MA 541: Modern Algebra I / Fall 2019 Challenge problem for homework assignment # 1

(1) Let G be a set with an associative binary operation * satisfying the following property: There is an element \tilde{e} in G so that

(a) for all g in G we have $g * \tilde{e} = g$; and

(b) for all g in G there exists an element \tilde{g}' of G so that $g\tilde{g}' = \tilde{e}$. Prove that (G, *) is a group and \tilde{e} is its identity element.

 $\textit{Hint: Show that the element } h = \tilde{g}' \ast g \textit{ satisfies } h \ast h = h.$