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Outline of talk

I’ll give some background on how a topological invariant called the Maslov
index has recently been utilized to understand stability in partial differential
equations and dynamical systems. In particular, I will:

• Discuss the concept of stability in a dynamical systems context.

• Describe the topological invariant known as the Maslov index.

• Explain some connections between the Maslov index and stability.

I hope this will provide context for the talks that will follow.



Stability

d

dt
v = F (v), v(t) ∈ X
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Examples:

• ODEs: X = Rn, F (v) = −v + v 2

• PDEs: X = L2(R), F (v) = ∂2
xv − v + v 2

Stationary solution: 0 = F (ϕ)

Stability (temporal): a stationary solution ϕ is stable if any solution that starts
close to it converges to it.
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Why is stability important for understanding dynamics?

Ideal scenario: one understands the (in)stability of all stationary solutions, as
well as more complicated invariant sets, and can thus piece together a global
understanding of the dynamics. This rarely happens.

What we often settle for: understanding the (in)stability of a single stationary
solution, which provides information about how likely we are to observe that
solution, either numerically or in the real world. Even this can be hard,
especially if your dynamical system is a PDE.

For PDEs, stationary solutions can depend on the spatial variable:
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Determining stability

Start with a stationary solution:

vt = F (v), 0 = F (ϕ)

Stability Ansatz: arbitrary solution starts close to ϕ

v(t) = ϕ+ u(t), u(0) is small

Plug into equation:

ut = F (ϕ+ u)

= F (ϕ) + dF (ϕ)u + N(u)

= dF (ϕ)︸ ︷︷ ︸
L

u + N(u).

Characterization of Stability

ϕ is stable ⇔ solutions to ut = Lu + N(u) decay to zero



Determining stability via decay to zero of perturbations

ut = Lu + N(u)

Spectral stability: The spectrum of L lies strictly in the left half of C. Are
there any unstable eigenvalues? Often the hardest to prove.

Linear stability: The associated semigroup decays, eg ‖eLt‖ ≤ Ce−λt . Spectral
stability often implies linear stability via a spectral mapping theorem.

ut = Lu ⇒ u(t) = eLtu(0)

Nonlinear stability: Solutions to the full nonlinear equation decay. Linear
stability often implies nonlinear stability through a representation like

u(t) = eLtu(0) +

∫ t

0

eL(t−s)N(u(s))ds.



The Maslov index

The Maslov index can be viewed as a generalization of the winding number in
C to the Lagrangian Grassmannian.

Start with a symplectic form on R2n, such as

ω(U,V ) = 〈U, JV 〉R2n , J =

(
0 −In
In 0

)

Define the Lagrangian Grassmannian to be n-planes where ω vanishes:

Λ(n) = {` ⊂ R2n : dim(`) = n, ω(U,V ) = 0 ∀U,V ∈ `}.

Represent paths in Λ(n) via frame matrices: for appropriate A,B ∈ Rn×n

`(t) =

{(
A(t)
B(t)

)
w : w ∈ Rn

}
`(t)⇔

(
A(t)
B(t)

)



The Maslov index

Associate path with angle φ(t) and unitary matrix W (t):

`(t)⇔
(
A(t)
B(t)

)
, eiφ(t) = det[(A(t)− iB(t))(A(t) + iB(t))−1︸ ︷︷ ︸

=:W (t)

],

The Maslov index counts eigenvalues of W (t) that cross −1, with multiplicity
and direction. It is related to the fact that

π1(Λ(n)) = Z.

If `(t) is a loop, its Maslov index is just its equivalence class in π1(Λ(n)).

This framework also detects intersections with fixed reference planes:

D =

(
0
In

)
⇒ dim[ker(W (t) + I )] = dim(`(t) ∩ D)

[Arnol’d 1967, Furutani 2004, and Howard, Latushkin, Sukhtayev 2017].



Connecting the Maslov index with stability

In certain situations, the Maslov index can be used to count the unstable
eigenvalues of linear operators, hence providing information about (in)stability.

To understand this, we’ll first look at a case study: Sturm-Liouville Theory.

