MA 541: Modern Algebra I / Fall 2019
 Homework assignment \# 4 Due 10/1/2019

(0) Read F section 6 through Example 6.13

Read F section 13, pp. 125-129, skipping Example 13.3.
(1) Suppose G is a group, and $S \subseteq G$ a nonempty subset. Prove that S is a subgroup of G if and only if the following property is satisfied: given any two elements a, b in S, the element $a^{-1} b$ is also in S.
(2) Solve F exercises 6.17-6.20. Explain!
(3) Let $U:=\{\alpha \in \mathbb{C}:|\alpha|=1\}$.
(a) Show that U is a subgroup of \mathbb{C}^{\times}(under multiplication).
(b) Prove that the map

$$
\varphi: U \rightarrow \mathrm{GL}_{2}(\mathbb{R})
$$

given by

$$
a+b i \mapsto\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

is an injective homomorphism. Here $a, b \in \mathbb{R}$.
(Note: F has a review of complex numbers in section 1.)
(4) For each item below determine whether the given map is a homomorphism of groups. Explain. If the map is a homomorphism, also give its kernel and image.
(a) The map $\varphi: \mathbb{R} \rightarrow \mathbb{Z}$ given by $\varphi(x)=\lfloor x\rfloor$. (Here $\lfloor x\rfloor$ is the greatest integer less than or equal to x.)
(b) The map $\varphi: \mathbb{C}^{\times} \rightarrow \mathbb{R}^{\times}$given by $\varphi(x)=|x|$.
(c) The map $\varphi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{4}$ given by $\varphi(\bar{a})=\bar{a}$.
(d) The map $\varphi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{5}$ given by $\varphi(\bar{a})=\bar{a}$.
(e) The $\operatorname{map} \varphi: M_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ given by $\varphi\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=a+d$.
(f) Let G be a group, and $\varphi: G \rightarrow G$ given by $\phi(g)=g^{-1}$.
(5) Show your work!
(a) Find an integer solution to the equation $27 x+43 y=1$.
(b) Find the multiplicative inverse of 58 modulo 69.
(6) Let a, b, c be integers with $\in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$. Use Bézout's lemma to show that if $a \mid c$ and $b \mid c$, then $a b \mid c$.
(7) Let $n \in \mathbb{Z}^{+}$. Prove that $\operatorname{gcd}(a, n)$ only depends on the residue class on a modulo n. Here $a \in \mathbb{Z}$, of course.
[In other words, show that if $a \equiv_{n} b$, then $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)$.]
(8) Let G and H be groups. Prove that a group homomorphism

$$
\varphi: G \rightarrow H
$$

is injective if and only if $\operatorname{ker} \varphi=\left\{e_{G}\right\}$. Here e_{G} is the identity in G.
(9) Consider the set $\mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right)$ of invertible 2×2 matrices with coefficients in \mathbb{Z}_{2}. Convince yourself that this is a group under multiplication.
(a) List the elements of $\mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right)$. How many are there?
(b) Give the group table for $\mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right)$.
(c) Is $\mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right)$ isomorphic to another group that we have studied? Explain!

