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Motivation: Sturm-Liouville Theory

Eigenvalue problem:

�u = uxx + ↵(x)u = Lu, x 2 (a, b)

u(a) = u(b) = 0

Prüfer coordinates: define (r , ✓) via

u = r sin ✓, ux = r cos ✓

To obtain

rx = r(1 + �� ↵(x)) cos ✓ sin ✓

✓x = cos2 ✓ + (↵(x)� �) sin2 ✓

Observe:

• ✓ equation decouples

• {r = 0} is invariant, so for a nontrivial solution,

u(x ;�) = 0 if and only if ✓(x ;�) = j⇡, j 2 Z

• For �⌧ �1, ✓0 > 0, so solutions will be forced to oscillate



Motivation: Sturm-Liouville Theory

Focus on the angular dynamics:

✓x = cos2 ✓ + (↵(x)� �) sin2 ✓

Let ✓(a;�) = 0 be the “initial condition” and evolve in x .
If ✓(b;�) 2 {j⇡}, then � is an eigenvalue.

u(x; �)

ba

�(a; �)

�(b; �)



Motivation: Sturm-Liouville Theory

Angular dynamics:

✓x = cos2 ✓ + (↵(x)� �) sin2 ✓, x 2 (a, b)

• Initial condition: ✓(a;�) = 0; flow forward and see if ✓(b;�) 2 {j⇡}

• For some �⌧ �1 there must be an eigenvalue. Fix such a �k :
✓(b;�k) = (k + 1)⇡.

• Increase � until you again land in {j⇡}, which is the eigenvalue �k�1.

�k �k�1 �0� :

�(b; �) : (k + 1)� k� �

R
. . .

• Process stops at largest �0; ✓ no longer can complete one half-rotation



Motivation: Sturm-Liouville Theory

Using these ideas one can show:

�u = uxx + ↵(x)u = Lu, x 2 (a, b)

u(a) = u(b) = 0

• There exists a decreasing sequence of simple eigenvalues �0 > �1 > . . .

�k �k�1 �0� :

�(b; �) : (k + 1)� k� �

R
. . .

• Corresponding eigenfunctions uk(x) have k simple zeros in (a, b)

u(x; �)

ba

�(a; �)

�(b; �)

u2(x; �2) �(b; �2) = 3�



Motivation: Sturm-Liouville Theory

Consequences for stability in scalar reaction-di↵usion equations:

ut = uxx + f (u), x 2 R

Linearize about stationary solution '(x):

�u = uxx + f
0('(x))u = Lu, x 2 R, u 2 L

2(R)

Notice:

0 = 'xx + f ('(x)) ) 0 = ('x)xx + f
0('(x))'x = L'x

Immediately conclude any pulse must be unstable:

xx

�(x) ��(x)

'x = u1 �1 = 0 ) �0 > 0

We are e↵ectively using the zeros as a proxy for the eigenvalues!



Motivation: Sturm-Liouville Theory

Related concept of conjugate points:

✓0 = cos2 ✓ + (↵(x)� �) sin2 ✓,

Instead of fixing the domain and varying �, now fix � and vary the domain:

x 2 (a, s), s 2 (a, b] is a parameter

• Initial condition: ✓(a;�) = 0; flow forward and see if ✓(s;�) 2 {j⇡}

• Fix � = �k to be an eigenvalue, so if s = b we know ✓(b;�k) = (k + 1)⇡

• Decrease s until you again land in {j⇡}, which is the conjugate point sk�1.

(k + 1)�k��

R
. . .s : sk = bsk�1s0

a

�(s; �k) :

b

• Process stops at largest s0; ✓ no longer can complete one half-rotation



Motivation: Sturm-Liouville Theory

“Square”: Relationship between eigenvalues and conjugate points:

�

s

b

a

0

conjugate
points

no
conjugate

points

eigenvalues

no eigenvalues

���0�1�2��

s0

s1

s2

#{conjugate points for � = �⇤} = #{eigenvalues � > �⇤}

One can also prove:

• No eigenvalues for s = a; no “time” to oscillate.