The punchline: in certain scalar equations, one can count the unstable
eigenvalues associated with ϕ by counting the number of local extrema of ϕ.
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Case study: Sturm-Liouville Theory

Consider the equation

vt = vxx + f (v), v(x , t) ∈ R, x ∈ [a, b], v ∈ L2([a, b])

Take a stationary solution ϕ and linearize about it.

0 = ϕxx + f (ϕ) ⇒ L = ∂2
x + f ′(ϕ(x)).

Focus on spectral stability: look for positive eigenvalues of L

λu = Lu, x ∈ (a, b)

u(a) = u(b) = 0

Common technique: write this second order equation as a first order system:

d

dx

(
u
ux

)
=

(
ux

[λ− f ′(ϕ(x))]u

)
,

(
u
ux

)
∈ R2

Our eigenvalue problem thus has a two-dimensional phase space.



Case study: Sturm-Liouville Theory

Turns out a change of variables is useful: define (r , θ) via

u = r sin θ, ux = r cos θ

This gives

rx = r [1 + λ− f ′(ϕ(x))] cos θ sin θ

θx = cos2 θ − [λ− f ′(ϕ(x))] sin2 θ

Observe:

• θ equation decouples

• {r = 0} is invariant, so for a nontrivial solution,

u(x ;λ) = 0 if and only if θ(x ;λ) = jπ, j ∈ Z

• For λ� −1, θ′ > 0, so solutions will be forced to oscillate



Case Study: Sturm-Liouville Theory

Focus on the angular dynamics:

θx = cos2 θ − [λ− f ′(ϕ(x))] sin2 θ

Let θ(a;λ) = 0 be the “initial condition” and evolve in x .
If θ(b;λ) ∈ {jπ}, then λ is an eigenvalue.

u(x;�)

ba

✓(a;�)

✓(b;�)



Case Study: Sturm-Liouville Theory

Angular dynamics:

θx = cos2 θ − [λ− f ′(ϕ(x))] sin2 θ, x ∈ (a, b)

• Initial condition: θ(a;λ) = 0; flow forward and see if θ(b;λ) ∈ {jπ}
• For some λ� −1 there must be an eigenvalue. Fix such a λk :
θ(b;λk) = (k + 1)π.

• Increase λ until you again land in {jπ}, which is the eigenvalue λk−1.

�k �k�1 �0� :

✓(b;�) : (k + 1)⇡ k⇡ ⇡

R

. . .

• Process stops at largest λ0; θ no longer can complete one half-rotation.



Case Study: Sturm-Liouville Theory
Using these ideas one can show:

λu = Lu, x ∈ (a, b)

u(a) = u(b) = 0

• There exists a decreasing sequence of simple eigenvalues λ0 > λ1 > . . .

�k �k�1 �0� :

✓(b;�) : (k + 1)⇡ k⇡ ⇡

R

. . .

• Corresponding eigenfunctions uk(x) have k simple zeros in (a, b)

u(x;�)

ba

✓(a;�)

✓(b;�)

u2(x;�2) ✓(b;�2) = 3⇡



Case Study: Sturm-Liouville Theory

Consequences for stability in scalar reaction-diffusion equations:

vt = vxx + f (v), x ∈ R

Linearize about stationary solution ϕ(x):

λu = uxx + f ′(ϕ(x))u = Lu, x ∈ R, u ∈ L2(R)

Notice:

0 = ϕxx + f (ϕ(x)) ⇒ 0 = (ϕx)xx + f ′(ϕ(x))ϕx = Lϕx

Immediately conclude any pulse must be unstable:

xx

'(x) '0(x)

ϕx = u1 λ1 = 0 ⇒ λ0 > 0

We are effectively using the zeros of ϕx as a proxy for the eigenvalues!



Case Study: Sturm-Liouville Theory

What does this have to do with the Maslov index?

