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Abstract
Realistic computational models of neuronal activity typically involve many variables and
parameters, most of which remain unknown or poorly constrained. Moreover, experimental
observations of the neuronal system are typically limited to the times of action potentials, or
spikes. One important component of developing a computational model is the optimal
incorporation of these sparse experimental data. Here, we use point process statistical theory
to develop a procedure for estimating parameters and hidden variables in neuronal
computational models given only the observed spike times. We discuss the implementation of
a sequential Monte Carlo method for this procedure and apply it to three simulated examples
of neuronal spiking activity. We also address the issues of model identification and
misspecification, and show that accurate estimates of model parameters and hidden variables
are possible given only spike time data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Developing biophysical models of neuronal systems is a
challenging task. Before even attempting to solve a model,
one must first confront many decisions, including the spatial
scale of the model (e.g., mean field [4] versus single neuron
[17]) and level of detail (e.g., multicompartment conductance-
based models [39] versus abstract mathematical models [20]).
Typically, the choice of model scale and detail depends upon
the available neurophysiological data. Perhaps the most
common model choice for single neuron recordings in vivo
or in vitro is a Hodgkin–Huxley-type neuron model [17].
This model class typically consists of four or more variables
(representing the dynamics of the neuronal voltage and ionic
currents) coupled nonlinearly and produces the characteristic
action potential or ‘spike’ of neuronal voltage activity.

Even relatively simple neuronal models (such as of the
Hodgkin–Huxley type) present significant challenges. First,
complicated mathematical mechanisms govern the model
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dynamics and understanding these mechanisms remains an
active area of research [3, 21, 22, 34]. Second, most
neuronal models possess a large number of parameters which
typically remain experimentally unconstrained. For example,
the original Hodgkin–Huxley model possesses at least seven
parameters (e.g., capacitance, reversal potentials and maximal
conductances for the sodium, potassium and leak currents)
with wide ranges of possible values [17]. In computational
neuroscience, a common procedure for estimating these
parameters is ‘hand-tuning’ to produce simulated model
dynamics that matches qualitatively the desired neuronal
activity [30]. Hand-tuning approaches usually require a great
deal of time and expertise [27, 38, 43]. Once a set of suitable
parameters is found, it is often unclear whether the solution is
unique or whether other model formulations compatible with
the data exist.

Recently, researchers have attempted to replace this hand-
tuning procedure with more rigorous approaches. These
include brute-force approaches that conduct extensive searches
of model dynamics over broad ranges of parameter sets [1, 30].
Other approaches directly utilize neuronal voltage activity to
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estimate model parameters, in simulations [5, 16, 18, 19,
41, 45] and in experimental recordings [8, 42]. Similar
estimation procedures have also been applied to estimate
parameters in mean field models [32, 35]. In these
studies, detailed knowledge of the voltage dynamics (e.g., the
intracellular voltage trace) is required to estimate the model
parameters.

Yet, often in experiments the intracellular voltage of an
individual neuron remains unobserved. Instead, the only
observable is a neuron’s extracellular spike train response.
Given only this limited knowledge—of when a neuron
generates spikes, not the subthreshold neuronal voltage
activity—parameter estimation is still possible in abstract
neuronal models, such as the leaky integrate-and-fire (LIF)
neuron [23, 26, 29]. In this work, we pursue a similar goal of
quantitative parameter estimation from neuronal spike train
responses. In doing so, we employ models with greater
biophysical realism than the LIF model and show that, given
only the neuronal spike train data, we may successfully
estimate some of the biophysical model parameters.

We develop a parameter estimation framework that
combines conductance-based neural modeling with point
process statistical theory to estimate model components
directly from a set of observed spike times. The estimation
algorithm is constructed using sequential Monte Carlo
(particle filter) [7, 9] methods that combine future and
past spiking information to update a collection of model
formulations that are consistent with the observed spiking
data. When there exists a single set of parameters consistent
with the observed spiking, we find that the algorithm rapidly
converges to the correct values. When multiple parameter
values consistent with the data exist, the algorithm produces
a collection of estimates that tightly cover the space of
suitable values. Finally, when no parameters associated with
the selected model class are consistent with the data, the
algorithm fails to converge to adequate parameter values, and
the resulting dynamics do not explain the observed spike data.

The organization of this manuscript is as follows. In
section 2, we introduce the parameter estimation procedure
and model systems, which include the FitzHugh–Nagumo
and two Hodgkin–Huxley-type models. In section 3, we
simulate the models to generate spike train data, and then
use these data to estimate the model parameters. We
discuss the model identifiability problem for the standard
Hodgkin–Huxley model, and suggest an experimental protocol
to refine parameter estimates. To illustrate the issue of
model misspecification, we consider two Hodgkin–Huxley-
type model neurons—one with a slow intrinsic current, and one
without—and show that the correct model choice (motivated
by a biophysical understanding of the slow intrinsic current)
is critical. We conclude in section 4 with a discussion of these
results and proposals for future work.

2. Methods

2.1. The estimation procedure

2.1.1. The state-space framework. Biophysical models of a
neuron’s spiking activity are often expressed mathematically

using systems of several first-order differential equations.
The Hodgkin–Huxley equations are a classic example of
this sort of mathematical model [17]. In general, these
models characterize the evolution of dynamic state variables
representing, for example, the membrane voltage or various
voltage-gated ion channels.

