t, x) is the solution to:

ut(t, x) =
1

2
D̄uxx(t, x)

u(0, x) = f(x) (22)
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General Remarks

• We actually need to assume something less

than periodicity for D.

• Without major changes in the proof we

can consider the multi-dimensional case,

i.e. when x ∈ Rn.

• The procedure above can be applied to

more complicated problems.
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