MA 541: Modern Algebra I / Fall 2019 Homework assignment #6 Due Tuesday, October 22, at 9:30am

Minor edits 18 October 2019 in blue.

In the problems below, Q_8 refers to the group from problem (8) on HW #5.

- (0) Read in F: sec. 8 through example 8.10, sec. 9 through example 9.10.
- (1) Let $\sigma, \tau \in S_{15}$ be the permutations

$\sigma = \begin{pmatrix} 1\\ 13 \end{pmatrix}$	$\frac{2}{2}$	$\frac{3}{15}$	4 14	$\begin{array}{c} 5\\ 10 \end{array}$	6 6	7 12	8 2 3	$\frac{9}{4}$	$\begin{array}{c} 10\\1\end{array}$	11 7	12 9	$\frac{13}{5}$	14 11	15 8),
$\tau = \left(\begin{array}{c} 1\\ 14 \end{array}\right)$	$\frac{2}{9}$	$\begin{array}{c} 3\\ 10 \end{array}$	$\frac{4}{2}$	$5 \\ 12$	$\frac{6}{6}$	75	8 11	$9 \\ 15$	$\frac{10}{3}$	$\frac{11}{8}$	$\frac{12}{7}$	$\begin{array}{c} 13\\ 4 \end{array}$	14 1	$\left. \begin{array}{c} 15 \\ 13 \end{array} \right)$).

Write each of the following in cycle notation: σ , τ , σ^2 , $\sigma\tau$, $\tau\sigma$.

- (2) (a) How many elements are there in S₈ with cycle structure (5,3)?
 (Recall from class that an element with cycle structure (5,3) is a product of two disjoint cycles, a 5-cycle and a 3-cycle.)
 What is the order of such an element?
 - (b) How many elements are there in S_{15} with cycle structure (6, 5, 4)? What is the order of such an element?
- (3) Suppose S, T, U are three sets, and $f : S \to T$ and $g : T \to U$ are two functions. Consider the function $g \circ f : S \to U$. Prove each of the following statements.
 - (a) If f and g are injective, then $g \circ f$ is injective.
 - (b) If f and g are surjective, then $g \circ f$ is surjective.
 - (c) If $g \circ f$ is injective, then f is injective.
 - (d) If $g \circ f$ is surjective, then g is surjective.
- (4) Suppose every element of a group G has order dividing 2. Show that G is an abelian group.
- (5) Fix $n, d \in \mathbb{Z}^+$ with d | n. Show that the subgroup $d\mathbb{Z}_n$ of \mathbb{Z}_n is isomorphic to $\mathbb{Z}_{n/d}$. (Don't forget to check that the function that you construct giving the isomorphism is well defined!)
- (6) If G is a group, define the subset

 $Z(G) = \{g \in G : gx = xg \text{ for all } x \in G\} \subseteq G.$

- (a) Prove that Z(G) is a subgroup of G.
- (b) Find Z(G) for each of the following groups G:

$$\mathbb{Z}, \, \mathrm{GL}_2(\mathbb{R}), \, D_3, \, D_4, \, Q_8, \, S_4.$$

(c) If $f: G \to H$ is a group homomorphism, must f map Z(G) to Z(H)? Either prove the statement or give a counterexample.

- (7) (a) Give the subgroup diagram for Q_8 . Explain how you know that you've found all the subgroups.
 - (b) Is Q_8 isomorphic to D_4 ? Either construct an isomorphism or explain why no such isomorphism exists.
 - (c) Find as many non-isomorphic groups of size 8 as you can. Do you think you found them all?
- (8) **Orders:** Let G be a group containing an element of order n for some $n \in \mathbb{Z}^+$. Suppose that $d \in \mathbb{Z}^+$ is a divisor of n. Must G contain an element of order d? If no, give a counterexample. If yes, how many elements of order d in G can you guarantee? Prove all your assertions.
- (9) LCMs: Let a, b be in Z − {0}. A common multiple of a and b is an integer m divisible by both a and b. The least common multiple of a and b (write lcm[a, b]) is the smallest positive common multiple of a and b.
 - (a) We saw that gcd(a, b) is the nonnegative generator of the subgroup $a\mathbb{Z}+b\mathbb{Z}$ of \mathbb{Z} . Describe lcm[a, b] as the nonnegative generator of another "naturally occurring" subgroup of \mathbb{Z} related to $a\mathbb{Z}$ and $b\mathbb{Z}$.

Now assume that both a and b are positive.

- (b) If gcd(a, b) = 1, prove that lcm[a, b] = ab.
- (c) Show that gcd(a, b) lcm[a, b] = ab.
- (10) More on orders: Suppose that G is a group, and $g, h \in G$ are two commuting elements of finite order. Let $a = \operatorname{ord}(g)$ and $b = \operatorname{ord}(h)$.
 - (a) Show that the order of gh divides lcm[a, b].
 - (b) Show by example that $\operatorname{ord}(gh)$ may be strictly smaller than $\operatorname{lcm}[a, b]$.
 - (c) If gcd(a, b) = 1, prove that ord(gh) = ab.
 - (d) Prove that G always has an element of order lcm[a, b].
- (11) Cosets in abelian groups: Let G be an abelian group, written additively, and $H \leq G$ a subgroup.
 - (a) Show that the relation $a \sim_H b$ iff $a b \in H$ is an equivalence relation on G.
 - (b) For $a \in G$, write \bar{a} for the equivalence class of a under \sim_H . Recall that $\bar{a} = \{b \in G : b \sim_H a\} \subseteq G$. Show that $\bar{a} = a + H$, where $a + H = \{a + h : h \in H\} \subseteq G$. This is a coset of H in G.
 - (c) For each of the following groups G and subgroups H, determine whether there are finitely many or infinitely many different cosets of H in G. If there are finitely many, list them. Otherwise, describe them geometrically.
 - (i) $G = \mathbb{Z}_{12}, H = 3\mathbb{Z}_{12}$
 - (ii) $G = \mathbb{R}^2$, $H = \langle (1,2) \rangle$. In other words, $H = \{n(1,2) : n \in \mathbb{Z}\}$. If you prefer, you may assume that $H = \{\alpha(1,2) : \alpha \in \mathbb{R}\}$ instead.
 - (iii) $G = \mathbb{Q}^{\times}, H = \mathbb{Q}^+$
 - (iv) $G = \mathbb{C}^{\times}, H = \mathbb{R}^+$