We express these neural dynamics in discrete time using
a state-space model of the general form

St − St−1 = F (St−1,Θ) · !t + εt , (1)

where St is a state vector including a set of unobserved state
variables at time point t and F represents a vector function that
characterizes the expected evolution of the state variables. The
function F also requires the specification of a set of parameters
Θ that govern the dynamics of the state variables. !t is a fixed
discretization interval, and εt is an additive white-noise term
that leads to variability in the dynamic activity.

For any realization of the state process from the start time
to time T, S1:T , the spike times associated with that realization
are determined exactly by the large amplitude depolarizations
of the membrane voltage. If we assume that St represents the
true dynamics of the neuron whose spiking activity we observe,
we could estimate the parameters Θ and hidden variables
in St by computing the probability distribution of spikes
occurring at the observed times based only on the dynamics
specified by (1). However, this distribution is difficult to
compute and estimation algorithms based on this approach
may be computationally intractable. Therefore, instead of
identifying St as the exact dynamics of the observed neuron,
we consider the state process to be a possible surrogate for
the unobserved neural dynamics, which provides information
about the probability of observing a spike at any moment in
time rather than the exact time of a spike. In other words, we
construct a model for the probability of observing a spike at
any time step based on the realization St . This probability of
a spike at any time takes the form of a conditional intensity
function λt = λ (S1:t+k, Ht ,Θ) = lim!t→0

p(!Nt=1|S1:t+k ,Ht ,Θ)
!t

,
where !Nt is the number of spikes occurring at time step t
and Ht is the past history of spiking up to time t. The intensity
function might depend on both past (S1:t ) and future states
(St+1:t+k). Given a specific form of this conditional intensity
function, the probability of observing !Nt spikes at time t is
[37]

p (!Nt |S1:t+k, Ht ,Θ) = e!Nt log(λt!t)−λt!t . (2)

Here, we assume that the time step is small enough so that
there is at most one spike in any single time step. Together,
(1) and (2) form a state-space model with spike observations
(!Nt ), which will be the foundation for estimating the
dynamic variables (S) and making inferences about the model
parameters (Θ).

2.1.2. Estimation algorithm. In the previous subsection, we
formalized models for both the hidden state variables (e.g.,
the membrane voltage and ionic gates) and the observable
variable (the spike process, !Nt ). Given the observable
variable, we would now like to use these models to estimate
values for the state variables and the model parameters. To do
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so, we construct a sequential Monte Carlo algorithm (SMC)
[7, 9], also known as a particle filter, to estimate the posterior
probability distribution of these unknown quantities, given the
observed spike data. Particle filters are so named because
they represent the distribution of an unknown state process
using a collection of weighted samples, or particles. At
any time step, each particle represents possible values for
the unknown variables and parameters, and the weighting
function represents the probability associated with these
values. As the number of particles becomes very large, this
SMC characterization becomes more and more accurate.

In order to develop the details of the algorithm, let
Ui

t =
{
Si

t ,Θ
i
t

}
denote joint states containing both the state

variables and parameters of the ith particle at time point t.
Although the parameters are typically static, for the purpose
of this algorithm, we allow the parameters to vary with time.
The details of this treatment of model parameters is discussed
in [24]. Let wi

t be the weight associated with particle Ui
t .

When wi
t is high, it suggests that values near Ui

t are likely.
There are multiple approaches to computing the values and
weights of each particle at any time. In this case, we construct
a bootstrap particle filter [9], where the initial values for the
particles at time t are sampled from the particles at the previous
time step. The values of each particle are then updated by
simulating (1). The weights of each particle are updated by
multiplying by the likelihood of the observed spiking data at
time t given by (2), wi

t = wi
t−1p(!Nt |Ui

t ). Intuitively, each
particle from the previous time step undergoes one step of the
model dynamics. If the resulting state values are consistent
with the newly observed data, the weight is increased. If the
data are unlikely given the state values for a particle, its weight
is decreased.

A common problem with particle filters is the degeneracy
phenomenon, where after a few iterations, all but one particle
will have negligible weight [7]. It has been shown that the
variance of the weights can only increase over time, and
thus, it is impossible to avoid the degeneracy phenomenon
[6]. To reduce the effect of degeneracy, we use a resampling
scheme. The basic idea of resampling is to eliminate particles
that have small weights and to concentrate on particles with
large weights. Here, we use a residual resampling scheme
[24] whereby particles with large weights are replicated
based on their weight and particles with small weights have
some probability of surviving and some probability of being
eliminated. Let n be the number of particles used. We retain
Mi = #nwi

t $ copies of Ui
t , where #·$ indicates rounding down

to the nearest integer, and then obtain n −
∑

i Mi i.i.d. draws
from Ui

t with probabilities proportional to nwi
t − Mi, i =

1, . . . , n. After resampling, the weights of each particle are
reset to 1/n.

At every time step the algorithm produces a collection of
particles, each containing proposed values for the unknown
state variables and parameters. We construct estimates for the
unknown quantities by computing their sample means over
all the particles, and construct approximate 95% confidence
intervals by computing the 2.5% and 97.5% percentiles of the
particle values. For convenience, we provide a pseudo-code
description of the algorithm in the appendix.

2.2. Biophysical models

We employ three types of biophysical models. The first
is a FitzHugh–Nagumo-type model, a simplified model of
neuronal spiking activity [10, 28]. The model consists of two
equations:

V̇ = V (a − V )(V − 1) − w + I

ẇ = bV − cw.

