MA 541: Modern Algebra I / Fall 2019 Homework assignment # 3 Due 9/24/2019

- (0) Read F section 0.
- (1) Recall that for $a, b \in \mathbb{Z}$ we say that a|b (read as "a divides b") if there exists a $k \in \mathbb{Z}$ such that ak = b.

Either prove or give a counterexample for each statement below.

- (a) For all a in \mathbb{Z} , we have a|a.
- (b) For all a, b, c in \mathbb{Z} , if a|b and b|c, then a|c.
- (c) For all a, b in \mathbb{Z} , if a|b then b|a.
- (d) For all a, b, c in \mathbb{Z} , if a|b and a|c, then a|(b+c).
- (e) For all a, b, c in \mathbb{Z} , if a|b and c|b, then (a+c)|b.
- (f) For all a, b in \mathbb{Z} , if a|b then a|bc.
- (g) For all a, b in \mathbb{Z} , if a|bc then a|b and a|c.
- (2) Solve F problems 0.29–0.32. Explain your answers!
- (3) Which of the following maps are injective? Surjective? Bijective? Explain!
 - (a) $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2 1$
 - (b) $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^3 x$
 - (c) $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^3$

(d)
$$f : \mathbb{R} - \{0\} \to \mathbb{R}$$
 given by $f(x) = -\frac{1}{2}$

(4) Units modulo n: Fix $n \in \mathbb{Z}^+$. An element $a \in \mathbb{Z}$ is called a *unit modulo* n there exists $b \in \mathbb{Z}$ so that $ab \equiv_n 1$.

Recall that \mathbb{Z}_n is the set of equivalence classes in \mathbb{Z} under the \equiv_n equivalence relation as discussed in class. The elements of \mathbb{Z}_n are also called *residue classes* modulo n.

- (a) Suppose that $a \in \mathbb{Z}$ is a unit modulo n. Prove that its inverse modulo n is well defined as a residue class in \mathbb{Z}_n , and depends only on the residue class \overline{a} in \mathbb{Z}_n .
- (b) Let $\mathbb{Z}_n^{\times} \subseteq \mathbb{Z}_n$ be the set of invertible residue classes modulo n. Prove that \mathbb{Z}_n^{\times} forms a group under multiplication. Is this group a subgroup of \mathbb{Z}_n ?
- (c) List the elements of \mathbb{Z}_9^{\times} . How many are there? For each residue class $u \in \mathbb{Z}_9$, compute the elements of the sequence u, u^2, u^3, u^4, \ldots until the pattern is clear. Determine the length of each repeating cycle. Is \mathbb{Z}_9^{\times} a cyclic group?
- (5) Is \mathbb{Z}_7^{\times} a cyclic group? If so, find all the generators. Same for \mathbb{Z}_8^{\times} , \mathbb{Z}_{10}^{\times} , \mathbb{Z}_{11}^{\times} , and \mathbb{Z}_{12}^{\times} .

(6) Let G and H be groups, and let $\varphi : G \to H$ be a group homomorphism. Prove that for all $g \in G$ we have

$$\varphi(g^{-1}) = \varphi(g)^{-1}.$$

(Note that the inverse on the on the left-hand side of the equality is being taken in G, and the inverse on the right-hand side in H.)

- (7) **Direct product of groups:** Let $(G, *_G)$ and $(H, *_H)$ be groups, with identity elements e_G and e_H , respectively. Let g be any element of G, and h any element of H.
 - (a) Show that the set $G \times H$ has a natural group structure under the operation $(*_G, *_H)$. What is the identity element of $G \times H$ with this structure? What is the inverse of the element $(g, h) \in G \times H$?
 - (b) Show that the map $i_G : G \to G \times H$ given by $i_G(g) = (g, e_H)$ is a group homomorphism. Is it injective? Surjective? Do the same for the map $i_H : H \to G \times H$ given by $i_H(h) = (e_G, h)$.
 - (c) Show that the map $\pi_G : G \times H \to G$ given by $\pi_G((g,h)) = g$ is a group homomorphism. Is it injective? Surjective? Do the same for the map $\pi_H : G \times H \to H$ given by $\pi_H((g,h)) = h$.
 - (d) Prove that the image of i_G is the kernel of π_H , and that the image of i_H is the kernel of π_G .

 $\mathbf{2}$