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Motivation: Ways to have a Hopf bifurcation

ODEs: Hopf bifrucation via eigenvalues

Supercritical Hopf
as µ increases

Dynamics on
3D center manifold

µ

C

• Before bifurcation: u(x) = 0 stable

• After bifurcation: u(x) = 0 unstable

• After bifurcation: nearby stable periodic orbit exists

• After bifurcation: solutions approach periodic orbit, amplitude saturates



Motivation: Ways to have a Hopf bifurcation

PDEs: Hopf bifurcation via eigenvalues or essential spectrum

C C

Similar to above ?????

• Before bifurcation: equilibrium is stable

• After bifurcation: equilibrium is linearly unstable

• After bifurcation: do nearby stable solutions exist?

• After bifurcation: what state do solutions approach?



“Essential” Hopf bifurcations

What causes an “essential” Hopf bifurcation?

C

?????

ξ = x− c∗t

u+

u∗(ξ;µ)

Roughly speaking:

• Eigenvalues: localized perturbations and interior of wave

• Essential spectrum: non-localized perturbations and end states of wave

An “essential” Hopf bifurcation is caused by a destabilization of the end states.



Essential instabilities of fronts: results of Sandstede and Scheel ’01

What patterns can form through essential Hopf instabilities of fronts?

ξ = x− c∗t

u+

u∗(ξ;µ)

Two cases:

• Rest state ahead of front destabilizes: u+

• Rest state behind front destabilizes: 0

Expect fronts connecting remaining stable state to emergent patterns:

ξ = x− c∗t

u+

ξ = x− c∗t

u∗(ξ;µ)u∗(ξ;µ)



Essential instabilities of fronts: results of Sandstede and Scheel ’01
What patterns can form through essential Hopf instabilities of fronts?
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Essential instabilities of fronts: ecological examples

Patterns in wake of front in predator-prey models (matches field studies):

[From papers by Jonathan A. Sherratt and colleagues]

In all cases the front outruns the pattern.



Essential instabilities of fronts: results of Sandstede and Scheel ’01

• Destabilization ahead: patterns exist and are stable!

• Destabilization behind: patterns do not exist; front outruns it!

u t

x

u

t

x

[From Sandstede and Scheel, Dynamical Systems Vol. 16, 2001]

Sandstede and Scheel explain this using exponential dichotomies and Fredholm
theory: roughly speaking, dimension counting of stable and unstable manifolds.

Question: when no emergent pattern exists, what is the “stable” behavior?

• Front becomes linearly unstable

• Front is still be observed: must be nonlinearly stable



Set up and assumptions

Reaction-diffusion system

ut = D∂2
x u + f (u;µ), u ∈ Rn, x ∈ R, µ ≈ 0 (RD)

Hypothesis 1: Existence of front solution ∀µ ≈ 0

u(x , t) = u∗(x − c(µ)t;µ), c(µ) > 0

lim
ξ→−∞

u∗(ξ;µ) = 0, lim
ξ→+∞

u∗(ξ;µ) = u+

Linearized operator at critical front:

L∗ = D∂ξ + c∗∂ξ + fu(u0
∗(ξ); 0), ξ = x − c∗t, c∗ = c(0)

Asymptotic operators:

L−(µ) = D∂2
x + fu(0;µ), L+(0) = D∂2

x + fu(u+; 0),

Exponential weight:

ρa(ξ) =

(
1 if ξ ≥ 1

eaξ if ξ ≤ −1



Set up and assumptions

Hypothesis 2: Spectral assumptions

• 0 < a ≤ a0: the spectrum of La
∗ := ρaL∗ρ−1

a is in open left half plane
except isolated eigenvalue at 0.

• For µ ≈ 0, spectrum of L−(µ) is in open left half plane except for

λ(k, µ) = λ0(µ)− λ2(µ)(k − k0)2 +O(|k − k0|3), |k − k0| � 1

and its complex conjugate, where Reλ2(0) > 0, Reλ′0(0) > 0 and either
Turing: k0 > 0 and λ0(0) = 0, or
Hopf: k0 = 0, λ0(0) = iω0 for some ω0 > 0.

• The spectrum of L+(0) lies in the open left half plane.

Note: Picture is in moving frame ξ, so ω0 = k0c∗ > 0 at Turing bifurcations.



Set up and assumptions

Need bifurcation to be supercritical:

u(x , t) = εei(k0x+ω0t)A(εx , ε2t)e(k0) + c.c., µ = ρε2

Amplitude A(X ,T ) satisfies Ginzburg-Landau equation

At = λ2(0)∂2
X A + ρλ′0(0)A− b|A|2A

Hypothesis 3: Supercritical bifurcation

Re b > 0

This ensures the growth of the emergent pattern saturates.