Here, V mimics the membrane voltage and ‘recovery’ variable
w mimics activation of an outward current. Parameter I mimics
the resting current. Parameter a describes the shape of the
cubic parabola V (a − V )(V − 1), and parameters b > 0 and
c ! 0 describe the kinetics of the recovery variable w.

In order to apply the aforementioned (1) and (2), we need
to discretize the continuous model equations. We do so in the
standard way:
Vt = Vt−1 + [Vt−1(a − Vt−1)(Vt−1 − 1) − wt−1 + I ]

·!t + εt (3)

wt = wt−1 + [bVt−1 − cwt−1] · !t, (4)
where {εt } represents a noisy current term defined to be
Gaussian white noise with variance σ 2!t . σ describes the
magnitude of the noise term. These same discretization
process and noisy current input are employed for all models
throughout the rest of the paper. We use the model for two
purposes—to generate the ‘experimental’ spike times defined
as the local large amplitude peaks of the voltage process, Vt ,
and to estimate the model parameters and hidden variables—as
discussed in the next section.

The second model we consider is the standard Hodgkin–
Huxley model [17]. This model consists of four variables that
describe the voltage V dynamics and three intrinsic currents—
potassium current IK, sodium current INa and leak current IL.
The equations for the Hodgkin–Huxley model are

CV̇ = I −

IK︷ ︸︸ ︷
gKn4(V − EK) −

INa︷ ︸︸ ︷
gNam

3h(V − ENa)

−
IL︷ ︸︸ ︷

gL(V − EL)

ṅ = αn(V )(1 − n) − βn(V )n (5)
ṁ = αm(V )(1 − m) − βm(V )m

ḣ = αh(V )(1 − h) − βh(V )h

where

αn(V ) = α0
10 − V

exp
( 10−V

10

)
− 1

βn(V ) = β0 exp
(−V

80

)

αm(V ) = 0.1
25 − V

exp
( 25−V

10

)
− 1

βm(V ) = 4 exp
(−V

18

)
(6)

αh(V ) = 0.07 exp
(−V

20

)

βh(V ) = 1

exp
( 30−V

10

)
+ 1

.
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These equations, provided in the original paper
[17], correspond to the membrane potential shifted by
approximately 65 mV, so that the resting potential is at
V ≈ 0 mV. The shifted Nernst equilibrium potentials are

EK = −12 mV, ENa = 120 mV, EL = 10.6 mV.

Typical values of maximal conductances are

gK = 36 mS cm−2, gNa = 120 mS cm−2,

gL = 0.3 mS cm−2,

and C = 1 µF cm−2 is the membrane capacitance [17].
The second example in the next section is based on these
parameter values. The functions α(V ) and β(V ) describe
the transition rates between open and closed states of the
channels, respectively. We fix α0 = 0.01 and β0 = 0.125 and
estimate these parameters in figure 7. We again discretize these
continuous equations to be of the form of (1) and (2). We use
this model both to generate ‘experimental’ spike times, defined
as the local large amplitude peaks in the voltage process, and
as the state equations for the particle filter algorithm.

The last model we consider is a standard Hodgkin–Huxley
model modified in three ways. First, the sodium activation
variable (m in (5)) is replaced with its equilibrium value
m0 = αm(V )/(αm(V ) + βm(V )). Second, the potassium
activation variable (n in (5)) and sodium inactivation variable
(h in (5)) are replaced with a single variable w. These first two
modifications are standard techniques to simplify the dynamics
of the Hodgkin–Huxley model [13]. Third, an additional
potassium current with slow dynamics (e.g., a muscarinic
receptor suppressed potassium current or M-current [33]) is
added. The modified model consists of three variables—
voltage V, a fast current w and a slow current B—with dynamic
equations:

CV̇ = I − gKw4(V − EK) − gNam
3
0(1 − w)(V − ENa)

− gBB(V − EK) − gL(V − EL)

ẇ = αw(V )(1 − w) − βw(V )w

Ḃ = αB(V )(1 − B) − βB(V )B

where

αw(V ) = 0.4αn(V + 65)

βw(V ) = 0.4βn(V + 65)

αB(V ) = 0.0008
1 + exp((−V − 20)/5)

βB(V ) = 0.0004 exp((−V − 43)/18).

In this model we have scaled the voltage to match current
neuroscience conventions (i.e. so that the neuronal rest voltage
is near −70 mV). The parameters are set so that EK =
−95 mV, ENa = 50 mV, EL = −70 mV, gNa = 100 mS cm−2

and gL = 0.25 mS cm−2. We vary the parameters I, gK and
gB to generate simulated data and estimate hidden variables
and parameters in the model as described below. We again
discretize these continuous equations to be of the form of (1)
and (2).

2.3. Conditional spike intensity function

At each time step, the weight of each particle is updated
based on its probability distribution of generating the observed
spiking activity at that time. There are multiple approaches
for constructing the probability model for the spiking activity.
A simple approach of assigning a constant, non-zero weight
only to those particles for which spiking occurs at exactly
the observed spike time will lead to most particles being
eliminated after each spike event. This approach would
therefore require a huge number of particles to accurately
estimate the model parameters. A much more computationally
intensive approach would be to compute the probability of
spiking based on the set of all possible realizations of the state
process for each particle. Here, we seek a middle ground
between these two approaches by modeling the conditional
intensity of spiking as a smooth function of the membrane
voltage trajectory Vt , which is one component of state vector
St . This serves to smooth out the likelihood function, allowing
particles with values that could have plausibly led to the
observed spiking activity to locate the peaks of the likelihood
surface. Here, we chose the form of the conditional intensity
function as follows:

λ[t |V1:t−1, Vt :t+k] =
t+k∑

τ=1

g(Vτ ) · f (τ − t) (7)

g(x) = η · eν(x−Vth)

1 + eν(x−Vth)
(8)

f (x) =
{
p−x x " 0
qx x > 0.

