MA 541: Modern Algebra I / Fall 2019
 Optional challenge problems for homework assignment \# 4 Due 10/3/2019 in class

(1) Prove that the well-ordering principle (WOP) and the principle of mathematical induction are equivalent - that is, each implies the other.
(WOP states that any nonempty subset of \mathbb{Z}^{+}has a least element. Mathematical induction asserts that if a statement is true for $n=1$, and if you can show that whenever the statement is true for any particular n then it is also true for $n+1$, then the statement is true for all $n \in \mathbb{Z}^{+}$.)
(2) Euclid's algorithm starts with a pair of (say) positive integers a and b and proceeds to successively divide with remainder:

$$
\begin{array}{rlr}
a & =b q+r_{1}, & 0 \leq r_{1}<b \\
b & =r_{1} q_{2}+r_{2}, & 0 \leq r_{2}<r_{1} \\
r_{1} & =r_{2} q_{3}+r_{3}, & 0 \leq r_{3}<r_{2} \\
& \ldots & \ldots \\
r_{i-2} & =r_{i-1} q_{i}+r_{i}, & 0 \leq r_{i}<r_{i-1} \\
& \ldots . &
\end{array}
$$

Since $b>r_{1}>\cdots>r_{i}>\cdots \geq 0$, and since the positive integers are well-ordered, eventually some remainder will equal zero. Let r_{n} be the last nonzero remainder, so that we actually have

$$
\begin{aligned}
a & =b q+r_{1} \\
b & =r_{1} q_{2}+r_{2} \\
r_{1} & =r_{2} q_{3}+r_{3} \\
& \ldots \\
r_{n-2} & =r_{n-1} q_{n}+r_{n} \\
r_{n-1} & =r_{n} q_{n+1}
\end{aligned}
$$

with

$$
0<r_{n}<r_{n-1}<\cdots<b
$$

Prove that $r_{n}=\operatorname{gcd}(a, b)$.
(Hint: First prove that any common divisor of a and b divides each r_{i} for $i=1,2, \cdots n$. Then prove that r_{n} divides each of $r_{n-1}, r_{n-2}, \cdots, r_{2}, r_{1}, b, a$ in turn. Conclude and triumph!)