θ′ = cos2 θ − [λ− f ′(ϕ(x))] sin2 θ,

Instead of fixing the domain and varying λ, now fix λ and vary the domain:

x ∈ (a, s), s ∈ (a, b] is a parameter

• Initial condition: θ(a;λ) = 0; flow forward and see if θ(s;λ) ∈ {jπ}
• Fix λ = λk to be an eigenvalue, so if s = b we know θ(b;λk) = (k + 1)π

• Decrease s until you again land in {jπ}, which is the conjugate point sk−1.

(k + 1)⇡k⇡⇡

R

. . .s : sk = bsk�1s0

a

✓(s;�k) :

b

• Process stops at largest s0; θ no longer can complete one half-rotation



Case Study: Sturm-Liouville Theory

Relationship between eigenvalues and conjugate points:

�

s

b

a

0

conjugate
points

no
conjugate

points

eigenvalues

no eigenvalues

�1�0�1�2�⇤

s0

s1

s2

#{conjugate points for λ = λ∗} = #{eigenvalues λ > λ∗}

The angle θ is Arnol’d’s angle φ that measures winding for the Maslov index!



Case Study: Sturm-Liouville Theory

To analyze stability, choose λ∗ = 0:

�

s

b

a

conjugate
points

no
conjugate

points

eigenvalues

no eigenvalues

�1�0�1�2

s0

s1

s2

�⇤ = 0

Number of conjugate points = number of unstable eigenvalues

It turns out this result can be viewed in terms of the Maslov index!

Create a map

Φ : [0, λ∞]× [a, b]→ Λ(2), (λ, s) 7→
(
u(s;λ)
ux(s;λ)

)



Case Study: Sturm-Liouville Theory

�

s

b

a

conjugate
points

no
conjugate

points

eigenvalues

no eigenvalues

�1�0�1�2

s0

s1

s2

�⇤ = 0

Φ : [0, λ∞]× [a, b]→ Λ(2)

• The square is contractible in R2.

• Thus its image under Φ in Λ(2) has Maslov index zero.

• There are no contributions to the index on the bottom or right.

• The contributions on the left and top are simple and of fixed respective
sign, hence they are equal. Monotonicity is key here!



Summary so far

Stability is important in dynamical systems because it helps us understand
which solutions we can expect to observe.

The Maslov index is a topological invariant that lets us count oscilllations in
the Lagrangian Grassmanian.

One can use the Maslov index to count unstable eigenvalues of certain linear
differential operators, and thus determine (in)stability.

Topological results in dynamics are powerful. For Sturm-Liouville theory, they
provide information about stability without requiring detailed information about
the stationary solution, or even about the underlying equation.



How generalizable is our case study?

• Can we generalize this to second-order systems? This would mean
(u, ux) ∈ R2n, so our phase space is no longer two-dimensional.

• How useful would this be? Is it easier to count conjugate points than to
count unstable eigenvalues directly?

• Can we generalize this to higher-order equations? This is another way to
obtain a non-planar phase space.

• Can we generalize this to multidimensional domains, eg x ∈ Rd?

Generalizing Sturm-Liouville theory in various ways to study stability goes back
to [Jones ’88] and has also involved Bridges, Chardard, Chen, Cornwell, Cox,
Deng, Dias, Fleurantin, Howard, Hu, Jaquette, Latushkin, Marangell,
McQuighan, Pieper, Sukhtayev, ....



Second-order systems in one spatial dimension

vt = vxx + f (v), x ∈ R, v ∈ Rn

Key restrictive assumption:

f (v) = ∇G(v), G : Rn → R

Will imply linearized operator is self-adjoint and provide a symplectic structure.

Stationary solution ϕ(x); suppose it is a pulse:

lim
x→±∞

ϕ(x) = ϕ∞

Eigenvalue equation:

λu = uxx +∇2G(ϕ(x))u = Lu, u ∈ L2(R,Rn)

Natural assumption: the essential spectrum of L is stable. Equivalently,

∇2G(ϕ∞) < 0.



Second-order systems in one spatial dimension

Main results of [B., Cox, Jones, Latushkin, McQuighan, Suhktayev ’18]:

• Proved “square” relating eigenvalues to conjugate points.