• No conjugate points for � = �1 large; ODE or spectral analysis.



Motivation: Sturm-Liouville Theory

To analyze stability, choose �⇤ = 0:

�

s

b

a

conjugate
points

no
conjugate

points

eigenvalues

no eigenvalues

���0�1�2

s0

s1

s2

�� = 0

Number of conjugate points = number of unstable eigenvalues = Morse(L)

This is a simple case of what is often called the Morse Index Theorem, and it
goes back to the work of Morse, Bott, etc, in the 50s.



Motivation: Sturm-Liouville Theory

Summary so far:

• Sturm-Liouville theory, when it applies, is powerful: in scalar
reaction-di↵usion equations, pulses are unstable; one needs no details
about the equation or underlying wave.

• In general, finding eigenvalues can be hard; sometimes finding conjugate
points is easier: eg count zeros of 'x .

• In the scalar case, conjugate points can be analyzed via the winding of a
phase; monotonicity in � and s was key.

Can we generalize this to systems?

u 2 Rn

or multidimensional domains?

x 2 ⌦ ⇢ Rd



Systems in one spatial dimension

ut = uxx + f (u), x 2 R, u 2 Rn

Key restrictive assumption:

f (u) = rG(u), G : Rn
! R

Will imply linearized operator is self-adjoint and provide a symplectic structure.

Stationary solution '(x); suppose it is a pulse:

lim
x!±1

'(x) = '1

Eigenvalue equation:

�u = uxx +r
2
G('(x))u = Lu, u 2 L

2(R,Rn)

Natural assumption: the essential spectrum of L is stable. Equivalently,

r
2
G('1) < 0.



Systems in one spatial dimension

Eigenvalue equation:

�u = uxx +r
2
G('(x))u = Lu, u 2 Rn, x 2 R

Write as a first-order system:

d

dx

✓
u

v

◆
=

✓
0 I

(��r
2
G('(x))) 0

◆✓
u

v

◆ ✓
u

v

◆
2 R2n

=

✓
0 �I

I 0

◆✓
(��r

2
G('(x))) 0
0 �I

◆✓
u

v

◆

= JB(x ;�)

✓
u

v

◆

Note that � can be taken to be real and B(x ;�) is a symmetric matrix.

Can we develop a Sturm-Liouville-like theory for such eigenvalue problems?

• Arnol’d (1967, 1985) generalized the notion of phase to Rn via the Maslov
index and proved oscillation theorems.

• Can we connect his theory with eigenvalues?

Note: the above perspective is often called ‘spatial dynamics’.



Oscillations in Rn

Symplectic form:
!(U,V ) = hU, JV iR2n .

Lagrangian-Grassmanian:

⇤(n) = {` ⇢ R2n : dim(`) = n, !(U,V ) = 0 8U,V 2 `}.

Each Lagrangian plane has an associated frame matrix: A,B 2 Rn⇥n

` =

⇢✓
A

B

◆
u : u 2 Rn

�
`,

✓
A

B

◆

Suppose we have a path of Lagrangian planes,

`(t) 2 ⇤(n), t 2 [a, b]

and we are interested in its intersections with a fixed reference plane, such as
the Dirichlet plane:

D =

⇢
U =

✓
0
v

◆
: v 2 Rn

�
2 ⇤(n)

This is very similar to looking for conjugate points.



Oscillations in Rn

Associate the path `(t) with a frame matrix

`(t) ,

✓
A(t)
B(t)

◆

There is a well-defined angle �(t) satisfying

e
i�(t) = det[(A(t)� iB(t))(A(t) + iB(t))�1

| {z }
=:W (t)

],

which utilizes the fact that W (t) is unitary, hence has spectrum on S1. Also,

dim[ker(W (t) + I )] = dim(`(t) \D)

The Maslov index counts, with multiplicity and direction, the number of times
an eigenvalue of W (t) crosses through �1. It is related to the fact that

⇡1(⇤(n)) = Z.

