MA 541: Modern Algebra I / Fall 2019 Optional challenge problems for homework assignment # 4 Due 10/3/2019 in class

(1) Prove that the well-ordering principle (WOP) and the principle of mathematical induction are equivalent — that is, each implies the other.

(WOP states that any nonempty subset of \mathbb{Z}^+ has a least element. Mathematical induction asserts that if a statement is true for n = 1, and if you can show that whenever the statement is true for any particular n then it is also true for n + 1, then the statement is true for all $n \in \mathbb{Z}^+$.)

(2) Euclid's algorithm starts with a pair of (say) positive integers a and b and proceeds to successively divide with remainder:

$a = bq + r_1,$	$0 \le r_1 < b$
$b = r_1 q_2 + r_2,$	$0 \le r_2 < r_1$
$r_1 = r_2 q_3 + r_3,$	$0 \le r_3 < r_2$
•••	
$r_{i-2} = r_{i-1}q_i + r_i,$	$0 \le r_i < r_{i-1}$
····.	

Since $b > r_1 > \cdots > r_i > \cdots \ge 0$, and since the positive integers are well-ordered, eventually some remainder will equal zero. Let r_n be the last nonzero remainder, so that we actually have

$$a = bq + r_1$$

$$b = r_1q_2 + r_2$$

$$r_1 = r_2q_3 + r_3$$

...

$$r_{n-2} = r_{n-1}q_n + r_n$$

$$r_{n-1} = r_nq_{n+1}$$

with

$$0 < r_n < r_{n-1} < \dots < b.$$

Prove that $r_n = \gcd(a, b)$.

(Hint: First prove that any common divisor of a and b divides each r_i for $i = 1, 2, \dots n$. Then prove that r_n divides each of $r_{n-1}, r_{n-2}, \dots, r_2, r_1, b, a$ in turn. Conclude and triumph!)