• Proved a symmetric pulse is necessarily unstable, as in the scalar case.

λu = uxx +∇2G(ϕ(x))u = Lu, u ∈ Rn

�

s

conjugate
points

eigenvalues

no eigenvalues

�1

�1
0

+1

no conjugate
points



Second-order systems in one spatial dimension

λu = uxx +∇2G(ϕ(x))u = Lu, u ∈ Rn, x ∈ R

�

s

conjugate
points

eigenvalues

no eigenvalues

�1

�1
0

+1

no conjugate
points

Main results of [B., Jaquette ’22]:

• Framework for rigorously counting conjugate points via validated numerics.

• Key idea: prove conjugate points lie in [−L, L], with explicit bounds on L.

• Applied to system of coupled bistable equations to demonstrate fronts can
be either stable or unstable, unlike the scalar case.



Second-order systems in one spatial dimension

Eigenvalue equation:

λu = uxx +∇2G(ϕ(x))u = Lu, u ∈ Rn, x ∈ R

Write as a first-order system:

d

dx

(
u
w

)
=

(
0 I

(λ−∇2G(ϕ(x))) 0

)(
u
w

) (
u
w

)
∈ R2n

=

(
0 −I
I 0

)(
(λ−∇2G(ϕ(x))) 0

0 −I

)(
u
w

)
= JB(x ;λ)

(
u
w

)
Note that λ can be taken to be real and B(x ;λ) is a symmetric matrix.

Can we develop a Sturm-Liouville-like theory for such eigenvalue problems?

• Arnol’d (1967, 1985) generalized the notion of phase to R2n via the
Maslov index and proved oscillation theorems.

• Can we connect his theory with eigenvalues?



Intersections of Langrangian planes in Rn

Recall for each path of Lagrangian planes we get a path of frame matrices

`(t) =

{(
A(t)
B(t)

)
u : u ∈ Rn

}
`⇔

(
A(t)
B(t)

)

We then get a path of angles φ(t) and unitary matrixs W (t)

eiφ(t) = det[(A(t)− iB(t))(A(t) + iB(t))−1︸ ︷︷ ︸
=:W (t)

],

for which
dim[ker(W (t) + I )] = dim(`(t) ∩ D),

where the reference plane is the Dirichlet plan

D =

{
U =

(
0
v

)
: v ∈ Rn

}
∈ Λ(n)

This is very similar to looking for conjugate points!



Second-order systems in one spatial dimension

Back to our eigenvalue problem:

d

dx

(
u
v

)
= JB(x ;λ)

(
u
v

)

The assumption ∇2G(ϕ∞) < 0 implies

JB(±∞;λ) =

(
0 I

(λ−∇2G(ϕ∞)) 0

)
is hyperbolic with stable/unstable eigenspace of dimension n. Therefore,

dim(Es,u
± (x ;λ)) = n

In other words, the subspaces of solutions asymptotic to these stable/unstable
eigenspaces at ±∞ must also have dimension n.



Second-order systems in one spatial dimension

d

dx

(
u
v

)
= JB(x ;λ)

(
u
v

)

For an eigenfunction, we need (u, v)(x ;λ) ∈ Eu
−(x ;λ) ∩ Es

+(x ;λ):

Es
+1(�)

Es
+(x;�)

Eu
�(x;�)

Eu
�1(�)

R2n R2n

It turns out these are both paths of Lagrangian subspaces!

Alternatively, look for conjugate points:

Φ(x ;λ) = Eu
−(x ;λ) ∈ Λ(n) When is Eu

−(x ;λ) ∩ D 6= {0}?



Summary

One can use the Maslov index to count unstable eigenvalues in scalar,
second-order equations, and in systems of second-order equations with
symplectic structure, and thus determine (in)stability.

Generalizations of these ideas also exist in higher-order equations, in higher
spatial dimensions, and in the absence of monotonicity.