(9)

The sigmoid function g(·) reflects the effect of increasing
voltage values to the spike intensity, in which parameter ν
controls the growth rate of the function and parameter η sets
the upper limit; Vth is a voltage threshold, above which the
probability of spiking rapidly increases. The function f (·) is
a weighting function, which measures the effect of the voltage
at times away from t; both p and q are constants and less than
1. Adjusting p and q tunes the weights of past and future
function g(·) values, respectively. This conditional intensity
model defines a spiking probability function that increases
smoothly when V passes the specified threshold. It serves
to smooth the shape of the likelihood function upon which
the weights of each particle are based. The parameter values
control the degree of smoothing. Presumably, if there is little
smoothing, then the likelihood will have narrow isolated peaks
that require a huge number of particles to find, while if there
is too much smoothing, very few particles are eliminated and
the algorithm will converge much more slowly. In a separate
simulation study (not shown), we found that the parameter
estimates were robust across a wide range of choices of η, ν,
Vth, p and q.

Note that the conditional intensity at time t depends on
the value of the membrane voltage process, V through time t +
k. This allows particles that are likely to produce spikes either
just before or just after an observed spike to be retained. In
practice, this means that we simulate the state process for each
particle up to time t + k and compare the realizations to the
spiking activity at time t.
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3. Results

In this section we apply the estimation procedure to three
types of biophysical models. In each case, we first simulate
the model with a fixed set of parameter values and noise
level to generate the spike time data. Then, given only the
times of spike occurrence and assuming limited knowledge of
some model variables or parameters, we attempt to estimate
these variables and parameters. We evaluate the quality of
the estimation algorithm in two ways. First, we compare the
resulting parameter estimates to those used to simulate the
‘experimental’ data. Second, we compare the voltage traces
that result from the model estimates to the (hidden) true voltage
trace generated by the original simulation.

We begin by illustrating the application of the point
process particle filter to the problem of estimating a single
parameter in a simplified neuronal model. Specifically,
we estimate the unknown resting current in the FitzHugh–
Nagumo model. We simulate the model with parameter values:
a = 0.1, b = 0.01, c = 0.02 and noise level σ = 0.005.
The conditional intensity function for the estimation procedure
uses the following parameters: !t = 0.1 ms, η = 0.003 29,
ν = 30, p = q = 0.9, Vth = 0.8, ρ = 0.96. A thousand
particles were used in the sequential Monte Carlo algorithm.
Figure 1 shows the result of the estimation procedure. The
FitzHugh–Nagumo dynamics were simulated according to (3)
and (4) with a constant resting current I = 0.05. A realization
of the model voltage dynamics is plotted in figure 1(A), where
the black asterisks denote the spike times. Our goal is to infer
the (unknown) resting current I given only the simulated spike
data, when all the other model parameters are known. We
initialize the estimation algorithm with the prior distribution
I ∼ U(0, 0.3) and recursively generate the Monte Carlo
approximation of the posterior distribution of I, p (I |!N1:t ).
Then the expected current with respect to this posterior is used
to estimate the true current value I = 0.05. Here, the state
model is constructed so that the unknown value of the resting
current is assumed to be constant. The estimation result is
shown in figure 1(B). The expected resting current Î converges
to the true resting current I quickly, and the 95% confidence
bounds indicate increasing certainty about the estimate as time
progresses. At the end of estimation procedure, Î approaches
0.049 and the confidence bounds approach (0.0459,

0.0526).
In addition to estimating the resting current I, we also

approximate the time-varying unobserved state variables (in
this case the voltage and recovery variable). In figure 1(C), we
show the early tracking performance of the initial distribution
of estimates. With only a limited number of spikes having
occurred in the first 30 ms, the estimator behaves poorly
and the confidence intervals are wide, indicating substantial
uncertainty about the estimate. However, after spiking
information over 200 ms is incorporated into the particle filter,
the estimates converged to a very narrow range of parameter
values (figure 1(B)). We then restarted the sequential Monte
Carlo algorithm, fixing the parameter values to the converged
estimates at the end of the estimation process, and tracking
only the state variables. We show the tracking result in
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1.5
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(D)

Figure 1. Estimating the resting current in the FitzHugh–Nagumo
model from spike observations. (A) Simulated data from the
FitzHugh–Nagumo model with a fixed resting current. Here we plot
the continuous voltage trace (dashed blue curve) and indicate the
spike times by black asterisks. (B) Given only the spike times in
(A) we estimate the resting current (solid blue line). The two
dot-dashed red lines indicate the 95% confidence interval of the
estimation. All particles converge quickly and the confidence
interval approaches a very narrow bound around the true resting
current (dashed blue line) after only six spikes. (C) The initial
estimates of voltages (solid red curve) and their 95% confidence
interval (dot-dashed red curves) show deviation from the true
voltages (blue circles) and large uncertainty during the first 30 ms.
(D) The converged parameter estimates produce voltage traces with
a mean (solid red curve) and 95% confidence interval (dot-dashed
red curves) that approximates the true voltage trajectory (blue
circles) well.

figure 1(D). The mean of the converged estimates matches
the true voltage with high accuracy and the narrow confidence
intervals indicate high confidence in these estimates. Thus, as
long as our model describes the action potentials correctly, we
can recover the full voltage information with high confidence
by using only the times of the spikes. In the same way, the
recovery variable (w) is also tracked accurately (not shown).

