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Motivation: Sturm-Liouville Theory

Eigenvalue problem:

AU = U + a(x)u = Lu, x € (a, b)
u(a) = u(b) =0

Priifer coordinates: define (r, 0) via

u=rsinb, Uy = rcosb
To obtain
r = r(l+X—a(x))cosfsinf
0 = cos 0+ (ax)— \)sin’0
Observe:

e 0 equation decouples
e {r =0} is invariant, so for a nontrivial solution,

u(x;A) =0 if and only if O(x;\) =jm, jEZ

e For A < —1, & > 0, so solutions will be forced to oscillate



Motivation: Sturm-Liouville Theory

Focus on the angular dynamics:
0x = cos” 0 + (a(x) — \)sin° 6

Let O(a; \) = 0 be the “initial condition” and evolve in x.
If (b; \) € {jm}, then X is an eigenvalue.

u(z; A)

0(b; \)

0(a; \)



Motivation: Sturm-Liouville Theory

Angular dynamics:
0, = cos” 0 + (a(x) — A) sin” 6, x € (a, b)

e Initial condition: 8(a; \) = 0; flow forward and see if 8(b; \) € {j=}

e For some A < —1 there must be an eigenvalue. Fix such a Ax:
O(b; \k) = (k + 1)
e Increase \ until you again land in {j7}, which is the eigenvalue Ax_1.
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e Process stops at largest \g; 68 no longer can complete one half-rotation



Motivation: Sturm-Liouville Theory
Using these ideas one can show:
AU = U + a(x)u = Lu, x € (a, b)
u(a) =u(b) =0

e There exists a decreasing sequence of simple eigenvalues Ao > A1 > ...
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e Corresponding eigenfunctions ux(x) have k simple zeros in (a, b)

u(z; A) .,

0(b; \)
./\ /\‘_ 0(a; \)
a b

us(x; A2) 0(b; Ao) = 3w




Motivation: Sturm-Liouville Theory
Consequences for stability in scalar reaction-diffusion equations:
Ur = Uxx + f(u), x €R
Linearize about stationary solution ¢(x):
A= o+ F (p(x))u = Lu, x € R, u e L*(R)
Notice:

0=vu+f(e(x)) = 0= (o)t (p(x))ex = Lok

Immediately conclude any pulse must be unstable:

() ' (x)

SN, :

Ox = U1 A1 =0 = Mo >0

We are effectively using the zeros as a proxy for the eigenvalues!



Motivation: Sturm-Liouville Theory

Related concept of conjugate points:
0" = cos” 0 + (a(x) — A)sin” 6,
Instead of fixing the domain and varying A, now fix A and vary the domain:
x € (a,s), s € (a,b] is a parameter

e Initial condition: 6(a; \) = 0; flow forward and see if 8(s; \) € {j=}
e Fix A = )\, to be an eigenvalue, so if s = b we know 0(b; A\x) = (k + 1)
e Decrease s until you again land in {j7}, which is the conjugate point sx_;.
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e Process stops at largest sp; 6 no longer can complete one half-rotation



Motivation: Sturm-Liouville Theory

“Square”: Relationship between eigenvalues and conjugate points:

S .
eigenvalues
b ® O O
so+T— M no
conjggate s1—+ W conjugate
ponts points
So2—+
a — no eigenvalues
I I I I
0 | | 1 A
A A9 A1 A0 Moo

#{conjugate points for A = \.} = #{eigenvalues A > A\, }

One can also prove:
e No eigenvalues for s = a; no “time” to oscillate.
e No conjugate points for A = A\ large; ODE or spectral analysis.



Motivation: Sturm-Liouville Theory

To analyze stability, choose A\, = 0:
S

eigenvalues
b @ O @

So M- o
conjl.lgate S1 - conjugate
pomnts points

S2 M-
a no eigenvalues
I | I I
A =0 | | I A
)\2 )\1 >\O >\oo

Number of conjugate points = number of unstable eigenvalues = Morse(L)

This is a simple case of what is often called the Morse Index Theorem, and it
goes back to the work of Morse, Bott, etc, in the 50s.



Motivation: Sturm-Liouville Theory

Summary so far:

e Sturm-Liouville theory, when it applies, is powerful: in scalar
reaction-diffusion equations, pulses are unstable; one needs no details
about the equation or underlying wave.

e In general, finding eigenvalues can be hard; sometimes finding conjugate
points is easier: eg count zeros of .

e In the scalar case, conjugate points can be analyzed via the winding of a
phase; monotonicity in A and s was key.