Other talks in this session:

• 2: Yuri Latushkin, “Fredholm determinants, Evans functions and Maslov
indices for partial differential equations”

• 330: Emmanuel Fleurantin, “The Maslov Index and Noise-Induced
Tipping”

• 4: Jonathan Jaquette, “Computer-Assisted-Proofs of Spectral Stability via
Conjugate Points and the Maslov Index”

• 430: Graham Cox, “Hyperplane Maslov–Arnold spaces and the Turing
instability”

• 5: Panel on Fundmaental Issues and Future Directions lead by Chris Jones.



Second-order systems in one spatial dimension

�

s

conjugate
points

eigenvalues

no eigenvalues

�1

�1
0

+1

no conjugate
points

Some ideas in proof:

• Compactify domain s ∈ (−∞,∞)→ s̃ ∈ [−1, 1]

• Path of Lagrangian subspaces `(s̃;λ) = Eu
−(s̃;λ) around entire square

• Since [−1, 1]× [0, λ∞] ⊂ R2 is a trivial loop, the Maslov index of `(s̃;λ)
around it must be zero.

• Show bottom and right side have no intersections.

• Prove monotonicity: determine sign of crossings on top (−) and left (+).

• Use “crossing form” to characterize Maslov index [Robbin, Salamon 1993]



Counting conjugate points via validated numerics

Key aspects of framework for counting conjugate points in [B., Jaquette ’22]:

d

dx

(
u
v

)
= JB(x ;λ)

(
u
v

)
, Eu

−(x0; 0) ∩ D 6= {0}?

• Use the facts that

Eu
−(−∞; 0) ∩ D = {0}, |JB(x ; 0)− JB(−∞; 0)| ≤ Ce−η|x|,

to prove there is an L− such that any conjugate point satisfies x0 ≥ −L−.

• Similarly prove there is an L+ such that x0 ≤ L+.

• Obtain explicit bounds on L±.

• Use the fact that

Eu
−(x0; 0) =

(
A1(x0)
A2(x0)

)
∩ D iff detA1(x0) = 0

to count conjugate points on [−L−, L+] by numerically finding zeros of the
scalar-valued function detA1(x).



Higher-order systems in one spatial dimension

Can we apply this method to study stability in Swift-Hohenberg?

ut = −(1 + ∂2
x )2u + f (u)

Together with H. Pieper, J. Jaquette, and J. Mireles-James we are working to

• Prove one can count unstable eigenvalues by counting conjugate points.
Monotonicity is subtle; need to use a higher-order crossing form.

• Develop a framework to count conjugate points using validated numerics.
Resonance in the vector bundle can’t be dealt with using existing methods.

Some comments:

• Results of [Howard ’21] on fourth-order systems don’t apply here.

• Results in [Buffoni, Champneys, Toland ’96] suggest one can determine
spectral stability using local extrema, similar to the case of Sturm-Liouville
theory. Would be very interesting to confirm this rigorously.



Systems in higher spatial dimensions

Eigenvalue problem:

Lu = ∆u + V (x)u = λu, x ∈ Ω ⊂ Rd

u|∂Ω = 0

Family of domains [Smale 65]: {Ωs : 0 ≤ s ≤ 1}
⌦ = ⌦1

⌦0

⌦s

Path of subspaces:

`(s;λ) =

{(
u,
∂u

∂n

) ∣∣∣
∂Ωs

: u ∈ H1(Ωs), ∆u + V (x)u = λu, x ∈ Ωs

}
Subspace of solutions on Ωs with no reference to boundary conditions.



Systems in higher spatial dimensions

Dirichlet subspace:

D =

{(
u,
∂u

∂n

) ∣∣∣
∂Ω

=

(
0,
∂u

∂n

) ∣∣∣
∂Ω

: u ∈ H1(Ω)

}
Reference plane determined by boundary conditions.

Conjugate point:
`(s;λ) ∩ D 6= {0}

Hilbert space

H = H1/2(∂Ω)× H−1/2(∂Ω), ω((f1, g1), (f2, g2)) = 〈g2, f1〉 − 〈g1, f2〉

Both `(s;λ) and D are in the Fredholm-Lagrangian Grassmannian of H.

