MA 541: Modern Algebra I / Fall 2019
 Homework assignment \#5
 Due 10/8/2019

Edits 10/3/2019 in blue.
(1) (a) Give the subgroup diagram for \mathbb{Z}_{28}. For each subgroup $G \leq \mathbb{Z}_{28}$, list all the elements of G, and specify which of them generate G.
(b) Same question for \mathbb{Z}_{13}^{\times}. (Recall that \mathbb{Z}_{n}^{\times}is the group of multiplicatively invertible residue classes modulo n under multiplication.)
(2) (a) If G is an abelian group (written multiplicatively), prove that the subset

$$
G^{3}:=\left\{g^{3}: g \in G\right\}
$$

of the cubes of all the elements is a subgroup of G.
(b) Give an example of an abelian group G so that G^{3} is a proper subgroup.
(c) Give an example of an abelian group G so that $G^{3}=G$.
(3) Let G be a group, and $a, b \in G$ two elements with $\operatorname{ord}(a)=5$ and $\operatorname{ord}(b)=18$.
(a) Give three distinct elements of G with order 5. (Don't forget to explain why they are distinct!)
(b) Give three distinct elements of G of order 9 and two distinct elements of order 6 .
(c) Suppose G is moreover abelian. Can you produce in G an element of 10? Of order 12? Of order 90 ?
(4) In F 4.19 (on homework assignment \#1), you showed that the set

$$
S=\mathbb{R}-\{-1\}
$$

forms a group under the operation $a * b=a b+a+b$. Show that the map

$$
\varphi: S \rightarrow \mathbb{R}^{\times}
$$

given by $\varphi(a)=a+1$ is a group isomorphism. (Here \mathbb{R}^{\times}is, as usual, the group of nonzero real numbers under multiplication.)
(5) Let G be a group, and suppose that H and K are subgroups of G. Either prove or disprove with a counterexample each of the following.
(a) The intersection $H \cap K$ is a subgroup of G.
(b) The union $H \cup K$ is a subgroup of G.
(6) (a) Is the homomorphism $\mathbb{Z}_{12} \rightarrow \mathbb{Z}_{3} \times \mathbb{Z}_{4}$ defined by

$$
(a+12 \mathbb{Z}) \mapsto(a+3 \mathbb{Z}, a+4 \mathbb{Z})
$$

an isomorphism? If is is, prove it. If it is not, specify its kernel and image.
(b) Same question for the map $\mathbb{Z}_{12} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{6}$ given by $a+12 \mathbb{Z} \mapsto(a+2 \mathbb{Z}, a+6 \mathbb{Z})$.
(c) Fix positive integers m and n. What is the kernel of the homomorphism $f: \mathbb{Z}_{m n} \rightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ given by $f(a+m n \mathbb{Z})=(a+m \mathbb{Z}, a+n \mathbb{Z})$?
(d) Optional challenge part: What is the image of f from part (c)?
(e) Under what conditions on m and n is the map from part (c) an isomorphism? Formulate a precise statement and prove it. (Hint: Problem (6) from HW \#4 may prove useful.)
(f) Optional challenge part: Suppose the condition from part (e) is satisfied, so that f from part (c) is an isomorphism. Give a recipe, as precise as possible, for the inverse map.
(7) Let G be a group, and $H \leq G$ a subgroup. For any element $g \in G$, write $g H$ for the set of products $\{g h: h \in H\}$.
(a) For $g \in G$, show that the map $H \rightarrow g H$ given by $h \mapsto g h$ is a bijection of sets.
(b) If $g \in H$, show that $g H=H$. (That is, they are the same as sets.)
(c) Show by example that $g H$ need not be equal to H in general.
(d) Optional challenge part: Now suppose that G is abelian, and finite of order n. Show that $g^{n}=1$ for any $g \in G$.
(Hint: set $H=G$ in parts (a) and (b), and compare the products of all the elements of H and of $g H$.)
(8) Consider the following matrices in $\mathrm{GL}_{2}(\mathbb{C})$:

$$
\mathbf{1}:=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad \mathbf{i}:=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad \mathbf{j}:=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \mathbf{k}:=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) .
$$

(a) Show that the set $Q_{8}:=\{ \pm \mathbf{1}, \pm \mathbf{i}, \pm \mathbf{j}, \pm \mathbf{k}\}$ forms a subgroup of $\mathrm{GL}_{2}(\mathbb{C})$.
(b) Give the group table for Q_{8}.
(9) Optional challenge problem (Addition in $\mathbb{Q})$: Let $F=\mathbb{Z} \times(\mathbb{Z}-\{0\})$ be the set of rational fractions as described in class. Prove that the relation $(a, b) \sim(c, d)$ iff $a d=b c$ is an equivalence relation on F. Write F / \sim for the set of equivalence classes, and prove that the binary operation $(a, b) \star(c, d)=(a d+b c, b d)$ on F determines a well-defined associative binary operation \star on F / \sim, endowing F / \sim with the structure of an abelian group.