Can we generalize this to systems?

or multidimensional domains?



Systems in one spatial dimension

n

ur = Uxx + f(u), x € R, ueR

Key restrictive assumption:
f(u) = VG(u), G:R" >R

Will imply linearized operator is self-adjoint and provide a symplectic structure.

Stationary solution ¢(x); suppose it is a pulse:

lim (X)) = oo

x—+ o0

Eigenvalue equation:
A= U + V2 G(p(x))u = Lu, ue L*(R,R")
Natural assumption: the essential spectrum of L is stable. Equivalently,

V?G(p) < 0.



Systems in one spatial dimension

Eigenvalue equation:

A= e + VG (p(x))u = Lu, ueR", x€eR

(G er
"4

Write as a first-order system:

%O - ((A—V%(SO(X))) é) <)
_ (fIJ —O/><(A—V20G(90(X))) —O/> (t‘;)
= JB(x;\) (5)

Note that A\ can be taken to be real and B(x; \) is a symmetric matrix.

Can we develop a Sturm-Liouville-like theory for such eigenvalue problems?

e Arnol'd (1967, 1985) generalized the notion of phase to R"” via the Maslov
index and proved oscillation theorems.

e Can we connect his theory with eigenvalues?

Note: the above perspective is often called ‘spatial dynamics’.



Oscillations in R”

Symplectic form:
CL)(U, V) = <U,JV>R2n.

Lagrangian-Grassmanian:
A(n)={¢ CR* :dim(¢) =n, w(U,V)=0 YU,V €/}

Each Lagrangian plane has an associated frame matrix: A, B € R™*"

R (O

Suppose we have a path of Lagrangian planes,
¢(t) € N(n), t € [a, b]

and we are interested in its intersections with a fixed reference plane, such as

the Dirichlet plane:
0 n
D:{U: (v) veR }E/\(n)

This is very similar to looking for conjugate points.



Oscillations in R”"
Associate the path /(t) with a frame matrix
A(t)
((t) & <B(t)>

There is a well-defined angle ¢(t) satisfying

() = det[(A(t) — iB(t))(A(t) +iB()) ]

=:W(t)

which utilizes the fact that W/(t) is unitary, hence has spectrum on S'. Also,
dim[ker(W (t) + )] = dim(4(t) N D)

The Maslov index counts, with multiplicity and direction, the number of times
an eigenvalue of W(t) crosses through —1. It is related to the fact that

m1(A(n)) = Z.
If £(t) is a loop, its Maslov index is just its equivalence class in 71 (A(n)).

[Arnol’d 1967, Furutani 2004, and Howard, Latushkin, Sukhtayev 2017].



Systems in one spatial dimension

Back to our eigenvalue problem:
d (u u
(1) =500 ()

The assumption VG (o) < 0 implies

JB(£o0; A) = ((A _ VzoG(sooo)) é>

is hyperbolic with stable/unstable eigenspace of dimension n. Therefore,
dim(E%"(x; A)) = n

In other words, the subspaces of solutions asymptotic to these stable/unstable
eigenspaces at ==co must also have dimension n.



Systems in one spatial dimension

2 0)-men ()

For an eigenfunction, we need (u, v)(x; A) € EL (x; A\) NES (x; A\):

E (23 M)

/

(@) B (V)
It turns out these are both paths of Lagrangian subspaces!

Alternatively, look for conjugate points:

U(x; A) =EZ(x; \) € A(n) When is EZ(x; A\)ND # {0}7?



Systems in one spatial dimension

Main results of [B., Cox, Jones, Latushkin, McQuighan, Suhktayev '18]:
e Proved “square’ relating eigenvalues to conjugate points.
e Proved a pulse solution is necessarily unstable, as in the scalar case.

A= U + VZG(p(x))u = Lu, ueR" dom(£) = H*(R) C L*(R)

S

eigenvalues
+00 @ @ @
[ ]
conjugate no conjugate
points ﬁ points
B w0
—00

no eigenvalues



Systems in one spatial dimension

5 eigenvalues
+00 @ @ @
[ ]
conjugate no conjugate
points i points
B w0
—00

no eigenvalues

Some ideas in proof:

Compactify domain s € (—o0,00) = § € [—1,1]

Path of Lagrangian subspaces ¢(5; \) = EZ(§; \) around entire square
Since [—1,1] x [0, Aoo] C R® is a trivial loop, the Maslov index of £(3; \)
around it must be zero.