[Deng, Jones ’11], [Cox, Jones, Latushkin, Suhktayev ’16], . . . relate conjugate
points to eigenvalues via the Maslov index. See also related work using this
family of domains to create a multi-dimensional spatial dynamics [B., Cox,
Jones, Latushkin, Suhktayev ’20, ’21].



Summary, future work, and key open questions

Existing results:

• Sturm-Liouville Theory allows one to connect eigenvalues with conjugate
points for scalar, second-order equations.

• The Maslov index allows for a generalization of this to second-order
systems in one space dimension, and also to multiple spatial dimensions.

• Validated numerics can be used to efficiently and rigorously count
conjugate points in second-order systems in one space dimension.

Current and future work on the Swift-Hohenberg equation:

• Prove one can count unstable eigenvalues by counting conjugate points.

• Develop a validated numerical framework for counting conjugate points.

• Use this to rigorously determine spectral stability using local extrema.

Open question: We are in need of applications! Either equations with
symplectic structure where we can prove stability by counting conjugate points,
or equations in higher spatial dimensions where a spatial dynamics framework
might be useful for the analysis of existence, stability, and/or bifurcation.



Systems in one spatial dimension: Eu
− is Lagrangian

d

dx

(
u
v

)
= JB(x ;λ)

(
u
v

)
, B(x ;λ)∗ = B(x ;λ), J∗ = −J = J−1

If U,V ∈ Eu
−(x ;λ), then

d

dx
ω(U(x),V (x)) = 〈U ′(x), JV (x)〉+ 〈U(x), JV ′(x)〉

= 〈JBU(x), JV (x)〉+ 〈U(x), J2BV (x)〉
= 〈BU(x),V (x)〉 − 〈BU(x),V (x)〉 = 0.

Moreover,

lim
x→−∞

U(x),V (x) = 0 ⇒ lim
x→−∞

ω(U(x),V (x)) = 0

and so
ω(U(x),V (x)) = 0 ∀x ∈ R.



Systems in one spatial dimension: compactification

�

s

conjugate
points

eigenvalues

no eigenvalues

�1

�1
0

+1

no conjugate
points

Compactify domain:

σ(s) = tanh(s), s(σ) =
1

2
ln

(
1 + σ

1− σ

)
, s ∈ [−∞,∞], σ ∈ [−1, 1]



Systems in one spatial dimension: additional step

First prove “square” on half-line with Dirichlet BCs:

λu = uxx +∇2G(ϕ(x))u = LLu, x ∈ (−∞, L)

dom(LL) = {u ∈ H2(−∞, L) : u(L) = 0}.

�

s

conjugate
points

eigenvalues

no eigenvalues
�1

�1

L

0

no conjugate points

Eu
�(�1;�) \ D = {0}

�(LL) ⇢ (�1, kr2G(')k1]

Extend result to full line R: show for L > L∞ large,

• Morse(L) = Morse(LL)

• Follows because you can approximate the point spectrum of an operator
on R using a large subdomain.



Systems in one spatial dimension: crossing form

` : [a, b]→ Λ(n) path of Lagrangian planes, D reference plane. A crossing is a
t0 ∈ [a, b] such that

`(t0) ∩ D 6= {0}.

Generically `(t) is transversal to D⊥ for all t ∈ [t0 − ε, t0 + ε], and ∃
M(t) : `(t0)→ D⊥ so that

`(t) = graph M(t) = {V + M(t)V : V ∈ `(t0)}

D?

V

`(t)

`(t0)

(V, M(t)V )
M(t)V

Crossing form [Robbin, Salamon ’93]:

Q(U,V ) =
d

dt
ω(U,M(t)V )|t=t0 , U,V ∈ `(t0) ∩ D.



Systems in one spatial dimension: crossing form

D?

V

`(t)

`(t0)

(V, M(t)V )
M(t)V

Crossing form [Robbin, Salamon ’93]:

Q(U,V ) =
d

dt
ω(U,M(t)V )|t=t0 , U,V ∈ `(t0) ∩ D.