Function space: uniformly local functions

ρul(x) = e−|x|, ‖u‖2
ρul =

Z
R
ρul(x)|u(x)|2 dx ‖u‖L2

ul
= sup

y∈R
‖u‖Tyρul .

Like normal Sobolev spaces but allow for nonlocalized functions.



Statement of result

Theorem [B., Ghazaryan, Sandstede JDE 09] Assume (H1)-(H3), then there
exist positive constants K, Λ∗, a∗, µ∗, and δ∗ such that: for any

|µ| ≤ µ∗, ‖v(·, 0)‖H1
ul
< δ∗,

the solution of (RD) with u(x , 0) = u∗(x ;µ) + v(x , 0) exists for all t ≥ 0 and

u(x , t) = u∗(x − c(µ)t − p(t);µ) + v(x − c(µ)t, t)

for an appropriate real-valued function p; furthermore, ∃ p∗ ∈ R such that

‖v(·, t)‖H1
ul

+ |p(t)| ≤ K
“
‖v(·, 0)‖H1

ul
+
p
|µ|
”

‖ρa∗(·)v(·, t)‖H1
ul

+ |p(t)− p∗| ≤ Ke−Λ∗t

for all t ≥ 0.

In other words, the perturbation v(ξ, t) decays to zero exponentially in time in
the weighted norm ‖ρa∗ · ‖H1

ul
in the comoving frame ξ = x − c(µ)t.



Intuition

Front outruns emergent pattern

u∗(ξ;µ)

and because bifurcation is supercritical, growth of pattern saturates.

u t

x

u

t

x

[From Sandstede and Scheel, Dynamical Systems Vol. 16, 2001]



Difficulties in proof

Just after bifurcation:

C
iω0

−iω0

unstable spectrum
after bifurcation!

Mathematical issues:

• Need to control the growth this causes

• No spectral gap: how to isolate this growth?

Resolution: mode filters

• Developed by G. Schneider, 1994 papers

• Generalization of a spectral projection



Mode filters

Standard spectral projection:

σ(L)
eLt =

1
2πi

∫
Γ1

eλt(λ− L)−1dλ +

1
2πi

∫
Γ2

eλt(λ− L)−1dλ

Γ1

Γ2

= eLtP c + eLtP s

Mode filters effectively allow for:

σ(L)

eLt = eLtP c
mf + eLt (1− P c

mf)︸ ︷︷ ︸
P s

mf

P c
mf



Proof: two steps

u∗(ξ;µ)

u(x , t) = u∗(x − c(µ)t − p(t);µ) + v(x − c(µ)t, t)

Step 1: A prior estimates in weighted space:

If ||v(t)||H1
ul
< δ ∀t ≥ 0

Then ||ρav(t)||H1
ul
≤ Ke−Λ∗t ∀t ≥ 0

Step 2: Use mode filters to prove that, indeed

||v(t)||H1
ul
< δ ∀t ≥ 0

Note: strategy similar to [Ghazaryan & Sandstede ’07], but they had a specific
system and their step 2 was proved using the maximum principle.



Step 1: A priori estimates in weighted space

Expect: u(ξ, t)→ u∗(ξ − p) as t →∞.

u(x , t) = u∗(x − c(µ)t − p(t);µ)| {z }
u∗(ξ−p(t))

+ v(x − c(µ)t, t)| {z }
v(ξ,t)

Unshifted linearized operator:

L0 = D∂2
ξ + c(µ)∂ξ + fu(u∗(ξ))

Work in weighted space: w(ξ, t) := ρa(ξ)v(ξ, t)

σ(La
0)

wt = La
0w + F (p, ξ)w + N(v, w)

Because in weighted space there is a spectral gap:

wt = Ps [La
0w + F (p, ξ)w + N(v ,w)]

pt = CPc
h
F̃ (p, ξ)w + N(v ,w)

i



Step 1: A priori estimates in weighted space

Given η sufficiently small, define Tmax(η) > 0 to be the maximum time so that

sup
t∈[0,T ]

“
|p(t)|+ ‖v(·, t)‖H1

ul

”
≤ η

Lemma There exists a Λ so that if w is a solution in the weighted space, then

‖w(·, t)‖H1
ul
≤ Ke−Λt‖w(·, 0)‖H1

ul
, |p(t)| ≤ K‖w(·, 0)‖H1

ul

for all 0 ≤ t ≤ Tmax(η), for some positive constant K that is independent of µ
and η. If Tmax(η) =∞, then there is a p∗ ∈ R with

|p(t)− p∗| ≤ Ke−Λt‖w(·, 0)‖H1
ul

for all t ≥ 0.