We expect that increasing noise levels in the model
dynamics will disrupt the parameter estimates. To explore
this in the FitzHugh–Nagumo model, we illustrate in
figure 2 the effect of increasing the noise level (σ is the
standard deviation of the noise term, εt in (3), for one time
step) on the parameter estimates. When σ = 0.001, we
have nearly perfectly regular spiking, while when σ = 0.03,
spiking becomes highly irregular. As σ increases, the size
of the confidence bounds about the parameter value tends to
increase, but the bounds still tend to contain the true value
(figure 2). These results demonstrate, for the FitzHugh–
Nagumo model, the robustness of the estimation algorithm
to increased noise.

In the second example, we consider the problem of
inferring multiple parameters simultaneously in a more
advanced and physiologically realistic neuronal model.
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Figure 2. Robustness of estimation to noise level. (A) Given
simulated spike trains of the same length from the
FitzHugh–Nagumo model with different levels of noise σ , we
estimate the input current I whose true value is 0.05 (indicated by
the dashed black line). The red stars represent the estimates of I and
red bars are their corresponding 95% confidence intervals. The true
current values lie within the confidence bounds of every estimate.

Specifically, we estimate the sodium and potassium
conductance in the standard Hodgkin–Huxley equations. We
begin by simulating the Hodgkin–Huxley model for a fixed
value of input current (parameter I = 10 µA cm−2) and record
the resulting spike times. Then, given only these spike times,
we estimate two conductances gK (true value 36 mS cm−2) and
gNa (true value 120 mS cm−2) with all other parameters fixed.
The conditional intensity function for the estimation procedure
uses the following parameters: !t = 0.05 ms, η = 1.622,
ν = 0.1, p = q = 0.9, Vth = 80 mV. The sequential Monte
Carlo algorithm used 10 000 particles.

Figures 3(A)–(C) show the temporal evolution of the
distribution of parameter estimates from the point process
particle filter. Initially, the particles are uniformly distributed
in the region gK ∈ (0, 100) mS cm−2, gNa ∈ (0, 300) mS
cm−2 (figure 3(A)). The distribution of estimates evolves in
time, and by the second observed spike, the distribution of
parameter estimates has narrowed to cover a much smaller
region of the parameter space (figure 3(B)). After 590 ms
and approximately 40 spikes, the distribution of the parameter
estimates has not converged to a single point, but has stabilized
to a narrow line segment in the parameter space that includes
the true parameter values (figure 3(C)). These results suggest
that multiple combinations of conductance values for gK and
gNa can produce dynamics that are consistent with the observed
spiking activity. To illustrate this, we simulate the Hodgkin–
Huxley model for three different sets of parameter values that
are contained in the linear subspace to which the estimates
converged. The spike times produced by these different
parameter sets are nearly identical and consistent with those
produced by the true parameter values (figure 3(D)). It is not
surprising that multiple sets of parameter values can produce
similar neuronal dynamics [11, 15, 25, 30, 31, 36]. In this case,
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Figure 3. Estimating conductance parameters in a Hodgkin–Huxley
model. (A)–(C) Sequential parameter estimates for gK and gNa. The
red asterisk denotes the true values of gK and gNa. The blue dots
denote the parameter values for all of the particles. (A) The initial
particle estimates are uniformly distributed in the two-dimensional
parameter space. (B) Distribution of particles after the second
observed spike. The parameter values of the particles begin to
concentrate in a region that contains the true values of gK and gNa.
(C) Distribution of particles after 40 spikes. The parameter estimates
have converged to a narrow linear subspace of parameter values that
are consistent with the spike data. The three asterisks indicate
parameter values used in (D). (D) Three voltage traces (blue, red
and yellow) corresponding to the three parameter choices (blue, red
and yellow, respectively) indicated in (C). Although the parameter
values differ, the three voltage traces and resulting spike times
(plotted as colored symbols along the horizontal axis) are nearly
indistinguishable. (E) By collecting data from a second experiment
with an altered resting current, we obtain a new set of estimates that
intersect with the first set around a single point, allowing us to
compute a single accurate estimate of the true parameters.

the linear relationship between the parameters is consistent
with our biophysical understanding of the neuron; the increase
of outward current due to higher potassium conductance is
approximately balanced by the increase of inward current
with larger sodium conductance. The particle filter identifies
the full space of parameter values that could have produced
the observed data. Intuitively, this result suggests that the
likelihood surface contains a flat ridge to which the estimates
congregate.

In this case, the true model parameters are not identifiable,
because the recorded data cannot distinguish between certain
parameter values. However, consider an experiment with the
goal of determining a neuron’s true conductance values by
injecting a fixed current and measuring the spike activity.
Although we would not be able to uniquely identify the
true conductance values from these data, this estimation
framework suggests experimental manipulations that could
help more accurately identify these true values. For example,
figure 3(E) illustrates how the distribution of parameter
estimates would change if we increased the resting current
to I = 30 µA cm−2. To determine these estimates we generate
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new spike times from the Hodgkin–Huxley model with the
adjusted resting current. From these new spike times, we
estimate the conductances gK and gNa and again find values
that lie along a line in the two-dimensional parameter space.
However, the slope of this line depends upon the choice of
resting current I. Visual inspection reveals that the two sets
of parameter estimates, based on the data from two distinct
resting currents, intersect near the true parameter values (at
gK = 36 mS cm−2 and gNa = 120 mS cm−2). These results
suggest a more sophisticated procedure for identifying specific
parameters; by adjusting parameters that can be controlled,
an estimation procedure combining multiple parameter values
could be developed so that the likelihood has unique, easily
identifiable peaks. For example, in vitro recordings from
single neurons typically allow the experimenter to control the
resting current [14]. Therefore, injecting different current
values is experimentally feasible and may provide a protocol
for accurate estimation of conductance values from in vitro
neuronal spike train data.