• Q ∈ Rk×k symmetric, where k = dim(`(t0) ∩ D).

• t0 is regular if detQ 6= 0; generic crossings are regular and isolated.

• Signature of Q:

signQ = n+(Q)− n−(Q),

n±(Q) = number of positive/negative eigenvalues



Systems in one spatial dimension: crossing form

Maslov index for single crossing: if t0 ∈ [a0, b0] is the only crossing of ` with D,

Mas(`|[a0,b0],D) =


−n−(Q) if t0 = a0

signQ = n+(Q)− n−(Q) if t0 ∈ (a0, b0)

n+(Q) if t0 = b0

• Endpoint convention is somewhat arbitrary; affects intermediate results
but not our end result.

• Define Maslov index of a regular smooth path by defining it on segments
around each crossing and summing.

If all crossings of a path ` : [a, b]→ Λ(n) with D are positive, ie Q > 0, then

Mas(`|[a,b],D) =
∑

a<t≤b

dim(`(t) ∩ D)

Similarly, if all crossings are negative, then

Mas(`|[a,b],D) =
∑

a≤t<b

dim(`(t) ∩ D)



Systems in one spatial dimension: monotonicity

�

s

conjugate
points

eigenvalues

no eigenvalues
�1

�1

L

0

no conjugate points

Eu
�(�1;�) \ D = {0}

�(LL) ⇢ (�1, kr2G(')k1]

Key aspect of proof is showing monotonicity, ie crossings at conjugate points
are positive, and crossings at eigenvalues are negative.

Path of Lagrangian planes: Eu
−(s;λ). Parameter is s or λ depending on side.

Negative crossings in λ: need to show for s = L fixed

Q(U,V ) =
d

dλ
ω(U,M(λ)V )|λ=λ0 < 0, U,V ∈ Eu(L;λ0) ∩ D.



Systems in one spatial dimension: monotonicity

Suffices to check that

Q(V ,V ) =
d

dλ
ω(V ,M(λ)V )|λ=λ0 < 0, V ∈ Eu(L;λ0) ∩ D.

Let W (L;λ) ∈ Eu(L;λ) so that

W (L;λ0) = V , W (L;λ) = V + M(λ)V .

We have

Q(V ,V ) =
d

dλ
ω(V ,M(λ)V )|λ=λ0 =

d

dλ
ω(V ,V + M(λ)V )|λ=λ0

=
d

dλ
ω(W (L;λ0),W (L;λ))|λ=λ0 = ω(W (L;λ0),Wλ(L;λ0)).

Recall:

d

dx
W = JB(x ;λ)W ⇒ d

dx
Wλ = JB(x ;λ)Wλ+NW , N =

(
0 0
I 0

)
.



Systems in one spatial dimension: monotonicity

Q = ω(W (L;λ0),Wλ(L;λ0)),
d

dx
Wλ = JB(x ;λ)Wλ + NW .

Q = 〈−JW (L;λ0),Wλ(L;λ0))〉 = −
∫ L

−∞

d

dx
〈JW (x ;λ0),Wλ(x ;λ0))〉dx

= −
∫ L

−∞
[〈J2BW ,Wλ)〉+ 〈JW , JBWλ + NW 〉]dx

= −
∫ L

−∞
〈JW ,NW 〉dx

= −
∫ L

−∞

〈(
0 −I
I 0

)
W ,

(
0 0
I 0

)
W

〉
dx

= −
∫ L

−∞
(W1(x ;λ0))2dx < 0.



Systems in one spatial dimension: monotonicity

�

s

conjugate
points

eigenvalues

no eigenvalues
�1

�1

L

0

no conjugate points

Eu
�(�1;�) \ D = {0}

�(LL) ⇢ (�1, kr2G(')k1]

This monotonicity implies:

0 = Mas(Eu(x ;λ)square,D)

= Mas(Eu(x ;λ)left,D) + Mas(Eu(x ;λ)top,D) + 0 + 0

= {number of conjugate points} − {number of eigenvalues}.

Hence,

{number of conjugate points} = {number of eigenvalues} = Morse(LL).