Therefore, in step 2 we need to show Tmax(η) =∞.



Step 2: estimates in unweighted space via mode filters

Proposition There exist positive constants K, δ∗ and µ∗ such that, if
‖v(0)‖H1

ul
< δ∗, then for each µ with |µ| ≤ µ∗ the perturbation satisfies

‖v(·, t)‖H1
ul

+ |p(t)| ≤ K
“
‖v(·, 0)‖H1

ul
+
p
|µ|
”

for all t ≥ 0. In particular, Tmax(η) =∞.

Remark: O(
√
µ) is emergent pattern size due to Ginzburg-Landau theory.

Proof This also has two steps:

• Show behavior of perturbations is governed by that at −∞.

• Control behavior at −∞ using mode filters.

u∗(ξ;µ)



Step 2a: behavior at −∞
Strategy: linearize at rest state 0 and show nothing else matters.

u∗(ξ;µ)

Recall:
L− = D∂2

ξ + c∂ξ + fu(0)

Write

vt = L−v +N−(v) + ∆(p, v)

∆(p, v) = difference in (non)linearization about u∗ and about 0

Lemma For all 0 ≤ t ≤ Tmax(η),

‖∆(p, v)(t)‖H1
ul
≤ C(η,Λ)‖w(t)‖H1

ul
≤ C(η,Λ)e−Λt‖w(0)‖H1

ul
.



Step 2b: control emergent pattern via mode filters

vt = D∂2
x v + f (v ;µ) + ∆(p, v)| {z }

O(e−Λt )

Ginzburg-Landau formalism for

vt = D∂2
x v + f (v ;µ) (RD)

Consider modulated waves of the form

v(x , t) = δeik0x+iω0tA(δx , δ2t)e(k0) + c.c. (MW)

Dynamics of amplitude A(δx , δ2t) = A(X ,T )

AT = λ2(0)∂2
X A +

µλ′0(0)

δ2
A− b|A|2A. (GL)

To show (GL) really controls the behavior of v , we need:

• Approximation: Given solution of (GL) and (MW), ∃ nearby sol’n of (RD)

• Attractivity: Given sol’n of (RD), ∃ a nearby (MW) via (GL)

Note: Both have been shown by Schneider and Mielke for (RD), ie ∆ = 0



Step 2b: define mode filters
Linear operator at −∞, where pattern will form:

L−(∂x) = D∂2
x + fu(0), L̂−(ik) = −k2D + fu(0)

Turing bifurcation: for any µ ≈ 0 and k ≈ k0 6= 0, near critical mode

λ(k)L̂−(ik) = λ(k)ê(k), L̂∗−(ik), 〈ê(k), ê∗(k)〉 = 1

Reλ(k)

µ = 0

k0−k0
k

Mode filter: defined in Fourier space

(bP±mf û)(k) = χ̂(2(k ∓ k0))〈ê∗(k, µ), û(k)〉ê(k, µ), bPc
mf = bP+

mf + bP−mf

Note: doesn’t yield projections!

Pc
mf ◦ Pc

mf 6= Pc
mf



Step 2b: new Ansatz via mode filters

Standard Ansatz: (Turing: k0 6= 0, ω0 = 0)

v(x , t) = δeik0xA(δx , δ2t)e(k0) + c.c.

Tells us v = v(A). For attractivity, need better “guess” and other direction!

v(x ; A) = δeik0xF−1 [χ̂(k)ê(k + k0)F(A(δx))] + c.c.

A(X ; v) =
1

δ
e−ik0X/δ(p+

mfv)(X/δ)

Extract critical modes from v to get A.

This allows us to:

• Prove both attractivity and approximation, for (mod RD)

• Therefore, v behaves as predicted by A

• Amplitude of pattern must saturate

‖v(·, t)‖H1
ul
≤ K

“
‖v(·, 0)‖H1

ul
+
p
|µ|
”



Summary

Essential Hopf bifurcation caused by rest state behind front:

C

After bifurcation, intuitively:

• Front becomes linearly unstable

• No other nearby solutions exist [Sandstede & Scheel 01]

• Numerically: front outruns perturbation

• If growth of perturbation saturates, front should be nonlinearly stable



Summary

Proof had two steps:

1) Show decay in exponentially weighted space if pattern growth saturates

σ(La
0)

u∗(ξ;µ)

2) Show, via mode filters, that growth does indeed saturate

P c
mf

σ(L−)

vt = D∂2
xv + f(v;µ) +O(e−Λt) (RD)

AT = λ2(0)∂2
XA +

µλ′
0(0)
δ2

A− b|A|2A (GL)