If `(t) is a loop, its Maslov index is just its equivalence class in ⇡1(⇤(n)).

[Arnol’d 1967, Furutani 2004, and Howard, Latushkin, Sukhtayev 2017].



Systems in one spatial dimension

Back to our eigenvalue problem:

d

dx

✓
u

v

◆
= JB(x ;�)

✓
u

v

◆

The assumption r
2
G('1) < 0 implies

JB(±1;�) =

✓
0 I

(��r
2
G('1)) 0

◆

is hyperbolic with stable/unstable eigenspace of dimension n. Therefore,

dim(Es,u
± (x ;�)) = n

In other words, the subspaces of solutions asymptotic to these stable/unstable
eigenspaces at ±1 must also have dimension n.



Systems in one spatial dimension

d

dx

✓
u

v

◆
= JB(x ;�)

✓
u

v

◆

For an eigenfunction, we need (u, v)(x ;�) 2 Eu
�(x ;�) \ Es

+(x ;�):

Es
+�(�)

Es
+(x; �)

Eu
�(x; �)

Eu
��(�)

R2n R2n

It turns out these are both paths of Lagrangian subspaces!

Alternatively, look for conjugate points:

`(x ;�) = Eu
�(x ;�) 2 ⇤(n) When is Eu

�(x ;�) \D 6= {0}?



Systems in one spatial dimension

Main results of [B., Cox, Jones, Latushkin, McQuighan, Suhktayev ’18]:

• Proved “square” relating eigenvalues to conjugate points.

• Proved a pulse solution is necessarily unstable, as in the scalar case.

�u = uxx +r
2
G('(x))u = Lu, u 2 Rn, dom(L) = H

2(R) ⇢ L
2(R)

�

s

conjugate
points

eigenvalues

no eigenvalues

��

��

0

+�

no conjugate
points



Systems in one spatial dimension

�

s

conjugate
points

eigenvalues

no eigenvalues

��

��

0

+�

no conjugate
points

Some ideas in proof:

• Compactify domain s 2 (�1,1) ! s̃ 2 [�1, 1]

• Path of Lagrangian subspaces `(s̃;�) = Eu
�(s̃;�) around entire square

• Since [�1, 1]⇥ [0,�1] ⇢ R2 is a trivial loop, the Maslov index of `(s̃;�)
around it must be zero.

• Show bottom and right side have no intersections.

• Prove monotonicity: determine sign of crossings on top (�) and left (+).

• Use “crossing form” to characterize Maslov index [Robbin, Salamon 1993]



Systems in one spatial dimension

�

s

conjugate
points

eigenvalues

no eigenvalues

��

��

0

+�

no conjugate
points

Additional comments

• Pulse instability follows from a symmetry argument; use reversibility to
prove there must be at least one conjugate point.

• There are many (recent) theoretical results using the Maslov index to
relate unstable eigenvalues to conjugate points, but there are very few
applications of these results to actually determine (in)stabilily.

• Current work with J. Jaquette: use validated numerics to count conjugate
points; much faster than validated Evans function computations.



Multiple space dimensions

Eigenvalue problem:

Lu = �u + V (x)u = �u, x 2 ⌦ ⇢ Rd , u 2 R, � 2 R
u|@⌦ = 0

Can we develop anything like Sturm-Liouville Theory here?

• Notion of conjugate points?

• Lagrangian structure and Maslov index?

Family of domains [Smale 65]:

{⌦s : 0  s  1}, ⌦1 = ⌦, ⌦0 = {x0}.