Systems in one spatial dimension: symmetric pulse instability

0 = ϕxx +∇G(ϕ(x)),

• Generically, ϕ(x) will be unique as a solution (up to translation)
asymptotic to the fixed point ϕ∞ = limx→±∞ ϕ(x)

• Equation invariant under x → −x , so ϕ(−x) is also a solution. By
uniqueness, we therefore have

ϕ(x) = ϕ(−x + δ)

• This implies
ϕ(δ/2 + x) = ϕ(δ/2− x) ∀ x ∈ R.

• But then

d

dx
ϕ(δ/2 + x)|x=0 = ϕ(δ/2− x)|x=0 ⇒ ϕx(δ/2) = 0.

• Since ϕx is a eigenfunction with eigenvalue λ = 0, we have(
ϕx(x)
ϕxx(x)

)
∈ Eu

−(x ; 0) ⇒ Eu
−(δ/2, 0) ∩ D 6= {0}

which is our conjugate point.



Multiple space dimensions: Lagrangian subspace calculation

`(s;λ) =

{(
u,
∂u

∂n

)
|∂Ωs : u ∈ H1(Ωs), ∆u + V (x)u = λu, x ∈ Ωs

}
If u, v ∈ Φ then

ω(u, v) =

〈
∂v

∂n
, u

〉
−
〈
∂u

∂n
, v

〉
=

∫
∂Ω

(
∂v

∂n
u − ∂u

∂n
v

)
dS

=

∫
Ω

((∇u∇v + u∆v)− (∇u∇v + v∆u)) dx

=

∫
Ω

(u(λv − Vv)− v(λu − Vu)) dx = 0.



Spatial dynamics in Rd?

Does this suggest a “spatial dynamics” for Rd? Consider

0 = ∆u + F (x , u), x ∈ Ω ⊂ Rd

Family of domains parameterized by family of diffeomorphisms:

ψs : Ω→ Ωs , s ∈ [0, 1], Ω1 = Ω, Ω0 = {x0}.

Define boundary data via

f (s; y) = u(ψs(y)), g(s; y) =
∂u

∂n
(ψs(y)), s ∈ [0, 1], y ∈ ∂Ω

and trace map
Trsu = (f (s), g(s)).

Obtain an equivalent first-order system

d

ds

(
f
g

)
= F(f , g)



Spatial dynamics in Rd?

�u + F (x, u) = 0

⌦ = ⌦1

weak solution

evolution of
boundary data

✓
u,

@u

@n

◆
(@⌦s) = (f, g)(s)

d

ds
(f, g) = F(f, g)

Theorem [B., Cox, Jones, Latushkin, Sukhtayev ’19]:

⌦s



Spatial dynamics in Rd?

So, rather than solving ∆u + F (x , u) = 0, we can instead solve

d

ds

(
f
g

)
= F(f , g),

a somewhat technical and not-fun-to-look-at equation. What have we gained?

Consider Ω = Rd . We can choose to shrink the domain using spheres:

Ωs = {x ∈ Rd : |x | < s}, s ∈ (0,∞)

In terms of the polar coordinates (r , θ) ∈ (0,∞)× Sd−1,

∆u = urr +
n − 1

r
ur +

1

r 2
∆Sd−1u,

and our equation is now not so bad:

d

ds

(
f
g

)
=

(
0 1

−s−2∆Sd−1 −(d − 1)s−1

)(
f
g

)
+

(
0

−F (t, θ, s)

)



Spatial dynamics in Rd?

d

ds

(
f
g

)
=

(
0 1

−s−2∆Sd−1 −(d − 1)s−1

)(
f
g

)
+

(
0

−F (s, θ, f )

)

• We have shown the linear part of this equation admits an exponential
dichotomy (after rescaling time s = eτ ).

• For d = 3, the dichotomy can be written explicitly in terms of the
spherical harmonics of the Laplacian.

• This allows one to potentially construct solutions to the nonlinear equation
that are not necessarily radially symmetric.

• We hope this will be a useful method for studying multidimensional waves
and patterns.


