MA 541: Modern Algebra I / Fall 2019
 Homework assignment \#6
 Due Tuesday, October 22, at 9:30am

Minor edits 18 October 2019 in blue.
In the problems below, Q_{8} refers to the group from problem (8) on HW \#5.
(0) Read in F: sec. 8 through example 8.10, sec. 9 through example 9.10.
(1) Let $\sigma, \tau \in S_{15}$ be the permutations

$$
\begin{aligned}
\sigma & =\left(\begin{array}{ccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
13 & 2 & 15 & 14 & 10 & 6 & 12 & 3 & 4 & 1 & 7 & 9 & 5 & 11 & 8
\end{array}\right) \\
\tau & =\left(\begin{array}{ccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
14 & 9 & 10 & 2 & 12 & 6 & 5 & 11 & 15 & 3 & 8 & 7 & 4 & 1 & 13
\end{array}\right) .
\end{aligned}
$$

Write each of the following in cycle notation: $\sigma, \tau, \sigma^{2}, \sigma \tau, \tau \sigma$.
(2) (a) How many elements are there in S_{8} with cycle structure $(5,3)$?
(Recall from class that an element with cycle structure $(5,3)$ is a product of two disjoint cycles, a 5 -cycle and a 3 -cycle.) What is the order of such an element?
(b) How many elements are there in S_{15} with cycle structure $(6,5,4)$? What is the order of such an element?
(3) Suppose S, T, U are three sets, and $f: S \rightarrow T$ and $g: T \rightarrow U$ are two functions. Consider the function $g \circ f: S \rightarrow U$. Prove each of the following statements.
(a) If f and g are injective, then $g \circ f$ is injective.
(b) If f and g are surjective, then $g \circ f$ is surjective.
(c) If $g \circ f$ is injective, then f is injective.
(d) If $g \circ f$ is surjective, then g is surjective.
(4) Suppose every element of a group G has order dividing 2 . Show that G is an abelian group.
(5) Fix $n, d \in \mathbb{Z}^{+}$with $d \mid n$. Show that the subgroup $d \mathbb{Z}_{n}$ of \mathbb{Z}_{n} is isomorphic to $\mathbb{Z}_{n / d}$. (Don't forget to check that the function that you construct giving the isomorphism is well defined!)
(6) If G is a group, define the subset

$$
Z(G)=\{g \in G: g x=x g \text { for all } x \in G\} \subseteq G
$$

(a) Prove that $Z(G)$ is a subgroup of G.
(b) Find $Z(G)$ for each of the following groups G :

$$
\mathbb{Z}, \mathrm{GL}_{2}(\mathbb{R}), D_{3}, D_{4}, Q_{8}, S_{4}
$$

(c) If $f: G \rightarrow H$ is a group homomorphism, must f map $Z(G)$ to $Z(H)$? Either prove the statement or give a counterexample.
(7) (a) Give the subgroup diagram for Q_{8}. Explain how you know that you've found all the subgroups.
(b) Is Q_{8} isomorphic to D_{4} ? Either construct an isomorphism or explain why no such isomorphism exists.
(c) Find as many non-isomorphic groups of size 8 as you can. Do you think you found them all?
(8) Orders: Let G be a group containing an element of order n for some $n \in \mathbb{Z}^{+}$. Suppose that $d \in \mathbb{Z}^{+}$is a divisor of n. Must G contain an element of order d ? If no, give a counterexample. If yes, how many elements of order d in G can you guarantee? Prove all your assertions.
(9) LCMs: Let a, b be in $\mathbb{Z}-\{0\}$. A common multiple of a and b is an integer m divisible by both a and b. The least common multiple of a and b (write $\operatorname{lcm}[a, b])$ is the smallest positive common multiple of a and b.
(a) We saw that $\operatorname{gcd}(a, b)$ is the nonnegative generator of the subgroup $a \mathbb{Z}+b \mathbb{Z}$ of \mathbb{Z}. Describe lcm $[a, b]$ as the nonnegative generator of another "naturally occurring" subgroup of \mathbb{Z} related to $a \mathbb{Z}$ and $b \mathbb{Z}$.
Now assume that both a and b are positive.
(b) If $\operatorname{gcd}(a, b)=1$, prove that $\operatorname{lcm}[a, b]=a b$.
(c) Show that $\operatorname{gcd}(a, b) \operatorname{lcm}[a, b]=a b$.
(10) More on orders: Suppose that G is a group, and $g, h \in G$ are two commuting elements of finite order. Let $a=\operatorname{ord}(g)$ and $b=\operatorname{ord}(h)$.
(a) Show that the order of $g h$ divides $\operatorname{lcm}[a, b]$.
(b) Show by example that ord $(g h)$ may be strictly smaller than $\operatorname{lcm}[a, b]$.
(c) If $\operatorname{gcd}(a, b)=1$, prove that $\operatorname{ord}(g h)=a b$.
(d) Prove that G always has an element of order $\operatorname{lcm}[a, b]$.
(11) Cosets in abelian groups: Let G be an abelian group, written additively, and $H \leq G$ a subgroup.
(a) Show that the relation $a \sim_{H} b$ iff $a-b \in H$ is an equivalence relation on G.
(b) For $a \in G$, write \bar{a} for the equivalence class of a under \sim_{H}. Recall that $\bar{a}=\left\{b \in G: b \sim_{H} a\right\} \subseteq G$. Show that $\bar{a}=a+H$, where $a+H=\{a+h: h \in H\} \subseteq G$. This is a coset of H in G.
(c) For each of the following groups G and subgroups H, determine whether there are finitely many or infinitely many different cosets of H in G. If there are finitely many, list them. Otherwise, describe them geometrically.
(i) $G=\mathbb{Z}_{12}, H=3 \mathbb{Z}_{12}$
(ii) $G=\mathbb{R}^{2}, H=\langle(1,2)\rangle$. In other words, $H=\{n(1,2): n \in \mathbb{Z}\}$. If you prefer, you may assume that $H=\{\alpha(1,2): \alpha \in \mathbb{R}\}$ instead.
(iii) $G=\mathbb{Q}^{\times}, H=\mathbb{Q}^{+}$
(iv) $G=\mathbb{C}^{\times}, H=\mathbb{R}^{+}$