Show bottom and right side have no intersections.

Prove monotonicity: determine sign of crossings on top (—) and left (+).
Use “crossing form” to characterize Maslov index [Robbin, Salamon 1993]



Systems in one spatial dimension

eigenvalues
00 @ @ @
L]
conjugate no conjugate
points i points
" w0
—00

no eigenvalues

Additional comments

e Pulse instability follows from a symmetry argument; use reversibility to
prove there must be at least one conjugate point.

e There are many (recent) theoretical results using the Maslov index to
relate unstable eigenvalues to conjugate points, but there are very few
applications of these results to actually determine (in)stabilily.

e Current work with J. Jaquette: use validated numerics to count conjugate
points; much faster than validated Evans function computations.



Multiple space dimensions

Eigenvalue problem:

Lu=Au+ V(x)u=u, x €QCRC, u € R, AeER

uloo =0

Can we develop anything like Sturm-Liouville Theory here?
e Notion of conjugate points?
e Lagrangian structure and Maslov index?

Family of domains [Smale 65]:
{Qs 0 S S S 1}, Ql = Q, Qo = {Xo}.

Q=0




Multiple space dimensions

Path of subspaces:

8U 1
(s: \) = ,—‘ ue HYQ), Au+ V(x)u=Au, Q.
(s; A\) {(u 8n) oo, ue H () u+ V(x)u u, xEe€ }

subspace of solutions on €25 with no reference to boundary conditions

Dirichlet subspace:

o (0 28)] = (032) ], v )

reference plane determined by boundary conditions

Conjugate point:
l(s; \) "D #£ {0}

Hilbert space

H=H"?09Q) x H2(09),  w((fi,g1),(f &) = (g, h) — (g1, )

Both /(s; A\) and D are in the Fredholm-Lagrangian Grassmannian of H.
[Deng, Jones '11], [Cox, Jones, Latushkin, Suhktayev '16], ... relate conjugate
points to eigenvalues via the Maslov index; more general BCs and systems.



Spatial dynamics in R97?

Does this suggest a “spatial dynamics’ for R?? Consider

0= Au+ F(x,u), x €QCR

Family of domains parameterized by family of diffeomorphisms:
Vs : Q= Qs,  s€[0,1], Uu=Q, Qo= {x}

Define boundary data via

flsiy) =u(ey)),  g(siy) = o)), €], yeon

and trace map
Trsu = (f(S),g(S))

Obtain an equivalent first-order system

% (;) = F(f.8)



Spatial dynamics in R97?

Theorem [B., Cox, Jones, Latushkin, Sukhtayev ’19]:

Au+ F(z,u) =0

weak solution

evolution of
boundary data




Spatial dynamics in R97?

So, rather than solving Au + F(x, u) = 0, we can instead solve

% (2) = F(f,8),

a somewhat technical and not-fun-to-look-at equation. What have we gained?

Consider Q = R?. We can choose to shrink the domain using spheres:

Q. = {x e R? : |x| < s}, s € (0,0)

In terms of the polar coordinates (r,8) € (0,00) x S°1,

—1 1
Au = u, + n—ur + — Agd-1U,
r r

and our equation is now not so bad:

5(6) - (i e 20e) () (o)



Spatial dynamics in R97?

% @ - (—s—%gdl - 1)5‘1> @ ’ (—F(SO’@’ f)>

e \We have shown the linear part of this equation admits an exponential
dichotomy (after rescaling time s = e").

e For d = 3, the dichotomy can be written explicitly in terms of the
spherical harmonics of the Laplacian.

e This allows one to potentially construct solutions to the nonlinear equation
that are not necessarily radially symmetric.

e \We hope this will be a useful method for studying multidimensional waves
and patterns.

[Ongoing work with Cox, Jones, Latushkin, and Sukhtayev]



Summary
Sturm-Liouville Theory allows one to connect eigenvalues with conjugate points
for scalar, second order equations.

The Maslov index allows for a generalization of this to systems of equations in
one space dimension, and also to multiple spatial dimensions.

Many of the results are abstract; main application so far is to prove pulses in
reaction-diffusion systems with gradient nonlinearity are necessarily unstable. [f
you have any ideas about possible applications, please let me know!

The ideas used in the multidimensional case lead to a formulation of ‘spatial
dynamics’ in multiple spatial dimensions.

THANK YOU!!!