The presence or absence of specific ionic currents may
lead to different patterns of neuronal activity such as regular
spiking or bursting [21, 30]. During regular spiking, a neuron
generates action potentials at a constant (or nearly constant)
rate, while during bursting only brief intervals of rapid spiking
appear. Bursting activity typically requires a separation of
time scales, in which a ‘slow subsystem’ represents an intrinsic
current that, for example, gradually increases during the active
phase of a burst. Eventually, the slow current increases
enough to end the active phase of the burst and prevent
additional spikes until this current depletes. Therefore, the
slow subsystem is critical for setting the timescale and intensity
of the bursts.

To simulate bursting activity here, we utilize a (modified)
Hodgkin–Huxley model that includes a slow intrinsic current
(see section 2). Without this slow current the model generates
regular spiking activity, and the effect of the slow current is to
modulate this regular spiking activity. We apply the estimation
procedure to spike time data generated from this model and
show that we can simultaneously approximate three model
parameters—the resting current (denoted by I), the potassium
conductance (denoted by gK) and the conductance of the slow
current (denoted by gB)—during both regular spiking and
bursting activity. We then conclude with an example of model
misspecification to show that an inappropriate model choice
causes the estimation procedure to fail.

We simulated both regular spiking and bursting under this
model and used the resulting spike times as the ‘experimental’
data for the point process particle filter. We initialized
the algorithm with a prior distribution of estimates that
was uninformative about which mode of spiking (regular or
bursting) the neuron would produce. The initial particles
were drawn with probability 0.5 from a distribution consistent
with regular firing (I ∼ U(−2, 0) µA cm−2, gB =
0 mS cm−2 (since there is no slow current in the regular
spiking model), gNa ∼ U(18, 22) mS cm−2) and with
probability 0.5 from a distribution consistent with bursting
(I ∼ U(−3,−1) µA cm−2, gB ∼ U(1, 2) mS cm−2,
gNa ∼ U(3, 7) mS cm−2). These prior distributions were

K
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Figure 4. Estimating three parameters in a bursting model.
(A) Simultaneous estimates of three model parameters, I, gB and gK,
over time. The dashed blue lines indicate the underlying parameter
values (I = −1.8 µA cm−2, gB = 1.5 mS cm−2 and gK = 5 mS
cm−2). The solid blue lines are the parameter estimates. The red
dot-dashed lines represent 95% confidence intervals about the
estimates. All three estimates converge to their true values quickly
and consistently. (B) Based on the converged particles taken at the
end of the estimation process, the expected voltage trace and
estimated spike times (red curve) match the underlying voltage trace
(thick blue circles) and spike times (blue bars). The conditional
intensity function for the estimation procedure uses the following
parameters: !t = 0.01 ms, η = 13.8, ν = 0.1, p = q = 0.9,
Vth = 20 mV, ρ = 0.96. The sequential Monte Carlo algorithm used
1000 particles.

chosen based on an existing understanding of the model
dynamics, which helps limit the range of possible particle
values. Exploring a broader prior range with the same
density of coverage requires more particles, and therefore more
computation.

With these general prior distributions capable of
producing both regular spiking and bursting activity, we apply
the estimation procedure to spike time data simulated from
the modified Hodgkin–Huxley model. Figures 4(A) and
5(A) illustrate the estimated expected parameter values in
comparison with the true parameter values for the bursting
and regular spiking models, respectively. We find that, in both
cases, all three estimates converge to the corresponding true
parameter values quickly, with narrow confidence intervals,
suggesting high certainty in the estimates. The particle filter
successfully isolates the correct model class, and moreover
accurately identifies the true parameter values in each case.
To illustrate the accuracy of these estimates, we recompute the
expected voltages and show the tracking result based on the
converged particles. For both model classes, the underlying
voltages are tracked accurately as are the spike times
(figures 4(B) and 5(B)). We note that the spike heights in
the mean estimated voltage traces remain below the true
spike heights; this is expected because the observed data
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Figure 5. Estimating three parameters in a regular spiking model.
(A) Simultaneous estimates of three model parameters I, gB and gK
over time. Line colors and symbols match those in figure 4(A). The
underlying parameter values are I = −1 µA cm−2, gB = 0 mS
cm−2 and gK = 20 mS cm−2. All three estimates converge to the
underlying values quickly and consistently, as in the case of the
bursting model. (B) Expected voltage trace (red curve) based on the
converged parameter estimates. The underlying voltage trace (thick
blue circles) and spike times are tracked with high accuracy. The
conditional intensity function for the estimation procedure uses the
following parameters: !t = 0.01 ms, η = 4.5, ν = 0.1,
p = q = 0.9, Vth = 20 mV, ρ = 0.96. The sequential Monte Carlo
algorithm used 1000 particles.

only contains information about the spike times, not the spike
shapes nor the stochastic nature of the model. All of the
gating variables are estimated accurately as well (not shown).
We note that the estimate of parameter gB goes to zero for the
regular spiking data (figure 5(A)). The estimation procedure
therefore reveals that this current is not necessary to capture the
dynamics of the observed spike times. This is consistent with
our biophysical intuition: setting gB = 0 mS cm−2 turns off
the slow current, preventing bursting activity and promoting
regular spiking activity.

