MA 541: Modern Algebra I / Fall 2019 Optional challenge problems for week #2 Due 9/19/2019 in class

- (1) Let G be a group and $H \leq G$ a subgroup.
 - (a) Show that the relation \sim on G given by $a \sim b$ if and only if $a^{-1}b \in H$ for $a, b \in G$ is an equivalence relation.
 - (b) Explain how the relation "congruence modulo n" on \mathbb{Z} is a special case of the equivalence relation in part (a).
 - (c) The relation \sim' on G given by $a \sim' b$ if and only if $ab^{-1} \in H$ for $a, b \in G$ is also an equivalence relation. (Convince yourself that this is true.) Do \sim and \sim' give rise to the same partition of G into equivalence classes? If yes, prove this; if no, give an explicit example of a G and an H where the partitions differ.
- (2) The Gaussian integers

$$\mathbb{Z}[i] := \{a + bi : a, b \in \mathbb{Z}\}$$

is an additive subgroup of \mathbb{C} . Consider the relation \equiv_{1+2i} on $\mathbb{Z}[i]$, where for $\alpha, \beta \in \mathbb{Z}[i]$ we say that $\alpha \equiv_{1+2i}\beta$ if there exists a $\gamma \in \mathbb{Z}[i]$ so that $\alpha - \beta = (1+2i)\gamma$.

- (a) Show that \equiv_{1+2i} ("congruence modulo 1+2i") is an equivalence relation on $\mathbb{Z}[i]$.
- (b) Let Z[i]_{1+2i} be the set of equivalence classes of Z[i] under ≡_{1+2i}. Is Z[i]_{1+2i} a finite or an infinite set? If it is finite, how many equivalence classes are there? List or describe them all, giving explicit representatives.
- (c) Show that $\mathbb{Z}[i]_{1+2i}$ is an abelian group under addition. It is isomorphic to another group that we have studied. Explain!