MA 541: Modern Algebra I / Fall 2019
 Homework assignment \# 3
 Due 9/24/2019

(0) Read F section 0.
(1) Recall that for $a, b \in \mathbb{Z}$ we say that $a \mid b$ (read as " a divides b ") if there exists a $k \in \mathbb{Z}$ such that $a k=b$.
Either prove or give a counterexample for each statement below.
(a) For all a in \mathbb{Z}, we have $a \mid a$.
(b) For all a, b, c in \mathbb{Z}, if $a \mid b$ and $b \mid c$, then $a \mid c$.
(c) For all a, b in \mathbb{Z}, if $a \mid b$ then $b \mid a$.
(d) For all a, b, c in \mathbb{Z}, if $a \mid b$ and $a \mid c$, then $a \mid(b+c)$.
(e) For all a, b, c in \mathbb{Z}, if $a \mid b$ and $c \mid b$, then $(a+c) \mid b$.
(f) For all a, b in \mathbb{Z}, if $a \mid b$ then $a \mid b c$.
(g) For all a, b in \mathbb{Z}, if $a \mid b c$ then $a \mid b$ and $a \mid c$.
(2) Solve F problems 0.29-0.32. Explain your answers!
(3) Which of the following maps are injective? Surjective? Bijective? Explain!
(a) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}-1$
(b) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{3}-x$
(c) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{3}$
(d) $f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$ given by $f(x)=\frac{1}{x}$
(4) Units modulo n : Fix $n \in \mathbb{Z}^{+}$. An element $a \in \mathbb{Z}$ is called a unit modulo n there exists $b \in \mathbb{Z}$ so that $a b \equiv_{n} 1$.
Recall that \mathbb{Z}_{n} is the set of equivalence classes in \mathbb{Z} under the \equiv_{n} equivalence relation as discussed in class. The elements of \mathbb{Z}_{n} are also called residue classes modulo n.
(a) Suppose that $a \in \mathbb{Z}$ is a unit modulo n. Prove that its inverse modulo n is well defined as a residue class in \mathbb{Z}_{n}, and depends only on the residue class \bar{a} in \mathbb{Z}_{n}.
(b) Let $\mathbb{Z}_{n}^{\times} \subseteq \mathbb{Z}_{n}$ be the set of invertible residue classes modulo n. Prove that \mathbb{Z}_{n}^{\times}forms a group under multiplication. Is this group a subgroup of \mathbb{Z}_{n} ?
(c) List the elements of \mathbb{Z}_{9}^{\times}. How many are there? For each residue class $u \in \mathbb{Z}_{9}$, compute the elements of the sequence $u, u^{2}, u^{3}, u^{4}, \ldots$ until the pattern is clear. Determine the length of each repeating cycle. Is \mathbb{Z}_{9}^{\times}a cyclic group?
(5) Is \mathbb{Z}_{7}^{\times}a cyclic group? If so, find all the generators.

Same for $\mathbb{Z}_{8}^{\times}, \mathbb{Z}_{10}^{\times}, \mathbb{Z}_{11}^{\times}$, and \mathbb{Z}_{12}^{\times}.
(6) Let G and H be groups, and let $\varphi: G \rightarrow H$ be a group homomorphism. Prove that for all $g \in G$ we have

$$
\varphi\left(g^{-1}\right)=\varphi(g)^{-1}
$$

(Note that the inverse on the on the left-hand side of the equality is being taken in G, and the inverse on the right-hand side in H.)
(7) Direct product of groups: Let $\left(G, *_{G}\right)$ and $\left(H, *_{H}\right)$ be groups, with identity elements e_{G} and e_{H}, respectively. Let g be any element of G, and h any element of H.
(a) Show that the set $G \times H$ has a natural group structure under the operation $\left(*_{G}, *_{H}\right)$. What is the identity element of $G \times H$ with this structure? What is the inverse of the element $(g, h) \in G \times H$?
(b) Show that the map $i_{G}: G \rightarrow G \times H$ given by $i_{G}(g)=\left(g, e_{H}\right)$ is a group homomorphism. Is it injective? Surjective? Do the same for the map $i_{H}: H \rightarrow G \times H$ given by $i_{H}(h)=\left(e_{G}, h\right)$.
(c) Show that the map $\pi_{G}: G \times H \rightarrow G$ given by $\pi_{G}((g, h))=g$ is a group homomorphism. Is it injective? Surjective? Do the same for the map $\pi_{H}: G \times H \rightarrow H$ given by $\pi_{H}((g, h))=h$.
(d) Prove that the image of i_{G} is the kernel of π_{H}, and that the image of i_{H} is the kernel of π_{G}.