The parameter estimates for both the bursting and
regular spiking models approach unique points in the three-
dimensional parameter space. For these estimates, the model
identification issue seen in the previous example (figure 3) does
not arise. In the previous example, the similarity of the spike
times generated for multiple parameter combinations results
from the complementary relationship between the sodium gNa

and potassium gK currents. The same kind of similarity of the
spike times cannot be induced by adjusting parameters in the
modified Hodgkin–Huxley model considered here.

One possible concern about the particle filter approach
is that, since the algorithm uses the observed spiking data,
the resulting estimates will always produce activity consistent
with the data. To explore this issue, we consider an example
of model misspecification. First, we simulate the bursting
model described above to generate spike time data. Then, we

K
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Figure 6. Model misspecification results in an inaccurate
representation of the data. (A) Estimates of parameters I and gK
under the regular firing model using bursting data. The parameter
estimates (solid blue lines) fail to converge to the underlying
parameter values (dashed blue line). (B) The expected voltage trace
(red line) based on the converged particles does not match the
underlying trace (dashed blue line).

attempt to estimate parameters and hidden variables for the
regular spiking model (i.e. the model with no slow current
component) given the bursting spike time data. In this case,
we have intentionally chosen the wrong model class for the
data. Since the slow current conductance is zero (i.e. gB =
0 mS cm−2) in the regular spiking model, only two parameters
are estimated, the resting current I and potassium conductance
gK. Figure 6(A) presents the estimates of these two parameters.
The estimates do not converge to a single set of values. Instead,
the population estimates continue to have a large variability
as illustrated by the size of the confidence intervals. One
might suspect that this result is due to a model identifiability
issue, but figure 6(B) shows that the estimated voltage trace
deviates substantially from the true voltage trace. Clearly
the estimates are very poor. This result suggests that if we
start with the wrong model class, it is impossible to find a
set of parameters that accurately explains the observed spike
data. The modeler must therefore choose an appropriate model
class (e.g., a model with the appropriate intrinsic currents) to
produce an accurate representation of the data.

4. Discussion

In neuroscience, biophysical models of neural spiking are
often fitted using hand-tuning procedures to identify model
parameters that are qualitatively consistent with particular
patterns of spiking activity. While this approach has been
useful for constructing models that capture general features
of spiking data, it is more difficult to identify parameters that
could produce a specific set of electrophysiological recordings.
Recent work has focused on developing methods to estimate
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biophysical model parameters from recorded data [29, 41],
but these approaches typically require detailed knowledge of
the voltage dynamics (e.g., the intracellular voltage trace),
which are often unobserved. In this paper, instead of full
information of the voltage dynamics, we utilize only spike
times to estimate parameters and hidden variables (including
the sub-threshold voltage) in biophysical neuronal models.
The proposed estimation method is an adapted sequential
Monte Carlo method which incorporates point process theory
to deal with the discrete event spike data. This sequential
Monte Carlo approach efficiently identifies parameter values
that are most compatible with the observed spiking activity, by
allowing each particle to explore its local likelihood surface
and only replicating those particles where the likelihood
remains high. Similarly, the algorithm is robust to noise in the
state model because particles whose dynamic variables start to
deviate from the true realization eventually are eliminated and
replaced by others that follow the true dynamics more closely.

In general, it is unclear whether spike time data provide
sufficient information to estimate accurately any set of
parameters in a biophysical model. For some simple models,
such as the FitzHugh–Nagumo model and the Hodgkin–
Huxley model with slow current, the estimates we developed
rapidly converged to the correct values. However, for
the problem of simultaneously estimating the sodium and
potassium conductances in the standard Hodgkin–Huxley
model, we encountered a model identification issue: instead of
identifying the true parameter values, our approach provided a
group of parameter estimates all consistent with the observed
spike time data. When model identification issues arise we
expect that the variance of the resulting estimates for individual
parameters may remain large, and the covariance between
parameters may be far from 0. Therefore, the structure of
the estimated posterior distribution should be investigated for
all parameters simultaneously. In terms of understanding
the model dynamics, this result is more informative than the
traditional hand-tuning approach that typically yields only a
single set of parameter values (e.g., the first set encountered
that are consistent with the data) and ignores other parameter
sets also compatible with the data. Therefore, in terms
of data fitting, the method proposed here can obtain more
general results beyond a single set of model parameters.
However, this does not mean that the true parameter values are
unobtainable. For the standard Hodgkin–Huxley model, the
estimation procedure suggested an experimental manipulation
that allowed us to estimate the true conductance values by
injecting different levels of fixed resting current. In the
examples considered here, we estimated a constant, unknown
resting current. Often, we are interested in exploring models
with time-varying currents. If these currents are known (i.e.
controlled by the experimenter), then we can easily incorporate
them into the state model. If we have a biophysical model
of the time-varying inputs, we can similarly incorporate this
model into the state model, although the complexity of the
model and estimation procedure will increase.