� = �1

�0

�s



Multiple space dimensions

Path of subspaces:

`(s;�) =

⇢✓
u,
@u
@n

◆ ���
@⌦s

: u 2 H
1(⌦s), �u + V (x)u = �u, x 2 ⌦s

�

subspace of solutions on ⌦s with no reference to boundary conditions

Dirichlet subspace:

D =

⇢✓
u,
@u
@n

◆ ���
@⌦

=

✓
0,
@u
@n

◆ ���
@⌦

: u 2 H
1(⌦s)

�

reference plane determined by boundary conditions

Conjugate point:
`(s;�) \D 6= {0}

Hilbert space

H = H
1/2(@⌦)⇥ H

�1/2(@⌦), !((f1, g1), (f2, g2)) = hg2, f1i � hg1, f2i

Both `(s;�) and D are in the Fredholm-Lagrangian Grassmannian of H.
[Deng, Jones ’11], [Cox, Jones, Latushkin, Suhktayev ’16], . . . relate conjugate
points to eigenvalues via the Maslov index; more general BCs and systems.



Spatial dynamics in Rd
?

Does this suggest a “spatial dynamics” for Rd? Consider

0 = �u + F (x , u), x 2 ⌦ ⇢ Rd

Family of domains parameterized by family of di↵eomorphisms:

 s : ⌦ ! ⌦s , s 2 [0, 1], ⌦1 = ⌦, ⌦0 = {x0}.

Define boundary data via

f (s; y) = u( s(y)), g(s; y) =
@u
@n

( s(y)), s 2 [0, 1], y 2 @⌦

and trace map
Trsu = (f (s), g(s)).

Obtain an equivalent first-order system

d

ds

✓
f

g

◆
= F(f , g)



Spatial dynamics in Rd
?

�u + F (x, u) = 0

� = �1

weak solution

evolution of
boundary data

�
u,

�u

�n

�
(��s) = (f, g)(s)

d

ds
(f, g) = F(f, g)

Theorem [B., Cox, Jones, Latushkin, Sukhtayev ’19]:

�s



Spatial dynamics in Rd
?

So, rather than solving �u + F (x , u) = 0, we can instead solve

d

ds

✓
f

g

◆
= F(f , g),

a somewhat technical and not-fun-to-look-at equation. What have we gained?

Consider ⌦ = Rd . We can choose to shrink the domain using spheres:

⌦s = {x 2 Rd : |x | < s}, s 2 (0,1)

In terms of the polar coordinates (r , ✓) 2 (0,1)⇥ Sd�1,

�u = urr +
n � 1
r

ur +
1
r 2

�Sd�1u,

and our equation is now not so bad:

d

ds

✓
f

g

◆
=

✓
0 1

�s
�2�Sd�1 �(d � 1)s�1

◆✓
f

g

◆
+

✓
0

�F (t, ✓, s)

◆



Spatial dynamics in Rd
?

d

ds

✓
f

g

◆
=

✓
0 1

�s
�2�Sd�1 �(d � 1)s�1

◆✓
f

g

◆
+

✓
0

�F (s, ✓, f )

◆

• We have shown the linear part of this equation admits an exponential
dichotomy (after rescaling time s = e

⌧ ).

• For d = 3, the dichotomy can be written explicitly in terms of the
spherical harmonics of the Laplacian.

• This allows one to potentially construct solutions to the nonlinear equation
that are not necessarily radially symmetric.

• We hope this will be a useful method for studying multidimensional waves
and patterns.

[Ongoing work with Cox, Jones, Latushkin, and Sukhtayev]



Summary

Sturm-Liouville Theory allows one to connect eigenvalues with conjugate points
for scalar, second order equations.

The Maslov index allows for a generalization of this to systems of equations in
one space dimension, and also to multiple spatial dimensions.

Many of the results are abstract; main application so far is to prove pulses in
reaction-di↵usion systems with gradient nonlinearity are necessarily unstable. If
you have any ideas about possible applications, please let me know!

The ideas used in the multidimensional case lead to a formulation of ‘spatial
dynamics’ in multiple spatial dimensions.

THANK YOU!!!