There are several limitations of the approach proposed
here. First of all, our approach requires pre-knowledge of the
underlying equations for the neuronal model. Of course, this
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Figure 7. Estimation of six parameters from the Hodgkin–Huxley
model. The expected voltage trace and its 95% confidence interval
when estimating six parameters (gNa, gK, gL,α0,β0, I )
simultaneously in the Hodgkin–Huxley model with noise σ = 10.
The red solid and dashed lines represent voltage estimates and their
confidence bounds respectively over time. The blue circle line
indicates the underlying true voltage trace.

works well for the simulated data considered here in which
we know exactly the underlying dynamic model. But for
real spiking data recorded in experiment, we do not know
exactly (or usually even approximately) the latent model.
One possible solution is to apply the estimation procedure
to multiple model types and then choose the best one as
the underlying model based on maximum likelihood theory.
How well these techniques apply to experimental observations
of spike times, and whether these techniques outperform
existing methods [14], will be the subject of future work.
Secondly, in this paper we have not discussed any of the
multiple quantitative goodness-of-fit methods to characterize
model misspecification that are present in the literature
[2, 12, 44]. Point process theory provides a number of
approaches for measuring goodness-of-fit of a spiking model,
including methods based on penalized likelihoods [40] and
methods based on time rescaling [2]; we will explore these
procedures in future work.

Thirdly, the model estimation problem we considered is
simplified in that only a small number of parameters were
estimated (along with the set of dynamic variables). Detailed
biophysical models typically require many parameters, and
as the number of parameters to estimate increases, so does
the dimensionality of the state space and the computational
burden for the estimation algorithm. The question of how these
methods will scale to large, biophysically realistic, estimation
problems is an important area for future work. To begin to
address this issue here, we examined another simulation for a
Hodgkin–Huxley model, now with six unknown parameters,
including the leak current conductance (gL in (5)) and two
parameters controlling the potassium gating variable dynamics
(α0 and β0 in (6)). Figure 7 illustrates the resulting fit for the
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expected voltage trace for this model. As with the three-
parameter model estimation problem, the final distribution of
particles converges to a narrow subspace of parameter values
(not shown), all of which lead to voltage dynamics that are
consistent with the observed spike data. As the number of
parameters to be estimated increases, issues related to model
identification are more likely to arise, and computational
techniques implementing parallelization will probably become
critical.

Lastly, our proposed conditional intensity model is not
derived purely from biophysics. Instead, we consider the state
process to be a possible surrogate for the unobserved neural
dynamics, which provides information about the probability of
observing a spike at any moment in time rather than the exact
time of a spike. However, we can develop our method directly
from biophysical models. To do so requires treating St as
the exact dynamics of the observed neuron and computing
the probability distribution of simulated spikes based on
model simulations, which is computationally expensive. For
the procedure proposed here, we sought a balance between
computational time and accurate estimates.

To summarize, provided only the spike times of neuronal
activity we constructed an adapted sequential Monte Carlo
procedure which incorporates these sparse experimental data
with biophysical models. Unlike the past hand-tuning
approach and previous methods requiring full knowledge of
the voltage dynamics, our method estimates model parameters
directly from the spike time data.
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Appendix. The pseudo-code description of
estimation algorithm

Select an initial probability distribution for U denoted by
p (U0). We assume that the estimation procedure starts with
the neuron at rest, and initialize the state variables to their
resting values (steady-state values assuming a resting current
of zero). If no such resting period is available, we might choose
to initialize the algorithm at a time immediately following a
spike, where the state variables typically follow some known
stereotypical trajectories.

(1) Initialization:
Set t = 0 and for i = 1, . . . , n particles, draw the initial
states and parameters from the p (U0) and set wi

0 = n−1

for all i. Set t = 1.

(2) Importance sampling:
Using the prior distribution p (St |St−1,Θt ) as the
proposal distribution πt . Update all of the states based on
(1) sample St from πt . Evaluate the importance weight of
the ith particle

wi
t = wi

t−1 · p
(
!Nt |Si

1:t+k

)
,

where p
(
!Nt |Si

1:t+k

)
is computed by (2). Then normalize

the importance weights

w̃i
t = wi

t∑
j w

j
t

.

(3) Resampling:
Resampling can be performed at any fixed interval. In this
case, we resample after each spike observation. Draw n
particles

{
S̃i

t : i = 1, . . . , n
}

from
{
Si

t : i = 1, . . . , n
}

using the residual resampling approach (see text). Reset
the weights to w̃i

t = n−1 to obtain the Monte Carlo
estimate of the probability density

p(S̃t |!N1:t ) ≈ n−1
n∑

i=1

δ
(
S̃t − S̃i

t

)
,

where δ(·) is the Dirac delta function, indicating a point
mass at 0.

(4) Sample parameters:
Draw a new parameter vector Θ̃i

t from the ith normal
component of the kernel density, namely

Θ̃i

t ∼ N
(
·|mi

t−1, h
2-t−1

)
,

where mi
t−1 = ρ · Θi

t−1 + (1 − ρ) · Θt−1 and -t−1 =
ˆCov

(
{Θi

t }i
)
, h2 = 1 − ρ2. ρ is a constant, called

discount factor and Θt−1 denotes the weighted average of
all the parameters over particles. ρ is often selected to be
between 0.960 and 0.999 based on standard practice [24].
Sampling the parameter values in this manner ensures that
the variance of the estimate cannot increase as we observe
more data. Thus, it will increase the convergence rate in
the sense of the second moment.

(5) Compute any statistics gt (Ũt ) of interest based
on approximated posterior distribution and repeat
steps 2–5

E(gt (Ũt )) ≈
n∑

i=1

w̃i
t · gt

(
Ũi

t

)
.
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